直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

目前国外主流的图像类AICG应用有哪些

回答

目前国外主流的图像类 AICG 应用包括 DALL·E2、StableDiffusion 等。DALL·E2 能够根据输入的文本描述生成逼真的图像;StableDiffusion 则具有强大的图像生成能力和丰富的自定义选项。

内容由 AI 大模型生成,请仔细甄别(powered by aily)
其他人在问
目前国外主流的图像类AICG应用有哪些
目前国外主流的图像类 AICG 应用包括 DALL·E2、StableDiffusion 等。DALL·E2 能够根据输入的文本描述生成逼真且富有创意的图像;StableDiffusion 则以其强大的生成能力和广泛的自定义选项受到众多用户的青睐。
2024-11-13
目前国外主流的十大图像类AICG应用有哪些
目前关于国外主流的十大图像类 AICG 应用,暂时没有确切和权威的统一排名。不同的评估标准和应用场景可能会导致结果有所差异。一些常见且受到广泛关注的图像类 AICG 应用包括 DALL·E2、StableDiffusion、Midjourney 等,但要确切指出十大应用会因各种因素而难以确定。
2024-11-13
学习AICG的步骤
学习 AICG(AI 与计算机图形学)通常可以遵循以下步骤: 1. 基础知识储备:了解计算机图形学的基本概念,如几何建模、渲染、动画等,同时掌握一定的数学基础,包括线性代数、微积分等。 2. 学习编程语言:例如 Python,它在 AICG 领域应用广泛。 3. 熟悉相关框架和库:如 TensorFlow、PyTorch 等深度学习框架,以及 OpenCV 等计算机视觉库。 4. 掌握机器学习和深度学习知识:包括神经网络、监督学习、无监督学习等。 5. 研究 AICG 应用案例:通过实际案例了解 AICG 在图像生成、风格迁移、虚拟角色创建等方面的应用。 6. 实践项目:自己动手实现一些 AICG 项目,加深对知识的理解和应用能力。 7. 持续学习和跟进最新技术:关注领域内的最新研究成果和技术发展趋势。
2024-11-12
帮我找个可以免费增强图像清晰度的网站
以下为一些可以免费增强图像清晰度的网站: Kraken.io:主要用于图像压缩,但也提供了免费的图像放大功能,能保证图像的细节清晰度。 Deep Art Effects:强大的艺术效果编辑器,通过 AI 技术能够将图像放大并赋予艺术效果,支持多种滤镜和风格。 Magnific:https://magnific.ai/ ClipDrop:https://clipdrop.co/imageupscaler Image Upscaler:https://imageupscaler.com/ Krea:https://www.krea.ai/ 更多工具可以查看网站的图像放大工具库:https://www.waytoagi.com/category/17 。 另外,RealESRGAN 也是一个基于 RealESRGAN 的图像超分辨率增强模型,但使用几次后要收费。 图像修复放大的流程通常分为三部分: 1. 图像输入:添加 Load Image 节点加载图像,不建议上传大分辨率的图片,以免处理时间过长。 2. 图像高清修复:把原本模糊的图片修复,并进行 2 倍放大。Checkpoint 大模型使用 Iceclear/StableSR,搭配 Stable SR Upscaler 模型能最大程度修复图像。提示词部分应包含想要达到的目的内容。 3. 图像高清放大:针对第一次放大修复后的图像进行二次修复,realisticVision 底膜在重绘扩图放大等领域效果较好,使用提示词反推 node 对图像进行画面提示词提取,搭配 tile ControlNet 提升画面细节感,然后用合适的高清放大模型进行二次放大。
2024-11-22
类器官图像特征提取和分析软件
