Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

AI agent和智能体有什么区别

Answer

AI agent 和智能体在以下方面存在区别:

  1. 概念侧重点:AI agent 更强调作为数字人的大脑,拥有记忆模块等,以实现更真实的交互;智能体则被视为智能的最小单元,是可以设定目标后主动完成任务的。
  2. 能力构成:AI agent 主要通过接入大语言模型,并结合工具、记忆、行动、规划等能力来发挥作用;智能体不仅具备推理能力,还能执行全自动化业务,但目前许多相关产品仍需人类参与。
  3. 实现方式:AI agent 目前行业里主要通过如 langchain 框架,在 prompt 层和工具层完成设计,将大模型与工具进行串接;智能体在实现上可能涉及更多复杂的技术和逻辑。
Content generated by AI large model, please carefully verify (powered by aily)

References

AI 数字人-定义数字世界中的你

这类数字人强调自驱动,人为干预更少,技术实现上更加复杂,一个最简单的算法驱动的数字人大致流程如下:其中三个核心算法分别是:1.ASR(Automatic Speech Recognition,语音识别):我们希望和数字人的交互跟人一样以对话为主,所以算法驱动的第一步就是语音识别,它能将用户的音频数据转化为文字,便于数字人理解和生成回应。2.AI Agent(人工智能体):充当数字人的大脑,可以直接接入大语言模型,强调Agent的概念是为了让数字人拥有记忆模块等更加真实。3.TTS(Text to Speech,文字转语音):数字人依靠LLM生成的输出是文字,为了保持语音交互一致性,需要将文字转换为语音,由数字人。

Ranger:【AI 大模型】非技术背景,一文读懂大模型(长文)

agent算是从年前到现在,比较火的一个概念了,也被很多人认为是大模型的未来的一个主要发展方向。首先我们看这个很经典的一张图看起来还是蛮复杂的,然后市面上的很多描述agent的文章写的也比较复杂,说智能体是啥智能的最小单元,相较于copilot,是可以给他设定一个目标后主动完成任务的等等。当然这些说法都没错,但是我觉得还是有些不好理解的。所以我们依然先从原理着手去理解下,agent是个什么东西。首先这张图里,中间的“智能体”,其实就是llm,或者说大模型。四个箭头,分别是我们为llm增加的四个能力。工具、记忆、行动、规划。那么这个是怎么新增的呢?目前行业里主要用到的是一个叫langchain的框架,这个框架可以简单理解为,他把llm和llm之间,以及llm和工具之间,通过代码或prompt的形式,进行了串接。这个其实也像是在rag的基础上再进了一步。因为我们知道rag其实是给了大模型一个浏览器工具来使用嘛,那agent,其实就是给了大模型更多的工具。比如像是长期记忆,其实就是给了大模型一个数据库工具让其往里记录重要信息。规划和行动,其实就是在大模型的prompt层做的些逻辑,比如让其将目标进行每一步的拆解,拆解完成后,每一步去输出不同的固定格式action指令,给到工具作为输入。当然langchain或者说agent还不止这些,也会有很多其他的代码逻辑体现在其中,不过其主要的主干逻辑,其实还是在prompt层和工具层,完成的设计。

问:AGI 的 5 个等级是什么?

OpenAI在其内部会议上分享了关于通用人工智能(AGI)的五个发展等级。OpenAI自2015年成立以来,一直将AGI作为其战略目标之一,随着ChatGPT、多模态大模型和AI Agent等技术的发展,我们似乎越来越接近实现这一目标。AGI的五个等级分别为:1.聊天机器人(Chatbots):具备基本对话能力的AI,主要依赖预设脚本和关键词匹配,用于客户服务和简单查询响应。2.推理者(Reasoners):具备人类推理水平的AI,能够解决复杂问题,如ChatGPT,能够根据上下文和文件提供详细分析和意见。3.智能体(Agents):不仅具备推理能力,还能执行全自动化业务的AI。目前许多AI Agent产品在执行任务后仍需人类参与,尚未达到完全智能体的水平。4.创新者(Innovators):能够协助人类完成新发明的AI,如谷歌DeepMind的AlphaFold模型,可以预测蛋白质结构,加速科学研究和新药发现。5.组织(Organizations):最高级别的AI,能够自动执行组织的全部业务流程,如规划、执行、反馈、迭代、资源分配和管理等。

