Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

大语言模型发展历程

Answer

大语言模型的发展历程如下:

  • 2017 年,发布了《Attention Is All You Need》论文,为后续发展奠定基础。
  • 2018 年,Google 提出 BERT(Bidirectional Encoder Representations from Transformers),其创新性地采用双向预训练并行获取上下文语义信息,以及掩码语言建模(MLM)以更好地推断语义信息,参数规模在 110M 到 340M 之间。
  • 2018 年,OpenAI 提出 GPT(Generative Pre-trained Transformer),开创了仅使用自回归语言建模作为预训练目标而无需额外监督信号的方式,展示了强大的语言生成能力,参数规模达 1750 亿。
  • 2021 年,Meta 提出 Large LAnguage Model Approach(LLAMA),这是首个开源模型,为构建更大规模、更通用的语言模型提供了方法与工具,参数规模在十亿到千亿之间。

此外,OpenAI 的 GPT-3.5 是其大语言模型 GPT 系列中多年来最完善的一次迭代,并通过 ChatGPT 成功推向大众,在短时间内实现了用户的快速增长。

在语言模型的发展中,20 世纪 80 年代发明了递归神经网络(RNN)处理单词序列,但存在训练速度慢和遗忘问题。1997 年发明的长短期记忆(LSTM)网络解决了部分问题,但语言能力有限。

2020 年中期,Lewis 等人提出检索增强生成(RAG),它将外部数据检索整合到生成过程中,提高了模型提供准确和相关回答的能力。RAG 的演进轨迹在四个不同阶段展开,2017 年的创始阶段主要重点是通过预训练模型(PTM)来吸收额外的知识以增强语言模型。

Content generated by AI large model, please carefully verify (powered by aily)

References

大模型入门指南

这一切的起源是2017年发布的Attention Is All You Need([4])论文,之后基于大量语料的预训练模型百花齐放,比如:BERT(Bidirectional Encoder Representations from Transformers):Google在2018年提出,创新性的双向预训练并行获取上下文语义信息,以及掩码语言建模(MLM)让模型更好地推断语义信息。它开创了预训练语言表示范式,对自然语言处理产生了深远影响。参数规模:110M到340MGPT(Generative Pre-trained Transformer):OpenAI在2018年提出,开创了仅使用自回归语言建模作为预训练目标而无需额外监督信号。它展示了通过无监督大规模预训练获得的语言生成能力,对研究与应用都带来重大影响。参数规模:1750亿Large LAnguage Model Approach(LLAMA):Meta在2021年提出,首个开源模型。为构建更大规模、更通用的语言模型提供了系统化的方法与工具。参数规模:十亿到千亿

智变时代 / 全面理解机器智能与生成式 AI 加速的新工业革命

[title]智变时代/全面理解机器智能与生成式AI加速的新工业革命[heading1]01模型- AI的群雄逐鹿[heading3]1.2变革的本质OpenAI的一鸣惊人并非凭空而来,GPT-3.5是多年来其大语言模型GPT系列中最完善的一次迭代,并通过ChatGPT这样一款易用的产品,成功的把大语言模型推向了大众,短短两个月就实现了一个亿用户的增长,打破了之前Tiktok所保持的记录。我在《机器之心的进化》中详细介绍过这轮生成式AI变革的来龙去脉,那时ChatGPT还没发布。现在,经历了这一年多的模型争霸赛之后,我们可以从大语言模型(LLM)发展的视角,重温这轮AI革命,来理解其背后的本质。架构与算力由于文本是由长短不一的字母和单词序列组成的,因此语言模型需要一种能够理解这类数据的神经网络。20世纪80年代发明的递归神经网络(RNN)可以处理单词序列,但其训练速度较慢,而且会遗忘序列中的前一个单词。1997年计算机科学家Sepp Hochreiter与Jürgen Schmidhuber发明了长短期记忆(LSTM)网络,解决了这一问题。LSTM也是一种递归神经网络,具有特殊的组件,可以将输入序列中过去的数据保留更长时间,LSTM可以处理几百个单词长度的文本串,但其语言能力有限。配图1.03:语言模型发展史-从Nvidia在2016推出第一台DGX到现在算力提升了1000倍

开发:产品视角的大模型 RAG 应用

[title]开发:产品视角的大模型RAG应用[heading1]测评结论开发:产品视角的大模型RAG应用[heading1]一文看懂RAG:大语言模型落地应用的未来[heading2]RAG发展的四个阶段大型语言模型(LLMs)如GPT系列在自然语言处理方面取得了显著的成功,Super-GLUE等各种基准测试中表现出色。尽管有了这些进展,LLMs仍然存在显著的局限性,特别是在处理特定领域或高度专业化的查询时,一个常见问题是产生错误的信息,或者称为“幻觉”。特别是当查询超出模型的训练数据或需要最新信息时。所以说在直接将LLMs部署运行到生产环境中时,其就是一个黑盒,鬼知道它会输出什么的结果...解决这些问题的一种有希望的方法是检索增强生成(RAG),它将外部数据检索整合到生成过程中,从而提高模型提供准确和相关回答的能力。RAG于2020年中期由Lewis等人提出,是LLMs领域中的一种范式,可增强生成任务。具体而言,RAG包括一个初始的检索步骤,LLMs在此步骤中查询外部数据源以获取相关信息,然后才回答问题或生成文本。这个过程不仅为后续的生成阶段提供信息,还确保回答基于检索到的证据,从而显著提高了输出的准确性和相关性。在推断阶段动态检索来自知识库的信息使RAG能够解决生成事实错误内容的问题,通常被称为“幻觉”。将RAG整合到LLMs中已经迅速被采用,并成为完善聊天机器人能力和使LLMs更适用于实际应用的关键技术。RAG的演进轨迹在四个不同阶段展开,如下图所示。在2017年的创始阶段,与Transformer架构的出现相一致,主要重点是通过预训练模型(PTM)来吸收额外的知识以增强语言模型。这个时代见证了RAG的基础工作主要集中在优化预训练方法上。