以下是关于类器官图像特征提取和分析软件的相关信息: LORA 是一种能够提炼图片特征的工具,在画风、人物、物品、动作姿态等方面都能固定下来。它与 Embedding 的区别在于体量,LORA 文件通常有几十上百兆,承载信息量远大于只有几十 kb 的 Embedding,尤其在还原真人物品时,LORA 的细节精度更高。下载的 LORA 放在根目录的【……\\models\\Lora】文件夹下,使用时点击红色小书,找到 LORA 选项卡加载,注意作者使用的大模型,通常配套使用效果最佳,同时可能需要加入特定触发词保证正常使用。 Hypernetworks 主要针对画风训练,可像 LORA 一样加载,文件放在根目录的【…\\models\\hypernetworks】文件夹下,使用时同样点击红色小书找到 Hypernetworks 选项卡加载。 当下载了很多模型、Embedding、Hypernetworks 和 LORA 后,由于文件后缀名几乎相同(包括.pt/.safetensors/.ckpt 等),无法通过后缀名区分,可将文件拖到秋叶大佬整理的网站 https://spell.novelai.dev/ 查看文件类型及应放置的文件夹。
2024-11-21
我有一张图像,我要如何用stable Diffusion给它添加噪音。我是一个小白,请给出详细的步骤,用webui来操作。
以下是使用 WebUI 为图像添加噪音的详细步骤: 1. 首先,了解 Stable Diffusion 的加噪原理。从数据集中选择一张干净样本,然后用 random 函数生成 0 3 共 4 种强度的噪声,在每次迭代中随机选择一种强度的噪声添加到干净图片上,完成图片的加噪流程。 2. 在训练过程中,对干净样本进行加噪处理,采用多次逐步增加噪声的方式,直至干净样本转变成为纯噪声。 3. 加噪过程中,每次增加的噪声量级可以不同,假设存在 5 种噪声量级,每次都可以选取一种量级的噪声,以增加噪声的多样性。 4. 与图片生成图片的过程相比,在预处理阶段,先把噪声添加到隐空间特征中。通过设置去噪强度(Denoising strength)控制加入噪音的量。如果去噪强度为 0 ,则不添加噪音;如果为 1 ,则添加最大数量的噪声,使潜像成为一个完整的随机张量。若将去噪强度设置为 1 ,就完全相当于文本转图像,因为初始潜像完全是随机的噪声。
2024-11-18
我有一张图像,我要如何用stable Diffusion给它添加噪音
要使用 Stable Diffusion 给一张图像添加噪音,以下是相关的原理和过程: 在 Stable Diffusion 中,与 GAN 等生成式模型一样,它学习拟合训练集分布,并能够生成与训练集分布相似的输出结果。但与 GAN 相比,SD 模型训练过程更稳定,且具备更强的泛化性能,这归功于其核心的前向扩散过程和反向扩散过程。 在前向扩散过程中,SD 模型持续对一张图像添加高斯噪声直至变成随机噪声矩阵。而在反向扩散过程中,SD 模型进行去噪声过程,将一个随机噪声矩阵逐渐去噪声直至生成一张图像。 Stable Diffusion 的整个训练过程在最高维度上可以看成是如何加噪声和如何去噪声的过程,并在针对噪声的“对抗与攻防”中学习到生成图片的能力。 其训练逻辑为: 1. 从数据集中随机选择一个训练样本。 2. 从 K 个噪声量级随机抽样一个 timestep t。 3. 将 timestep t 对应的高斯噪声添加到图片中。 4. 将加噪图片输入 UNet 中预测噪声。 5. 计算真实噪声和预测噪声的 L2 损失。 6. 计算梯度并更新 SD 模型参数。 在训练时,需要把加噪的数据集输入模型中,每一次迭代用 random 函数生成从强到弱各个强度的噪声,通常会生成 0 1000 一共 1001 种不同的噪声强度,通过 Time Embedding 嵌入到训练过程中。Time Embedding 由 Timesteps(时间步长)编码而来,引入 Timesteps 能够模拟一个随时间逐渐向图像加入噪声扰动的过程。每个 Timestep 代表一个噪声强度(较小的 Timestep 代表较弱的噪声扰动,而较大的 Timestep 代表较强的噪声扰动),通过多次增加噪声来逐渐改变干净图像的特征分布。 以下是一个简单的加噪声流程示例:首先从数据集中选择一张干净样本,然后再用 random 函数生成 0 3 一共 4 种强度的噪声,然后每次迭代中随机一种强度的噪声,增加到干净图片上,完成图片的加噪流程。 在训练过程中,首先对干净样本进行加噪处理,采用多次逐步增加噪声的方式,直至干净样本转变成为纯噪声。接着,让 SD 模型学习去噪过程,最后抽象出一个高维函数,这个函数能在纯噪声中不断“优化”噪声,得到一个干净样本。其中,将去噪过程具像化,就得到使用 UNet 预测噪声,并结合 Schedule 算法逐步去噪的过程。加噪和去噪过程都是逐步进行的,假设进行 K 步,那么每一步,SD 都要去预测噪声,从而形成“小步快跑的稳定去噪”。与此同时,在加噪过程中,每次增加的噪声量级可以不同,假设有 5 种噪声量级,那么每次都可以取一种量级的噪声,增加噪声的多样性。