Others are asking
怎么写好AI绘画提示词
以下是关于写好 AI 绘画提示词的一些要点和方法: 1. 趣味性与美感概念:通过反差、反逻辑、超现实方式带来视觉冲击,在美术基础不出错前提下将形式与内容结合。 2. 纹身图创作要点:强调人机交互,对输出图片根据想象进行二次和多次微调,确定情绪、风格等锚点再发散联想。 3. 魔法少女示例:以魔法少女为例,发散联想其服饰、场景、相关元素等,并可采用反逻辑反差方式。 4. 提示词编写方法:用自然语言详细描述画面内容,避免废话词,Flux 对提示词的理解和可控性强。 5. 实操演示准备:按赛题需求先确定中式或日式怪诞风格的创作引子。 6. 人物创作过程:从汉服女孩入手,逐步联想其颜色、发型、妆容、配饰、表情、背景等元素编写提示词。 7. 输入语言:星流通用大模型与基础模型 F.1、基础模型 XL 使用自然语言(一个长头发的金发女孩),基础模型 1.5 使用单个词组(女孩、金发、长头发),支持中英文输入。 8. 提示词内容准确:包含人物主体、风格、场景特点、环境光照、画面构图、画质,比如:一个女孩抱着小猫,背景是一面红墙,插画风格、孤独感,高质量。 9. 调整负面提示词:点击提示框下方的齿轮按钮,弹出负面提示词框,负面提示词可以帮助 AI 理解我们不想生成的内容,比如:不好的质量、低像素、模糊、水印。 10. 利用“加权重”功能:可在功能框增加提示词,并进行加权重调节,权重数值越大,更优先。对已有的提示词权重进行编辑。 11. 辅助功能:翻译功能可一键将提示词翻译成英文;删除所有提示词可清空提示词框;会员加速可加速图像生图速度,提升效率。 12. 对于 Stable Diffusion:生成方式主要分为文生图和图生图两种。文生图仅通过正反向词汇描述来发送指令。在文本描述上又分为两类:内容型提示词主要用于描述想要的画面,采样迭代步数通常数值控制在 20 40 之间最好,采样方法一般常用的为:Euler a;DPM++2S a Karras;DPM++2M Karras;DPM++SDE Karras;DDIM。将比例设置为 800:400,高宽比尽量在 512x512 数值附近。
2025-03-10
怎么写好AI绘画提示词
以下是写好 AI 绘画提示词的一些要点和方法: 1. 画面描述:用自然语言详细描述画面内容,避免废话词。比如描述人物时,包括发型、妆容、服饰、配饰、表情、背景等元素;描述场景时,涵盖环境光照、画面构图等。 2. 趣味性与美感:趣味性可通过反差、反逻辑、超现实方式带来视觉冲击,美感需在美术基础不出错前提下形式与内容结合。 3. 纹身图创作:强调人机交互,对输出图片根据想象进行二次和多次微调,确定情绪、风格等锚点再发散联想。 4. 特定示例:如以魔法少女为例,发散联想其服饰、场景、相关元素等,并可采用反逻辑反差方式。 5. 输入语言:根据不同模型选择合适的输入方式,有的使用自然语言(一个长头发的金发女孩),有的使用单个词组(女孩、金发、长头发),且支持中英文输入。 6. 提示词内容准确:包含人物主体、风格、场景特点、环境光照、画面构图、画质等,例如:一个女孩抱着小猫,背景是一面红墙,插画风格、孤独感,高质量。 7. 调整负面提示词:点击提示框下方的齿轮按钮,弹出负面提示词框,输入不想生成的内容,如不好的质量、低像素、模糊、水印等。 8. 利用“加权重”功能:在功能框增加提示词,并进行加权重调节,权重数值越大,越优先。 9. 辅助功能:如翻译功能可一键将提示词翻译成英文,还有删除所有提示词、会员加速等功能。 10. 模型选择与参数设置:根据需求选择合适的模型和采样方法,合理设置采样迭代步数和比例等参数。
2025-03-10
什么是AI agent