Others are asking
deepseek公式的发展历程
DeepSeek 公式的发展历程如下: 2025 年 2 月 9 日,陈财猫分享提示词及小说创作心得,提到 DeepSeek 热度极高,微信指数达 10 亿多次,并准备先讲讲该模型的特点。 DeepSeek R1 不同于先前的普通模型,如 ChatGPT4、Claude 3.5 sonnet、豆包、通义等,它属于基于强化学习 RL 的推理模型,在回答用户问题前会先进行“自问自答”式的推理思考,以提升最终回答的质量。 早在 2024 年 5 月 DeepSeekV2 发布时,就以多头潜在注意力机制(MLA)架构的创新在硅谷引发了一场小范围的轰动。
2025-02-11
openAI过去几年的发展历程
OpenAI 在过去几年的发展历程如下: 在整个团队的努力下,迎来了技术高速发展的“黄金三年”,在自然语言处理领域取得突破性进展,推出了 GPT1、GPT2 和 GPT3 系列模型,每次模型迭代都使模型复杂度成指数级别上升,模型效果也越来越好。 2022 年 11 月 30 日,发布基于 GPT 3.5 的 ChatGPT,引发全球 AI 浪潮。 大约九年前创立,怀揣着对 AGI 潜力的坚定信念,渴望探索如何构建并使其惠及全人类。 创始人山姆·奥特曼回首创业历程,认为虽然有挑战和不愉快,但收获和成长巨大,也暴露出团队在管理上的不足。 展望 2025 年,坚信首批 AI Agent 将融入劳动力市场,目标已瞄准真正意义上的超级智能。新的一年充满反思,随着 AGI 脚步临近,是回顾公司发展历程的重要时刻。
2025-02-11
推荐可以做以时间轴的个人成长历程长页的工具
目前在 AI 领域中,暂时没有专门用于制作以时间轴呈现个人成长历程长页的特定工具。但您可以考虑使用一些通用的设计和内容创作工具来实现这一需求,例如 Adobe InDesign、Canva 等,它们具有丰富的模板和设计功能,能够帮助您创建出具有时间轴效果的个人成长历程页面。
2025-01-15
AI是怎么获得学习能力,是谁发现了这种学习模式,发展历程是什么?
AI 的学习能力主要通过以下几种方式实现: 1. 机器学习:电脑通过找规律进行学习,包括监督学习、无监督学习和强化学习。 监督学习:使用有标签的训练数据,算法旨在学习输入和输出之间的映射关系,包括分类和回归。 无监督学习:学习的数据没有标签,算法自主发现规律,经典任务如聚类。 强化学习:从反馈中学习,以最大化奖励或最小化损失,类似训练小狗。 2. 深度学习:这是一种参照人脑的方法,具有神经网络和神经元,由于有很多层所以称为深度。神经网络可用于监督学习、无监督学习和强化学习。 3. 生成式 AI:能够生成文本、图片、音频、视频等内容形式。 AI 学习模式的发现并非由单一的个人完成,而是众多研究者共同努力的成果。 AI 的发展历程中有重要的技术里程碑,如 2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它完全基于自注意力机制来处理序列数据,而不需要依赖于循环神经网络或卷积神经网络。Transformer 比 RNN 更适合处理文本的长距离依赖性。对于大语言模型,生成只是其中一个处理任务,比如谷歌的 BERT 模型,可用于语义理解(如上下文理解、情感分析、文本分类),但不擅长文本生成。生成式 AI 生成的内容称为 AIGC。LLM 即大语言模型,对于生成式 AI,生成图像的扩散模型不属于大语言模型。
2024-12-04
AI的发展历程
AI 的发展历程可以分为以下几个阶段: 1. 早期阶段(1950s 1960s):包括专家系统、博弈论、机器学习初步理论。 2. 知识驱动时期(1970s 1980s):出现专家系统、知识表示、自动推理。 3. 统计学习时期(1990s 2000s):机器学习算法如决策树、支持向量机、贝叶斯方法等得到发展。 4. 深度学习时期(2010s 至今):深度神经网络、卷积神经网络、循环神经网络等技术兴起。 当前 AI 的前沿技术点包括: 1. 大模型,如 GPT、PaLM 等。 2. 多模态 AI,如视觉 语言模型(CLIP、Stable Diffusion)、多模态融合。 3. 自监督学习,如自监督预训练、对比学习、掩码语言模型等。 4. 小样本学习,包括元学习、一次学习、提示学习等。 5. 可解释 AI,涉及模型可解释性、因果推理、符号推理等。 6. 机器人学,涵盖强化学习、运动规划、人机交互等。 7. 量子 AI,包含量子机器学习、量子神经网络等。 8. AI 芯片和硬件加速。 AI 的起源最早可以追溯到上世纪的 1943 年,心理学家麦卡洛克和数学家皮特斯提出了机器的神经元模型,为后续的神经网络奠定了基础。1950 年,计算机先驱图灵最早提出了图灵测试,作为判别机器是否具备智能的标准。1956 年,在美国达特茅斯学院召开的会议上,人工智能一词被正式提出,并作为一门学科被确立下来。此后近 70 年,AI 的发展起起落落。
2024-12-04
ai诈骗发展历程