2024-11-18
AI 图像识别的发展历程
AI 图像识别的发展历程如下: 早期处理印刷体图片的方法是将图片变成黑白、调整为固定尺寸,与数据库对比得出结论,但这种方法存在多种字体、拍摄角度等例外情况,且本质上是通过不断添加规则来解决问题,不可行。 神经网络专门处理未知规则的情况,如手写体识别。其发展得益于生物学研究的支持,并在数学上提供了方向。 CNN(卷积神经网络)的结构基于大脑中两类细胞的级联模型,在计算上更高效、快速,在自然语言处理和图像识别等应用中表现出色。 ImageNet 数据集变得越来越有名,为年度 DL 竞赛提供了基准,在短短七年内使获胜算法对图像中物体分类的准确率从 72%提高到 98%,超过人类平均能力,引领了 DL 革命,并开创了新数据集的先例。 2012 年以来,在 Deep Learning 理论和数据集的支持下,深度神经网络算法大爆发,如卷积神经网络(CNN)、递归神经网络(RNN)和长短期记忆网络(LSTM)等,每种都有不同特性。例如,递归神经网络是较高层神经元直接连接到较低层神经元;福岛邦彦创建的人工神经网络模型基于人脑中视觉的运作方式,架构基于初级视觉皮层中的简单细胞和复杂细胞,简单细胞检测局部特征,复杂细胞汇总信息。
2024-11-14
目前主流ai软件的功能及区别
目前主流的 AI 软件具有多种功能,以下为您介绍部分软件的功能及区别: 在软件架构设计方面: Lucidchart:流行的在线绘图工具,支持多种图表创建,包括逻辑视图、功能视图和部署视图,用户可通过拖放界面轻松创建架构图。 Visual Paradigm:全面的 UML 工具,提供创建各种架构视图的功能,如逻辑视图(类图、组件图)、功能视图(用例图)和部署视图(部署图)。 ArchiMate:开源的建模语言,专门用于企业架构,支持逻辑视图创建,可与 Archi 工具配合使用,该工具提供图形化界面创建模型。 Enterprise Architect:强大的建模、设计和生成代码工具,支持创建多种架构视图,包括逻辑、功能和部署视图。 Microsoft Visio:广泛使用的图表和矢量图形应用程序,提供丰富模板用于创建逻辑视图、功能视图和部署视图等。 draw.io(现称为 diagrams.net):免费的在线图表软件,允许创建各种类型图表,包括软件架构图,支持创建逻辑视图和部署视图等。 PlantUML:文本到 UML 转换工具,通过编写描述性文本自动生成序列图、用例图、类图等,帮助创建逻辑视图。 Gliffy:基于云的绘图工具,提供创建各种架构图功能,包括逻辑视图和部署视图。 Archi:免费开源工具,用于创建 ArchiMate 和 TOGAF 模型,支持逻辑视图创建。 Rational Rose:IBM 的 UML 工具,支持创建多种视图,包括逻辑视图和部署视图。 在其他应用方面: AI 摄影参数调整助手:利用图像识别、数据分析技术,如一些摄影 APP 的参数调整功能,根据场景自动调整摄影参数。 AI 音乐情感分析平台:通过机器学习、音频处理技术,如音乐情感分析软件,分析音乐的情感表达。 AI 家居智能照明系统:结合物联网技术、机器学习,如小米智能照明系统,实现家居照明的智能化控制。 AI 金融风险预警平台:运用数据分析、机器学习,如金融风险预警软件,提前预警金融风险。 AI 旅游路线优化平台:借助数据分析、自然语言处理,如马蜂窝的路线优化功能,根据用户需求优化旅游路线。 在辅助写邮件方面: Grammarly:提供语法检查、拼写纠正、风格建议和语气调整等功能,易于使用,支持多种平台和多种语言,网站:https://www.grammarly.com/ 。 Hemingway Editor:简化句子结构,提高可读性,标记复杂句和冗长句,界面简洁,重点突出,网站:http://www.hemingwayapp.com/ 。 ProWritingAid:全面的语法和风格检查,提供详细写作报告和建议,功能强大,支持多种平台和集成,网站:https://prowritingaid.com/ 。 Writesonic:基于 AI 生成各种类型文本,包括电子邮件、博客文章、广告文案等,生成速度快,网站:https://writesonic.com/ 。 Lavender:专注于邮件写作优化,提供个性化建议和模板,帮助提高邮件打开率和回复率。
2024-11-20
主流大厂目前的agi 进展