AI Agent 是基于大型语言模型(LLM)和其他技术实现的智能实体,其核心功能在于自主理解、规划决策、执行复杂任务。 AI Agent 包括以下几个概念: 1. Chain:通常一个 AI Agent 可能由多个 Chain 组成。一个 Chain 视作是一个步骤,可以接受一些输入变量,产生一些输出变量。大部分的 Chain 是大语言模型完成的 LLM Chain。 2. Router:我们可以使用一些判定(甚至可以用 LLM 来判定),然后让 Agent 走向不同的 Chain。例如:如果这是一个图片,则 a;否则 b。 3. Tool:Agent 上可以进行的一次工具调用。例如,对互联网的一次搜索,对数据库的一次检索。 总结下来我们需要三个 Agent: 1. Responser Agent:主 agent,用于回复用户(伪多模态)。 2. Background Agent:背景 agent,用于推进角色当前状态(例如进入下一个剧本,抽检生成增长的记忆体)。 3. Daily Agent:每日 agent,用于生成剧本,配套的图片,以及每日朋友圈。 这三个 Agent 每隔一段时间运行一次(默认 3 分钟),会分析期间的历史对话,变更人物关系(亲密度,了解度等),变更反感度,如果超标则拉黑用户,抽简对话内容,提取人物和用户的信息成为“增长的记忆体”,按照时间推进人物剧本,有概率主动聊天(与亲密度正相关,跳过夜间时间)。 此外,心灵社会理论认为,智能是由许多简单的 Agent(分等级、分功能的计算单元)共同工作和相互作用的结果。这些 Agent 在不同层次上执行不同的功能,通过协作实现复杂的智能行为。心灵社会将智能划分为多个层次,从低层次的感知和反应到高层次的规划和决策,每个层次由多个 Agent 负责。每个 Agent 类似于功能模块,专门处理特定类型的信息或执行特定任务,如视觉处理、语言理解、运动控制等。智能不是集中在单一的核心处理单元,而是通过多个相互关联的 Agent 共同实现。这种分布式智能能够提高系统的灵活性和鲁棒性,应对复杂和多变的环境。同时,在《心灵社会》中,还存在专家 Agent(拥有特定领域知识和技能,负责处理复杂的任务和解决特定问题)、管理 Agent(协调和控制其他 Agent 的活动,确保整体系统协调一致地运行)、学习 Agent(通过经验和交互,不断调整和优化自身行为,提高系统在不断变化环境中的适应能力)。 从达特茅斯会议开始讨论人工智能(Artificial Intelligence),到马文·明斯基引入“Agent”概念,往后,我们都将其称之为 AI Agent。
2025-03-10
如何从零到一成为AI产品经理
要从零到一成为 AI 产品经理,可以参考以下步骤: 1. 入门级: 通过 WaytoAGI 等开源网站或相关课程了解 AI 概念。 使用 AI 产品并尝试动手实践应用搭建。 2. 研究级: 技术研究路径:深入研究某一技术领域。 商业化研究路径:根据需求场景选择解决方案,或利用 Hugging face 等工具手搓出一些 AI 应用来验证想法。 3. 落地应用: 拥有成功落地应用的案例,产生商业化价值。 同时,AI 产品经理需要懂得技术框架,不一定要了解技术细节,但要对技术边界有认知,最好能知道一些优化手段和新技术的发展。产品经理要关注的还是场景、痛点、价值。 此外,还可以参考一些实际案例,比如 Kelton 作为 Owner 从 01 打造过两款 AIGC 产品,也完成过 LLM 评测体系的从零搭建。 在技术方面,对于纯小白,可以从最基础的小任务开始,让 AI 按照 best practice 写一个 say hello 的示例程序,并解释每个文件的作用及程序运行的逻辑,学会必备的调试技能。还可以通过和 AI 的对话,逐步明确项目需求,让 AI 帮助梳理出产品需求文档。
2025-03-10
我想要制作一款小游戏,上架到抖音和微信,请你给我列举出需要用到的ai和软件