AI 诈骗是随着 AI 技术的发展而出现的一种新型诈骗手段,其发展历程与 AI 技术的整体发展密切相关。 AI 技术的发展历程大致如下: 1. 早期阶段(1950s 1960s):出现专家系统、博弈论、机器学习初步理论。 2. 知识驱动时期(1970s 1980s):专家系统、知识表示、自动推理得到发展。 3. 统计学习时期(1990s 2000s):机器学习算法如决策树、支持向量机、贝叶斯方法等兴起。 4. 深度学习时期(2010s 至今):深度神经网络、卷积神经网络、循环神经网络等成为主流。 随着 AI 技术的进步,AI 幻觉等问题也逐渐显现。AI 幻觉并非新问题,从早期的“人工智障”到如今“一本正经地胡说八道”,其复杂性和隐蔽性不断提升。这一演变反映了 AI 技术从依赖人工规则到依靠数据驱动,再到深度学习的发展过程,在变得更“聪明”的同时也面临更多挑战。 在神经网络方面,如 CNN 的结构基于大脑细胞的级联模型,在计算上更高效、快速,在自然语言处理和图像识别等应用中表现出色,随着对大脑工作机制认知的加深,神经网络算法和模型不断进步。 目前,AI 技术的发展为诈骗手段的更新提供了可能,例如利用深度伪造技术制造虚假的语音、视频进行诈骗等。
2024-11-21
如果我是一个只会使用大模型对话,不了解提示词逻辑,想要逐步学习ai相关知识的人,你推荐什么呢
以下是为您逐步学习 AI 相关知识的推荐: 1. 关于大模型的思考与探讨:普通用户使用大模型时,语言不是关键,核心是向量空间中的游走脉络,输出时的语言翻译是次要的,且训练语料的中英文差异在于 embedding 环节。 2. 垂类模型与大模型公式:通过合适的模型、prompt 和 test 入口表达,用大模型公式调试出好效果以替代垂类模型,但微调垂类模型可能使大模型泛化能力下降,需分场景看待。 3. 提示词的挖掘:写提示词未挖掘出大模型的天花板,还有提升空间。 4. 读书方法与提示词相关书籍推荐:读书最有效的是笨方法,不取巧,花时间读。并推荐了从数学、作家、代码、原理角度写大模型的四本书。 5. 内置思维链提示词:针对小技巧类的思维链提示词有新模型能力涌现和大模型内置两个趋势,但对于某些如 COT 这类的内置可能会改变大模型的原味,对此存疑。 6. 编写提示词的经验与思考: 原汁原味与生效元素的平衡:为得到原汁原味的效果,需考虑是否反刻某些元素;生效的小技巧大模型可能会内置,如指定角色效果有变化。 压缩与歧义的处理:找到凝练的核心概念(a)后,根据对象用不同方式(b)表达,核心在于找到准确的 a,而寻找 a 的方法目前主要是多读多泡在相关领域。 持续学习与输出:通过阅读吸收输入,转换为自己的语言输出,与大模型交互提炼精华,多输出促进吸收输入。 7. 调教 AI 和提示词: 是否需要提示词工程,是否需要学提示词:持反对观点,像打字和写作一样。方法论不是关键,不断尝试和大模型交互,便是最佳方法。 和大模型交互需要遵循规则吗:不需要。网上流传最广的提示词方法论,是“给大模型一个角色”,这是一个好的策略,但不是必须遵循的原则,甚至所有规则都不是必须遵守的。可以在提示词里面设定规则,也可以聊着聊着临时更改规则,和大模型交互时完全不需要考虑规则。要考虑的就是是否达成了目的,如果没达成,那就锲而不舍的开一个新窗口,再尝试一下。如果还是不行,换个模型。 用 Markdown 格式清晰表达问题:Markdown 通过其易读性、格式化的灵活性和信息的清晰结构,使得与大模型的交流更加高效和精确。有助于模型更好地理解用户的意图。其优势包括结构清晰、格式化强调、适用性广。 8. 小白学习指南: 第一步:要有一个大模型帐号,至少已经熟悉和它们对话的方式。推荐 ChatGPT4 及国产平替: 第二步:看 OpenAI 的官方文档:
2025-03-06
Manus的基础大模型是什么?
Manus 是一款由中国团队研发的全球首款通用型 AI 代理工具,于 2025 年 3 月 5 日正式发布。它区别于传统聊天机器人(如 ChatGPT),具备自主规划、执行复杂任务并直接交付完整成果的能力,被称为“首个真干活的 AI”。 Manus AI 代理工具的具体技术架构主要基于多智能体(Multiple Agent)架构,运行在独立的虚拟机中。这种架构通过规划、执行和验证三个子模块的分工协作,实现了对复杂任务的高效处理。具体来说,Manus AI 的核心功能由多个独立模型共同完成,这些模型分别专注于不同的任务或领域,如自然语言处理、数据分析、推理等。这种多模型驱动的设计不仅提高了系统的鲁棒性和准确性,还增强了其处理复杂任务的能力。 Manus AI 的技术架构还包括以下几个关键组件: 1. 虚拟机:Manus AI 运行在云端虚拟机中,用户可以随时查看任务进度,适合处理耗时任务。 2. 计算资源:Manus AI 利用计算资源生成算法,用于筛选简历等具体任务。 3. 生成物:Manus AI 能够生成各种类型的输出,如文本、表格、报告等。 4. 内置多个 agents:Manus AI 通过内置多个智能体,实现了任务的分解和协同工作。 此外,Manus AI 还采用了“少结构,多智能体”的设计哲学,强调在数据质量高、模型强大、架构灵活的情况下,自然涌现 AI 的能力。这种设计使得 Manus AI 在处理复杂任务时更加高效和准确。Manus AI 的技术架构通过多智能体协同工作、虚拟机运行和生成物输出等机制,实现了对复杂任务的高效处理和高质量输出。
2025-03-06
最新AI大模型
以下是关于最新 AI 大模型的相关知识: 1. 概念:生成式 AI 生成的内容称为 AIGC。 2. 概念与关系: AI 即人工智能。 机器学习是电脑找规律学习,包括监督学习、无监督学习、强化学习。 监督学习是利用有标签的训练数据,学习输入和输出之间的映射关系,包括分类和回归。 无监督学习是在学习的数据没有标签的情况下,算法自主发现规律,经典任务如聚类。 强化学习是从反馈中学习,以最大化奖励或最小化损失,类似训小狗。 深度学习是一种参照人脑有神经网络和神经元(因层数多而称为深度)的方法,神经网络可用于监督学习、无监督学习、强化学习。 生成式 AI 可以生成文本、图片、音频、视频等内容形式。 LLM 是大语言模型,对于生成式 AI,生成图像的扩散模型不是大语言模型;对于大语言模型,生成只是其中一个处理任务,如谷歌的 BERT 模型,可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类。 3. 技术里程碑:2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它完全基于自注意力机制(SelfAttention)来处理序列数据,而不需要依赖于循环神经网络(RNN)或卷积神经网络(CNN)。