目前主流大厂在 AGI 方面的进展情况如下: 2023 年之前,国内 AI 行业自认为与美国差距不大,但 ChatGPT 和 GPT4 的出现打破了这种认知,OpenAI 直接拉开了 2 年的技术差距。 2023 年上半年,国内大厂纷纷囤卡招人,研究类 GPT 架构,或成立创业公司,试图创造国产 AGI。但下半年发现不容易后,纷纷转向“垂直应用”“商业化”,不再提 AGI。 国内最领先的模型水平大概在准 ChatGPT3.5 的水平,和 GPT4 还有不小差距。 百度和阿里在大厂中比较高调,百度的“文心 4.0”是当前国内能力较好的模型之一,即将发布的阿里的“通义千问”也备受关注。 大厂们在人才、GPU、数据和资金储备方面具备冲击 AGI 的条件,但实际效果尚无明确亮点,且受内部短期考核压力影响,多数力量用于卷新产品和向上汇报工作,同时还背负其他业务和政治考量。
2024-11-12
现在业内比较主流的 RAG 方案 开源/商业的都有哪些啊
目前业内比较主流的 RAG 方案包括开源和商业的,以下为您介绍: 1. Dify:这是一个开源的大模型应用开发平台。它结合后端即服务和 LLMOps 的理念,为用户提供直观界面来快速构建和部署生产级别的生成式 AI 应用。具备强大工作流构建工具、广泛的模型集成、功能丰富的提示词 IDE 以及全面的 RAG Pipeline 用于文档处理和检索。还允许定义 Agent 智能体,并通过 LLMOps 功能对应用程序性能进行持续监控和优化。提供云服务和本地部署选项,满足不同用户需求。其设计理念注重简单性、克制和快速迭代,适合个人研究和企业级落地项目。 官方手册:https://docs.dify.ai/v/zhhans 一般来说,如果是个人研究,推荐单独使用;如果是企业级落地项目,推荐多种框架结合使用。 2. LangChain:这是一个为简化大模型应用开发而设计的开源框架。通过提供模块化的工具和库,允许开发者轻松集成和操作多种大模型,将更多精力投入到创造应用的核心价值上。设计注重简化开发流程,支持广泛模型,具备良好可扩展性,适应不断变化的业务需求。作为社区广泛支持的开源项目,拥有活跃贡献者和持续更新,提供全面文档和示例代码,充分考虑应用安全性和用户数据隐私保护,是多语言支持的灵活框架,适用于各种规模项目和不同背景开发者。 官方手册:https://python.langchain.com/docs/get_started/introduction/
2024-09-24
对于辅助代码编写的AI工具有什么推荐,哪些是主流使用人数较多的工具
以下是一些主流的辅助代码编写的 AI 工具: 1. GitHub Copilot:由 GitHub 联合 OpenAI 和微软 Azure 团队推出,支持多种语言和 IDE,能为程序员快速提供代码建议,帮助更快、更少地编写代码。 2. 通义灵码:阿里巴巴团队推出,基于通义大模型,提供行级/函数级实时续写、自然语言生成代码、单元测试生成、代码注释生成、代码解释、研发智能问答、异常报错排查等能力。 3. CodeWhisperer:亚马逊 AWS 团队推出,由机器学习技术驱动,可为开发人员实时提供代码建议。 4. CodeGeeX:智谱 AI 推出的开源免费 AI 编程助手,基于 130 亿参数的预训练大模型,可快速生成代码,提升开发效率。 5. Cody:代码搜索平台 Sourcegraph 推出,借助 Sourcegraph 强大的代码语义索引和分析能力,了解开发者的整个代码库,不止是代码片段。 6. CodeFuse:蚂蚁集团支付宝团队为国内开发者提供智能研发服务的免费 AI 代码助手,基于蚂蚁集团自研的基础大模型进行微调的代码大模型。 7. Codeium:一个由 AI 驱动的编程助手工具,通过提供代码建议、重构提示和代码解释来帮助软件开发人员,提高编程效率和准确性。 更多辅助编程 AI 产品,还可以查看这里:https://www.waytoagi.com/category/65 。 每个工具的功能和适用场景可能会有所不同,您可以根据自己的需求来选择最适合您的工具。
2024-09-09
windows电脑和安卓手机可以怎么注册并使用chatgpt? 请详细说明如何访问国外网络和注册及使用、