以下是制作小游戏并上架到抖音和微信可能需要用到的 AI 和软件: AI 方面:可以利用 AI 描述需求生成游戏代码,例如向云雀 3.5 等模型描述需求来辅助生成代码。还可以让 AI 处理图片、绘制角色形象等。 软件工具: 图像托管网站:用于上传游戏中的图片,选择无需登录、兼容性强的网站。 代码解释网站:有专门解释代码改游戏 bug 的网站,部分有免费额度。 GitHub:用于游戏发布,需要注册账号,设置游戏名,选择公共或锁定,上传文件等。 Zion:支持小程序、Web、AI 行为流全栈搭建,APP 端全栈搭建 2025 上线。 Coze:可作为后端服务。 微信开发者工具:用于微信小程序的开发。
2025-03-10
我想让ai通过文字生成某一类风格的图片,可以给示例
以下是关于让 AI 通过文字生成某一类风格图片的示例和相关信息: 一、关键词相关 在生成图片时,图片内容通常分为二维插画和三维立体两种主要表现形式。为得到想要的图片,以下几个方面很重要: 1. 主题描述 可以描述场景、故事、元素、物体或人物的细节及搭配。 对于场景中的人物,应独立描述,避免用长串文字,以免 AI 识别不到。 大场景中多个角色的细节不太容易通过关键词生成。 2. 设计风格 设计师可能难以直接表达设计风格,可找风格类关键词参考或用垫图/喂图,让 AI 结合主题描述生成相应风格的图片。 某些材质的关键词使用有较多门道,需针对特定风格进行“咒语测试”。 二、工具 Ideogram 2.0 相关 1. 特点 设计能力强,文字生成效果好且准确(仅限英文),图像生成效果优于 Flux&Dalle·3。 具有精准文本生成、多样化风格、创意控制、开发者友好、支持手机端、免费使用额度等特点。 2. 基本操作界面 3. 示例 磨铁文化 Xiron 的字体设计 字体版权:AI 生成文字并非使用真实字体,而是基于学习创造类似风格的文字。 字体生成错误:可通过多次生成提示、使用编辑器修改、更换版本等方式纠正。 3D 风格海报设计、复古海报、网页设计等示例。
2025-03-10
agent
智能体(Agent)在人工智能和计算机科学领域是一个重要概念,指能够感知环境并采取行动以实现特定目标的实体,既可以是软件程序,也可以是硬件设备。 在 LLM 支持的自主 Agent 系统中,LLM 充当 Agents 的大脑,并具有以下关键组成部分: 1. 规划:包括子目标和分解,将大型任务分解为更小、可管理的子目标,以有效处理复杂任务。 2. 反思和完善:能够对过去的行为进行自我批评和反思,从错误中吸取教训,完善未来步骤,提高最终结果质量。 3. 记忆:包含短期记忆,用于所有的上下文学习;长期记忆,通过利用外部向量存储和快速检索,为 Agents 提供长时间保留和回忆(无限)信息的能力。 4. 工具使用:Agents 学习调用外部 API 来获取模型权重中缺失的额外信息,包括当前信息、代码执行能力、对专有信息源的访问等。 以下是一些关于智能体 Agent 的相关目录: 1. 2. 3. 4. 5. 6. 从产品角度思考 Agent 设计: 1. Agent 可以是一个历史新闻探索向导。 身份:历史新闻探索向导 性格:知识渊博、温暖亲切、富有同情心 角色:主导新闻解析和历史背景分析 为使角色更生动,可为其设计简短背景故事,如曾是一位历史学家,对重大历史事件了如指掌,充满热情,愿意分享知识。 2. 写好角色个性的方法: 角色背景和身份:编写背景故事,明确起源、经历和动机。 性格和语气:定义性格特点,如友好、幽默、严肃或神秘;确定说话方式和风格。 角色互动方式:设计对话风格,从基本问答到深入讨论。 角色技能:明确核心功能,如提供新闻解析、历史背景分析或心理分析;增加附加功能以提高吸引力和实用性。 正如《》所写:个性化定制的“虚拟伴侣”能得到用户认可,是因为精准击中许多年轻人无处可藏的孤独和焦虑,背后是年轻人渴望被理解、沟通和交流。美国心理学家 Robert Jeffrey Sternberg 提出了“爱情三角理论”,认为爱情包含“激情”“亲密”“承诺”三个要素。激情是生理上或情绪上的唤醒,例如对某人有强烈的性或浪漫的感觉;亲密是一种相互依恋的感觉,通过相互联结带来的喜爱和相互沟通分享自己的所见所闻、喜怒哀乐来体现;承诺是决定建立长期稳定关系,融入对方生活,形成互助互惠的关系,代表着一种长相厮守的责任。