2025-03-06
我是经济学研究者,经常写作学术论文,投稿SSCI期刊,大模型幻觉太严重,在辅助文献综述写作方面,基本没有用处。你有好的用于文献综述写作的AI辅助工具吗?
以下是一些可能有助于您在文献综述写作中应对大模型幻觉问题的方法和工具: 1. 对于 ChatGPT ,您可以使用 temporary chat 功能,保证其在没有任何记忆的情况下生成最新鲜的回答。 2. 当发现模型回答不理想时,可以采取以下技巧: 告诉模型忘掉之前的所有内容,重新提问或新建会话窗口。 让模型退一步,重新审视整个结构,从零开始设计。 对于像 Claude 这种会自己猜测的模型,如果不确定,可以给它看日志,让其依据日志判断问题所在。 3. 您可以参考 Hallucination Leaderboard (大语言模型幻觉排行榜),了解不同模型的幻觉情况,该排行榜使用 Vectara 的 Hughes 幻觉评估模型计算各大模型在总结文档时引入幻觉的频率,用于评估 LLM 的事实一致性,并为 RAG 系统提供参考。完整榜单可通过查看。 4. Claude APP 即将添加网页搜索和推理功能,这或许意味着新模型即将发布,预计发布时间在一两周内。
2025-03-06
你用的大模型是?
我所使用的大模型相关信息未明确告知。但为您介绍一下大模型的相关知识: 大模型指的是用于表达 token 之间关系的参数多,主要是指模型中的权重(weight)与偏置(bias),例如 GPT3 拥有 1750 亿参数,其中权重数量达到了这一量级,而词汇表 token 数只有 5 万左右。以 Transform 为代表的大模型采用自注意力(Selfattention)机制来学习不同 token 之间的依赖关系,生成高质量 embedding。 通俗来讲,大模型就是输入大量语料,来让计算机获得类似人类的“思考”能力,使之能够理解自然语言,能够进行“文本生成”“推理问答”“对话”“文档摘要”等工作。 大模型的训练和使用过程可以类比为“上学参加工作”: 1. 找学校:训练 LLM 需要大量的计算,因此 GPU 更合适,只有购买得起大量 GPU 的才有资本训练自己的大模型。 2. 确定教材:大模型顾名思义就是大,需要的数据量特别多,几千亿序列(Token)的输入基本是标配。 3. 找老师:即用什么样的算法讲述“书本”中的内容,让大模型能够更好理解 Token 之间的关系。 4. 就业指导:学完书本中的知识后,为了让大模型能够更好胜任某一行业,需要进行微调(fine tuning)指导。 5. 搬砖:就业指导完成后,下面就要正式干活了,比如进行一次翻译、问答等,在大模型里称之为推导(infer)。 在 LLM 中,Token 被视为模型处理和生成的文本单位。它们可以代表单个字符、单词、子单词,甚至更大的语言单位,具体取决于所使用的分词方法(Tokenization)。Token 是原始文本数据与 LLM 可以使用的数字表示之间的桥梁。在将输入进行分词时,会对其进行数字化,形成一个词汇表。比如:The cat sat on the mat,会被分割成“The”“cat”“sat”等的同时,会生成相应的词汇表。
2025-03-06
yolov 和resnet咋做成大模型?
要将 YOLOv 和 ResNet 做成大模型,需要考虑以下几个方面: 1. 数据准备:收集大量的相关数据,并进行清洗、预处理和标注,以满足模型训练的需求。 2. 模型架构调整:根据具体任务和数据特点,对 YOLOv 和 ResNet 的架构进行适当的修改和优化,例如增加层数、调整通道数等。 3. 训练策略:选择合适的优化算法、学习率调整策略等,以提高训练效果和收敛速度。 4. 计算资源:大模型的训练需要强大的计算资源,包括硬件设施和云计算平台等。 此外,从相关的研究和趋势来看,大模型架构呈现出日益明显的混合趋势,多种有代表性的技术路径在不同程度保留 Transformer 架构优势的基础上,结合 RNN、CNN 等思想做出创新发展。例如类循环神经网络模型(以 RWKV 为代表)、状态空间模型(以 Mamba 为代表)、层次化卷积模型(以 UniRepLKNet 为代表)、多尺度保持机制模型(以 RetNet 为代表)、液体神经网络模型(以 LFM 为代表)等。但需要注意的是,将 YOLOv 和 ResNet 做成大模型是一个复杂的过程,需要深入的研究和实践。
2025-03-06
有什么语言学习类的工具
