AI 智能体具有广泛的应用,主要包括以下几个方面:
以“什么值得买”智能体为例,在电商导购方面,假设用户输入“我想买个笔记本电脑”,智能体会先做 Query Rewrite 提取出“笔记本电脑”关键词,再通过相关 API 检索商品信息,拿到结果后与内置提示词组装成上下文请求大模型回答,从而实现更好的商品推荐效果。
工作流 Workflow 也可以理解为多智能体协作 Multi-Agents,通过多个智能体的组装,能解决一些复杂场景的搜索问题。比如给新产品取名,涉及多个步骤和检测,人工操作费时费力,而 AI 搜索+Workflow 的模式可有效解决。
在社交方向,用户注册后先捏一个自己的智能体,然后让自己的智能体和其他人的智能体聊天,聊到一起后真人再介入,是一个有趣的场景。在 B 端,帮助商家搭建智能体也是一个机会。
智能体在各种应用中扮演重要角色,以下是一些典型的应用领域:1.自动驾驶:自动驾驶汽车中的智能体感知周围环境,做出驾驶决策。2.家居自动化:智能家居设备(如智能恒温器、智能照明)根据环境和用户行为自动调节。3.游戏AI:游戏中的对手角色(NPC)和智能行为系统。4.金融交易:金融市场中的智能交易算法,根据市场数据做出交易决策。5.客服聊天机器人:通过自然语言处理与用户互动,提供自动化的客户支持。6.机器人:各类机器人(如工业机器人、服务机器人)中集成的智能控制系统。
以Kimi+的“什么值得买”智能体举例,假设用户输入“我想买个笔记本电脑”,智能体会先做Query Rewrite提取出“笔记本电脑”关键词,再通过“什么值得买”的API检索对应的商品信息,拿到检索结果后,跟智能体内置的提示词组装成上下文,请求大模型回答。于是这个智能体便成了一个电商导购类的垂直搜索()应用,在商品推荐方面有更好的回答效果。1.工作流Workflow工作流Workflow也可以理解为多智能体协作Multi-Agents,通过多个智能体的组装,解决一些复杂场景的搜索问题。比如:给新产品取名,我习惯的步骤是告诉大模型新产品是做什么的,大模型推荐几个可取的名字选择其中一个名字,去谷歌检索,是否有同名去Twitter检索是否有同名去Github检索是否有同名选择一个域名,去Namecheap搜索是否已被注册全部检测通过,确定产品名,注册域名这里涉及到一个回溯的问题,也就是在其中某个步骤发现产品名不可用,要回到第一步重新选择名字,再继续走后面的检测步骤。人工去做这件事,毫无疑问是很费时间的。AI搜索+ Workflow的模式,可以有效解决这个问题。
1、什么是智能体?随着ChatGPT与AI概念的爆火,出现了很多新名词,“智能体Agent”还有bot和GPTs等,Kimi(月之暗面的大模型)的书面解释是:简单理解就是AI机器人小助手,参照移动互联网的话,类似APP应用的概念(我记得GPT刚出的时候,还有人把GPT应用称为GAP),AI大模型是一个技术,而面向用户提供服务的是产品,所以有很多公司开始关注AI应用层的产品机会。我知道的在做Agent创业的公司就有好几家:C端案例:比如社交方向,用户注册之后先捏一个自己的Agent,然后让自己的Agent和其他人的Agent聊天,两个Agent聊到一起后再真人介入,也是一个很有趣的场景;还有借Onlyfans入局打造个性化聊天的创业公司。B端案例:如果字节扣子和腾讯元器是面向普通人的低代码平台,类似APP时代的个人开发者,那还有一个机会就是帮助B端商家搭建Agent,类似APP时代专业做APP的。2、智能体开发平台我最早接触到扣子Coze,是一篇科技报道:国产GPTs商店来了。平替版GPTs商店,字节Coze扣子上线。2月1日,字节正式推出AI聊天机器人构建平台Coze的国内版“扣子”,主要用于开发下一代AI聊天机器人。