以下是 Windows 电脑和安卓手机注册并使用 ChatGPT 的详细步骤: 安卓手机: 1. 对于自带谷歌框架的机型(如红米 K60): 打开系统设置。 拉到最底下,点击更多设置。 点击账号与同步。 点击谷歌基础服务。 打开基础服务按钮。 2. 安装 Google Play: 到小米自带的应用商店搜索 Google Play 进行安装。 安装好后打开谷歌商店,点击右上角登录谷歌账号。 3. 安装 ChatGPT: 到谷歌商店搜索 ChatGPT 进行下载安装,建议把谷歌邮箱也安装上,方便接收验证码。 如果您只想体验 ChatGPT 3.5 版本,不升级 GPT4,可跳转到第 4 步第 6 小步进行登录使用,如果想直接订阅 GPT4 Plus 版本,请接着往下看。 Windows 电脑:未提供相关内容。 需要注意的是,在中国访问国外网络需要合法合规的途径。同时,ChatGPT 的使用也需要遵守其相关规定和服务条款。
2024-11-14
有哪些工具直接可以调用国外的多个LLM
以下是一些关于能够调用国外多个 LLM 的相关信息: 开源项目作者 ailm 提出一种仅使用提示词工程和精巧的代码设计,让 LLM 获得稳定的 tool calling 能力,使用多个不具备该功能的 LLM 进行实验,成功率达 100%,工作基于 comfyui 开发,适合无代码基础的人员复现和修改。 在高级提示词工程领域,工具、连接器和技能的整合能显著增强 LLM 的能力。工具是指 LLM 可利用的外部功能或服务,扩展任务范围;连接器是 LLM 与外部工具或服务的接口,管理数据交换和通信;技能是 LLM 可执行的专门功能。 目前开源模型与专有产品存在差距但在缩小,如 Meta 的 LLaMa 模型引发一系列变体。当开源 LLM 达到一定准确度水平时,预计会有大量实验等。开发人员对 LLM 操作工具的研究尚不深入,一些工具如缓存(基于 Redis)、Weights & Biases、MLflow、PromptLayer、Helicone 等得到较广泛使用,还有新工具用于验证 LLM 输出或检测攻击。多数操作工具鼓励使用自身的 Python 客户端进行 LLM 调用。
2024-11-12
目前国产AI对比国外AI,存在哪些不足和差距,我要实事求是的回答
目前国产 AI 对比国外 AI 存在以下不足和差距: 1. 在通用语言模型方面,如 ChatGPT 和 GPT4 出现后,国内与国外拉开了约 2 年的技术差距。国内最领先的模型水平大概在准 ChatGPT3.5 的水平,和 GPT4 还有不小差距,甚至还不如临时拼凑的 Mistral 团队的水平。 2. 国内部分企业可能存在骄傲自大的情况,也可能被之前 Google 主推的 T5 技术路线带偏,同时 AGI 影响巨大,可能存在国外相关机构与 OpenAI 有特殊沟通而国内未有的情况。 3. 2023 年上半年国内笃信靠资金和卡能实现突破,但下半年纷纷转向“垂直应用”“商业化”,不提 AGI,这种转向可能是短视和致命的。 4. 大厂虽具备冲击 AGI 的资源,但受内部短期考核压力影响,多数力量用于卷新产品圈地盘和向上汇报工作,实际效果未达预期,且背负较多其他业务和政治考量。 不过,在图像类 AI 产品方面,国内产品发展迅速,部分产品如通义万相在中文理解和处理方面表现出色,具有独特优势。在 AI 生成视频工具领域,国内涌现出一系列工具,其生成结果在某些方面甚至远超国外。
2024-11-03
国产AI与国外AI的实际差距
国产 AI 与国外 AI 存在一定的差距,但情况较为复杂,且在不同方面表现有所不同。 在 2023 年之前,国内 AI 行业曾自认为与美国差距不大,但 ChatGPT 和 GPT4 的出现打破了这种认知,OpenAI 直接拉开了 2 年的技术差距。当时国内出现了从追求创造国产 AGI 到转向做“垂直应用”“商业化”的转变。国内最领先的模型水平大概在准 ChatGPT3.5 的水平,和 GPT4 仍有差距。大厂在人才、GPU、数据和资金储备上有冲击 AGI 的能力,但实际效果尚不明确,且受内部短期考核压力等因素影响。 然而到了 2024 年,竞争达到白热化阶段。在文本到视频扩散模型方面,Google DeepMind 和 OpenAI 展示了强大的成果,但中国的相关情况在报告中未详细说明,不过国内也涌现出了一系列表现出色的 AI 生成视频工具,生成结果甚至远超国外。Llama 3.1 在某些任务中能与 GPT4 相抗衡,而中国的一些模型如由 DeepSeek、零一万物、知谱 AI 和阿里巴巴开发的模型在 LMSYS 排行榜上取得优异成绩,尤其在数学和编程方面表现出色,且在某些子任务上挑战了前沿水平。中国模型在计算效率、数据集建设等方面各有优势,能弥补 GPU 访问的限制等不足。
2024-11-03