以下是一些语言学习类的工具: 1. 语言学习平台: FluentU:使用真实世界的视频,通过 AI 生成个性化的词汇和听力练习。选择学习语言,观看视频并完成相关练习,积累词汇和提升听力理解能力。 Memrise:结合 AI 技术,根据学习者的记忆曲线提供复习和练习,增强记忆效果。选择学习语言,使用应用提供的词汇卡和练习进行学习。 2. 发音和语法检查: Speechling:提供口语练习和发音反馈,帮助学习者改进口音和发音准确性。录制语音,提交给 AI 系统或人类教练,获取反馈和改进建议。 Grammarly:可以帮助提高写作的语法和词汇准确性,支持多种语言。将写作内容粘贴到 Grammarly 编辑器中,获取语法和词汇改进建议。 3. 实时翻译和词典工具: Google Translate:提供实时翻译、语音输入和图像翻译功能,适合快速查找和学习新词汇。输入或语音输入需要翻译的内容,查看翻译结果和示例句子。 Reverso Context:提供单词和短语的翻译及上下文例句,帮助理解和学习用法。输入单词或短语,查看翻译和例句,学习实际使用场景。 4. 语言学习应用: Duolingo:使用 AI 来个性化学习体验,根据进度和错误调整练习内容。通过游戏化的方式提供词汇、语法、听力和口语练习。下载应用,选择要学习的语言,并按照课程指引进行学习。 Babbel:结合 AI 技术,提供个性化的课程和练习,重点在于实际交流所需的语言技能。注册账户,选择语言课程,按照学习计划进行学习。 Rosetta Stone:使用动态沉浸法,通过 AI 分析学习进度,提供适合的练习和反馈。注册并选择学习语言,使用多种练习模式(听力、口语、阅读和写作)进行学习。 5. AI 对话助手: ChatGPT:可以用来模拟对话练习,帮助提高语言交流能力。在聊天界面选择目标语言,与 AI 进行对话练习。可以询问语法、词汇等问题,甚至模拟实际交流场景。 Google Assistant:支持多种语言,可以用来进行日常对话练习和词汇学习。设置目标语言,通过语音命令或文本输入与助手进行互动,练习日常用语。 对于 4 岁儿童练习英语口语的 AI 工具,有以下选择: LingoDeer:使用游戏和互动活动来教孩子英语,提供各种课程,涵盖从字母和数字到更高级的语法和词汇。具有家长仪表板,可跟踪孩子进度并设置学习目标。 Busuu:提供英语和其他多种语言的课程,使用各种教学方法,包括音频课程、视频课程和互动练习。具有社区功能,可让孩子与来自世界各地的其他孩子练习英语口语。 Memrise:使用抽认卡和游戏来教孩子英语,提供各种课程,涵盖从基本词汇到更高级的会话技巧。具有社交功能,可让孩子与朋友和家人一起学习。 Rosetta Stone:使用沉浸式方法来教孩子英语,让孩子在自然环境中使用英语,具有语音识别功能,帮助孩子练习发音。 Duolingo:免费的语言学习应用程序,提供英语和其他多种语言的课程,使用游戏化方法让学习变得有趣,提供各种课程帮助孩子保持参与度。 在为孩子选择 AI 工具时,要考虑他们的年龄、兴趣和学习风格,还需考虑应用程序的功能和成本。
2025-03-06
c语言指针怎么学
学习 C 语言指针可以按照以下步骤进行: 1. 理解指针的概念:指针是一个变量,它存储的是另一个变量的内存地址。 2. 掌握指针的声明和初始化:例如 `int ptr;` 声明一个指向整数的指针,`ptr = &var;` 进行初始化,其中 `&var` 是变量 `var` 的地址。 3. 了解指针的运算:包括指针的加减运算、比较运算等,但要注意运算的合法性和意义。 4. 学会通过指针访问和修改值:使用 `ptr` 来访问指针所指向的变量的值,并可以通过 `ptr = value;` 来修改其值。 5. 结合数组和指针:理解数组名实际上是一个指针常量,以及如何使用指针遍历数组。 6. 研究指针与函数的关系:包括指针作为函数参数传递地址,实现函数对外部变量的修改。 7. 多做练习题和实践项目:通过实际编写代码来加深对指针的理解和运用。 在学习过程中,要多思考、多实践,遇到问题及时查阅相关资料和请教他人。
2025-03-06
批量语言转文字
以下是关于批量语言转文字的相关信息: 支持的语言:南非荷兰语、阿拉伯语、亚美尼亚语、阿塞拜疆语、白俄罗斯语、波斯尼亚文、保加利亚文、加泰罗尼亚文、中文、克罗地亚文、捷克文、丹麦文、荷兰文、英国英语、爱沙尼亚文、芬兰文、法国法式英语、加利西亞語、德國語、希臘語、希伯來語、印地語、匈牙利語、冰岛语、印度尼西亚语、意大利语、日本语、卡纳达语、哈萨克语、韩语、拉脱维亚语、立陶宛语、马其顿语、马来语、马拉地语、毛里求斯语、尼泊尔语、挪威语、波斯语、波苏尼语、塔加洛语、泰米尔语、泰语、土耳其语、乌克兰语、乌尔都语。 更长输入:默认情况下,Whisper API 仅支持小于 25MB 的文件。若音频文件大于此,需将其分成每个小于 25MB 的块或使用压缩后格式。为达最佳性能,避免在句子中间断开声音以防丢失上下文字信息。可使用 PyDub 开源 Python 软件包来拆分声频文件,但 OpenAI 对其可用性或安全性不作保证。 提示:可使用提示提高 Whisper API 生成的转录质量。模型会尝试匹配提示风格,如提示使用大写和标点符号,生成结果更可能使用它们。当前提示系统较其他语言模型受限,仅提供有限控制。示例如下: 对于模型常错识的特定单词或缩略语,提示很有帮助,如改善 DALL·E 和 GPT3 等单词的转录。 为保留分段文件上下文,可用先前片段的转录引导模型,模型仅考虑最后 224 个标记并忽略之前内容。 转录可能会跳过标点符号,可用包含标点符号的简单提示避免。 模型可能省略常见填充词汇,若想保留,可用包含它们的指示。 某些语言有不同书写方式,如简体或繁体中文,默认模型处理可能不按所需风格,添加指示可改进。
2025-03-05
大语言模型学习
学习大型语言模型(LLM)的开发是一个系统性的过程,涵盖多个方面的知识和技能,以下是详细的学习路径和相关建议: 1. 深度学习和自然语言处理基础 掌握机器学习、深度学习、神经网络等基础理论。 熟悉自然语言处理基础,如词向量、序列模型、注意力机制等。 相关课程:吴恩达的深度学习课程、斯坦福 cs224n 等。 2. 理解 Transformer 和 BERT 等模型原理 深入了解 Transformer 模型架构及自注意力机制原理。 掌握 BERT 的预训练和微调方法。 研读相关论文,如 Attention is All You Need、BERT 论文等。 3. 学习 LLM 模型训练和微调 进行大规模文本语料预处理。 运用 LLM 预训练框架,如 PyTorch、TensorFlow 等。 对 LLM 模型进行微调以实现特定任务迁移。 相关资源:HuggingFace 课程、论文及开源仓库等。 4. LLM 模型优化和部署 掌握模型压缩、蒸馏、并行等优化技术。 进行模型评估和可解释性研究。 实现模型服务化、在线推理、多语言支持等。 相关资源:ONNX、TVM、BentoML 等开源工具。 5. LLM 工程实践和案例学习 结合行业场景,开展个性化的 LLM 训练。 分析和优化具体 LLM 工程案例。 研究 LLM 新模型、新方法的最新进展。 6. 持续跟踪前沿发展动态 关注顶会最新论文、技术博客等资源。 此外,关于大语言模型介绍,您可以通过以下视频课程学习: 视频课程学习地址:https://youtu.be/zizonToFXDs 宝玉 XP 的翻译版本:https://www.youtube.com/watch?v=zfFA1tb3q8Y Google 的教学视频《Introduction to Large Language Models|大语言模型介绍》,介绍了大型语言模型(Large Language Models,LLMs)的概念、使用场景、提示调整以及 Google 的 Gen AI 开发工具。大型语言模型是深度学习的一个子集,可以预训练并进行特定目的的微调。这些模型经过训练,可以解决诸如文本分类、问题回答、文档摘要、跨行业的文本生成等常见语言问题。然后,可以利用相对较小的领域数据集对这些模型进行定制,以解决零售、金融、娱乐等不同领域的特定问题。大型语言模型的三个主要特征是:大型、通用性和预训练微调。“大型”既指训练数据集的巨大规模,也指参数的数量。“通用性”意味着这些模型足够解决常见问题。“预训练和微调”是指用大型数据集对大型语言模型进行一般性的预训练,然后用较小的数据集对其进行特定目的的微调。使用大型语言模型的好处包括:一种模型可用于不同的任务;微调大型语言模型需要的领域训练数据较少;随着数据和参数的增加,大型语言模型的性能也在持续增长。此外,视频还解释了传统编程、神经网络和生成模型的不同,以及预训练模型的 LLM 开发与传统的 ML 开发的区别。在自然语言处理中,提示设计和提示工程是两个密切相关的概念,这两者都涉及创建清晰、简洁、富有信息的提示。视频中还提到了三种类型的大型语言模型:通用语言模型、指令调整模型和对话调整模型。每种模型都需要以不同的方式进行提示。 AI 教父 Hinton 最新万字精彩访谈中提到: 随着模型规模的扩大,其推理能力会得到提升。这种推理能力的提升类似于 AlphaGo 或 AlphaZero 的工作方式,它们通过蒙特卡罗推演来修改评估函数,从而提高推理精度。大型语言模型也应该开始通过推理来训练,而不仅仅是模仿人类的行为。 在多模态学习方面,引入图像、视频和声音等多种模式将极大地改变模型的理解和推理能力,特别是在空间理解方面。多模态模型可以通过更多的数据和更少的语言来进行学习,这将使其在未来占据主导地位。 在语言与认知的关系上,Hinton 提出了三种观点:符号观点、向量观点和嵌入观点。他认为,最合理的模型是将符号转换成大向量,但保留符号的表面结构,这样可以更好地理解和预测下一个符号。 Hinton 回顾了他在 2009 年提出使用 GPU 进行神经网络训练的早期直觉。他发现,使用 GPU 可以将运算速度提高 30 倍,这对于机器学习研究人员来说至关重要。他在 NIPS 会议上公开推荐了 NVIDIA 的 GPU,并向 NVIDIA 请求赞助,最终得到黄仁勋的支持。 Hinton 提出,模拟计算可以在较低的功率下运行大型语言模型,但每个硬件的特性都会有所不同,因此学习过程需要利用硬件的特定属性。然而,这种方法的局限性在于,当一个人去世后,他的大脑中的权重对其他人没有用处。相比之下,数字系统可以通过共享权重来提高效率,因为一旦有了权重,就可以在不同的计算机上复制相同的计算过程。这种方式使得数字系统在知识共享方面远胜于人类。 Hinton 还讨论了神经科学的时间尺度问题,指出在大脑中,权重改变的时间尺度很多,这是我们的神经模型尚未实现的。大脑使用快速权重进行临时记忆,而我们的模型由于需要处理大量不同的情况,所以无法实现这一点。
2025-03-04
deepseek 的提示词应该怎么写?和以往的大语言模型的提示词有什么不同?
DeepSeek 的提示词具有以下特点: 1. 语气上还原帝王语气,不过分用力,使用相对古典但兼顾可读性的文字,避免傻气的表达。 2. 对历史细节熟悉,这可能与支持“深度探索”和“联网搜索”同时开启有关,能准确还原如“太极宫”“甘露殿”“掖庭局”“观音婢”“宫门鱼符”等唐初的历史称谓。 3. 输出极其具体且充满惊人细节,行文的隐喻拿捏到位,如“狼毫蘸墨时发现指尖残留着未洗净的血痂”“史官们此刻定在掖庭局争吵。该用‘诛’还是‘戮’,‘迫’还是‘承’。‘只是这次,他不敢触碰我甲胄上元吉的掌印’”等句子,虽未直接写“愧疚与野心,挣扎与抱负”,但句句体现。 与以往大语言模型的提示词的不同在于:以往模型可能在语气、历史细节和具体细节的处理上不如 DeepSeek 出色。
2025-02-28
在汉语言文学师范领域中是否存在具有商业价值的问题,利用 AI 技术进行市场调研和分析,探索可能的创业方向
在汉语言文学师范领域,利用 AI 技术进行市场调研和分析是有可能发现具有商业价值的问题和创业方向的。 首先,通过对教育市场的大数据分析,AI 可以帮助了解汉语言文学师范专业的就业趋势和需求变化,例如特定地区对该专业教师的需求增长情况,或者新兴教育模式对该专业人才培养的新要求。 其次,利用自然语言处理技术,分析学生和家长对汉语言文学师范教育的反馈和期望,从而发现潜在的教育服务需求,比如个性化的辅导课程、线上教学平台的优化等。 再者,借助 AI 预测模型,可以评估汉语言文学师范相关教材和教育资源的市场需求,为开发创新的教育产品提供依据。 总之,结合 AI 技术,在汉语言文学师范领域进行深入的市场调研和分析,有机会挖掘出具有商业潜力的问题和创业方向。
2025-02-27
AI怎样赋能文旅产业发展
AI 赋能文旅产业发展主要体现在以下几个方面: 1. 全流程制作文旅宣传片:利用 AIGC 技术生成全国文旅宣传片,如《AI 我中华》,融合了 AI 生成视频及 AI 配音技术,将各地特色巧妙结合,展现大美中华。使用的工具包括 ChatGPT、Midjourney、Stable Diffusion、Runway、PS、AE、Ebsynth 等。 2. 提升 2D 美术效果:在 2D 美术中广泛使用图像生成技术,主流生成式图像应用如 DALLE 2.0、Stable Diffusion 和 Midjourney 提升了图像生成的精细化程度和提示对图像生成结果的控制能力。 3. 优化 3D 模型生成流程:在 3D 模型生成中,AI 可直接完成可调整的 3D 粗模,大大提升效率。 4. 改善游戏测试与优化环节:AI 在游戏测试环节中可模拟玩家、NPC 和游戏模型,在优化环节承担改善角色动画、编程加速、自动化游戏测试等功能,通过生成文字、图片、视频、音乐来缩减时间和资源消耗,快速识别并解决问题。 5. 丰富故事情节与 NPC 设计:在游戏设计中,AI 依托自然语言生成用法,用于角色与故事生成、游戏机制创新等方面,通过针对性训练数据集强化 NPC 模型的基础能力。 6. 创新音乐与音效生成:AI 生成音乐存在基于乐理规则的符号生成模型和基于音频数据的音频生成模型两种主流技术路线,可用于填充游戏音效和音乐。 7. 提升玩家体验与个性化:AI 能评估玩家技能水平和游戏风格,动态调整游戏难度,还能在游戏运营中提供客服和分析服务。 8. 带来新的游戏玩法:如《Soul Chronicle》实现了实时 3D+AIGC+UGC,《Roleverse》可在平台内定制角色和编辑游戏世界。
2025-03-06
AI目前在美国和欧盟的发展与应用情况
以下是关于 AI 目前在美国和欧盟的发展与应用情况的综合回答: 在知识产权方面: 国际知识产权保护协会(AIPPI)与美国的立法观点相似,否认将 AI 包含进“作者”的范畴,但其生成的内容能否取得版权注册取决于生成物所体现创造性的多少。 欧盟认为人工智能生成的内容必须受到知识产权法律框架的保护,且可以通过对欧洲现有法律的解释解决人工智能的版权问题。 在人工智能工具的使用和流量方面: 大多数顶级人工智能公司位于美国,少数位于亚洲。 所有欧盟国家合计产生了 39 亿流量,占总量的 16.21%。欧洲以及澳大利亚和加拿大在人工智能投资和采用方面落后。 欧盟已经制定了第一个人工智能监管法案,但最近的研究表明当前的许多人工智能模型不符合欧盟对人工智能的监管。 在行业发展方面: 英伟达(NVIDIA)仍是全球最强大的公司之一,享受着市值达到 3 万亿美元的辉煌时刻,而监管机构也正在调查生成式人工智能(GenAI)内部的权力集中问题。 虽然全球治理努力陷入僵局,但国家和地区的人工智能监管继续推进,美国和欧盟通过了几份有争议的立法法案。 在研究进展方面: 前沿实验室的性能正在趋同,但 OpenAI 在推出 o1 后保持了其领先地位,规划和推理成为主要的研究前沿。 基础模型展示了它们超越语言的能力,多模态研究推动了数学、生物学、基因组学、物理科学和神经科学的发展。 在安全问题方面: 世界各地的政府模仿英国在人工智能安全方面建立国家能力,成立研究所并研究关键国家基础设施的潜在漏洞。 每一个提出的破解「修复」方案都失败了,研究人员开始关注更复杂、长期的攻击。
2025-03-06
aigent成熟后会朝哪个方向发展
AIgent 成熟后的发展方向可能包括以下几个方面: 1. 技术层面: 解决记忆力问题,包括提高记忆准确性、完善逻辑完整性、实现合理遗忘、优化长期记忆机制与 Token 长度和调用效率之间的制衡。 增强长 Token 能力,如刚发布的 Gemeni1.5 在研究中达到 10M 的 Token 长度,ChatGPT 也在近期官宣了“记忆能力”,国内也有公司专攻超长 Token。 提升“使用工具能力”,出现了如字节推出的 Coze 等中间层产品。 2. 应用层面: 以人的方式相互交流,自主搭建社会协作关系,最终实现模仿人、替代人。 成为“一人公司”的数字员工,以大语言模型为大脑,串联所有已有的工具和新造的 AI 工具。 从“能力积累期”进入“应用爆发期”,多智能体协作成为解决复杂问题的主流范式,专业化分工与场景深耕是必经之路。 从规则驱动转向学习驱动模式,自主能力由多个核心组件协同支撑,多智能体系统(MAS)成为复杂任务解决方案。 构建智能体能力评估的统一标准与方法,建立可度量、可对比的评价体系。
2025-03-06
最近ai有什么最新发展或者大事件?
以下是 AI 领域的一些最新发展和大事件: 3 月:AI 发展持续升温,潞晨科技发布 OpenSora,Suno 发布 V3 版本爆火。 4 月:英伟达发布硬件,股价飙升。 5 月:苹果发布 AI 芯片,张吕敏发布 IC light,AI 竞争白热化,伊莉雅离开 OpenAI 并成立新公司,估值超五亿美金。 7 月:快手开源 LivePortrait 模型,用于表情迁移。 8 月:StabilityAI 老板成立新公司发布 flux 大模型。 9 月:阿里云发布模型,海螺 AI 参战;Google 发布 GameGen 实时生成游戏;通义千问 2.5 系列全家桶开源;华为发布 cloud matrix 云计算基础设施;GPT 高级语音模式上线;Meta 发布 AI 眼镜 Orion;AI 代码编辑器 cursor 爆火。 10 月:Pika 发布 1.5 模型;诺奖颁发给 AI 奠基人;特斯拉发布机器人;Adobe 发布 Illustrator+Al 生成矢量图;智谱 AI 发布 autoGLM;腾讯混元开源 3D 模型。 此外,在法律法规方面,《促进创新的人工智能监管方法》指出:AI 概念并非新事物,但数据生成和处理方面的近期进展改变了该领域及其产生的技术。AI 已在许多领域带来重大进步和效率提升,如交通监控、银行账户欺诈检测、工业中的大规模安全关键实践、新药发现和应对气候变化的技术等。随着 AI 变得更强大,创新者探索新的使用方式,将有更多应用出现,其具有巨大的增长潜力和创造就业的能力。同时,也对 AI 特定风险及其潜在危害进行了初步评估,并提及了一些交叉的高级风险。
2025-03-05
AI的发展历史
AI 的发展历史可以追溯到二十世纪中叶,大致经历了以下几个阶段: 1. 早期阶段(1950s 1960s): 1943 年,心理学家麦卡洛克和数学家皮特斯提出机器的神经元模型,为后续的神经网络奠定基础。 1950 年,图灵最早提出图灵测试,作为判别机器是否具备智能的标准。 1956 年,在美国达特茅斯学院召开的会议上,人工智能一词被正式提出,并作为一门学科确立下来。这一时期专家系统、博弈论、机器学习初步理论等受到关注。 2. 知识驱动时期(1970s 1980s):专家系统、知识表示、自动推理等是研究重点。 3. 统计学习时期(1990s 2000s):机器学习算法如决策树、支持向量机、贝叶斯方法等得到发展。 4. 深度学习时期(2010s 至今):深度神经网络、卷积神经网络、循环神经网络等技术兴起。 在发展过程中,AI 也经历了起伏。20 世纪 70 年代出现了“人工智能寒冬”,但随着计算资源变得便宜、数据增多,神经网络方法在计算机视觉、语音理解等领域展现出卓越性能。当前 AI 的前沿技术点包括: 1. 大模型如 GPT、PaLM 等。 2. 多模态 AI,如视觉 语言模型、多模态融合。 3. 自监督学习,如自监督预训练、对比学习、掩码语言模型等。 4. 小样本学习,如元学习、一次学习、提示学习等。 5. 可解释 AI,包括模型可解释性、因果推理、符号推理等。 6. 机器人学,涉及强化学习、运动规划、人机交互等。 7. 量子 AI,如量子机器学习、量子神经网络等。 8. AI 芯片和硬件加速。
2025-03-04
适合普通人(没有ai开发经验) 的ai发展方向有哪些
对于没有 AI 开发经验的普通人,以下是一些适合的 AI 发展方向: 1. 基础知识学习: 了解 AI 背景知识,包括人工智能、机器学习、深度学习的定义及其之间的关系。 回顾 AI 的发展历程和重要里程碑。 掌握数学基础,如统计学(熟悉均值、中位数、方差等统计概念)、线性代数(了解向量、矩阵等基本概念)、概率论(基础的概率论知识,如条件概率、贝叶斯定理)。 2. 算法和模型: 熟悉监督学习(如线性回归、决策树、支持向量机)。 了解无监督学习(如聚类、降维)。 知晓强化学习的基本概念。 3. 评估和调优: 学会如何评估模型性能,包括交叉验证、精确度、召回率等。 掌握模型调优的方法,如使用网格搜索等技术优化模型参数。 4. 神经网络基础: 理解神经网络的基本结构,包括前馈网络、卷积神经网络、循环神经网络。 熟悉常用的激活函数,如 ReLU、Sigmoid、Tanh。 如果偏向技术研究方向: 1. 巩固数学基础,如线性代数、概率论、优化理论等。 2. 掌握机器学习基础,包括监督学习、无监督学习、强化学习等。 3. 深入学习深度学习,如神经网络、卷积网络、递归网络、注意力机制等。 4. 涉足自然语言处理(语言模型、文本分类、机器翻译等)、计算机视觉(图像分类、目标检测、语义分割等)等领域。 5. 关注前沿领域,如大模型、多模态 AI、自监督学习、小样本学习等。 6. 进行科研实践,包括论文阅读、模型实现、实验设计等。 如果偏向应用方向: 1. 具备编程基础,如 Python、C++等。 2. 掌握机器学习基础,如监督学习、无监督学习等。 3. 熟悉深度学习框架,如 TensorFlow、PyTorch 等。 4. 应用于自然语言处理、计算机视觉、推荐系统等领域。 5. 做好数据处理,包括数据采集、清洗、特征工程等。 6. 进行模型部署,如模型优化、模型服务等。 7. 参与行业实践,包括项目实战、案例分析等。 此外,无论您是技术爱好者还是内容创作者,都可以: 技术爱好者: 1. 从小项目开始,如搭建简单博客或自动化脚本,尝试使用 AI 辅助编码。 2. 探索 AI 编程工具,如 GitHub Copilot 或 Cursor 等。 3. 参与 AI 社区,如 Stack Overflow 的 AI 板块或 Reddit 的 r/artificial 子版块。 4. 构建 AI 驱动的项目,如开发聊天机器人或图像识别应用。 内容创作者: 1. 利用 AI 辅助头脑风暴,获取创意方向。 2. 建立 AI 写作流程,从生成大纲到扩展段落等。 3. 探索多语言内容,借助 AI 辅助翻译和本地化。 4. 用 AI 工具优化 SEO,调整标题、元描述和关键词使用。
2025-03-02