2025-03-10
agent 打通应用之间的协议?
在 AI 领域中,Agent 是连接模型与应用的关键。端侧 Agents 是在终端设备上自主运行的智能代理程序,具备感知、决策、执行的闭环能力。 Agent 之所以重要,原因包括:端侧资源约束要求最优化使用,任务具有复杂性,生态存在多样性,双系统路线更适合端侧。 Agent 创造价值的方式体现在双重价值实现:一是资源优化,包括任务分解、按需调用;二是生态连接,比如跨应用协作、UI 理解。 其发展趋势包括:技术上从单一模型到多智能体协作;生态上从封闭应用到开放服务;交互上从指令执行到场景理解。 在技术层面,AI Agent 的发展出现了两条技术路线:一是以自主决策为核心的 LLM 控制流,二是以工作流(Workflow)编排为重点的工具集成系统。 特别值得关注的是 Anthropic 提出的 MCP(Model Context Protocol),它的本质是一个通用接口协议,试图解决让 AI 模型能够以标准化、可扩展的方式与外部世界交互的问题。 此外,还有 Agent Protocol 这种用于与 AI 代理进行通信的统一接口,它提供了一种 API 规范,任何代理开发者都可以实现该协议,设计简单且不依赖特定技术栈,有助于生态系统发展和简化集成,并提供了不同语言的 SDK 供开发者使用。
2025-03-09
做一个每日收集兴趣信息的工具,如收集agent,从微信公众号上收集,应该怎么做
以下是一种通过文章链接订阅公众号,定时推送情报消息,并实现情报 CoT 问答的方式来做每日收集兴趣信息的工具: 1. 安装 Docker(假设已经装上) 浏览器打开:http://127.0.0.1:4000 或 http://wewerss 服务的 IP:端口(为上面设置的外部端口) 点开后,输入 Dash 管理页面密码 先点帐号管理,然后点“添加读书帐号”(即使用微信读书来实现公众号订阅),扫码添加帐号 然后在公众号源上,点添加 将您想订阅的公众号的一篇文章链接粘贴并点确定即可订阅公众号文章。但建议不要短时间订阅太多公众号(最好不超 40 个),然后在本地 data/目录会生成一个 SQLite 数据库文件 wewerss.db 2. 关于 Coze 工作流和 Bot 因为前面需要对多维表格操作,所以要先在 http://open.feishu.cn 上建一个飞书机器人,并添加知识库或多维表格编辑权限,具体可参考飞书文档。得到机器人的 app_id 和 app_secret 即可获得租用 token:tenant_access_token 来获取多维表格数据和编辑能力。 工作流一:通过微信文章链接进行文章解读成摘要报告。通过 LLM 能力,开源提示词如下。由于 Coze 使用 LLM 和批量执行任务延时的约束,建议不要同时处理太多文章(如 6 篇左右)。这样执行后,将多维表格的文章状态转换成“已通知”并生成简报。 消息情报官 Bot:最后可以通过 Coze,建定时任务,执行工作流二,并添加其他如分析文章和搜索文章的能力,即可变成一个消息情报官的 Agent,我们即可以获得想要的领域或行业情报,也可以深入挖掘相关情报的信息。然后发布到想要的平台,如:Coze 商店、豆包、飞书、微信、微信公众号、微信小程序等,即可使用。可以构建多个分身,就能收集整理不同领域和行业的情报信息。 如感兴趣欢迎联系交流合作。
2025-03-08
AI Agent MANUS个人助手是否可以本地私有化部署
目前没有明确的信息表明 AI Agent MANUS 个人助手可以本地私有化部署。 Manus 是一款由中国团队研发的全球首款通用型 AI 代理工具,于 2025 年 3 月 5 日正式发布。它区别于传统聊天机器人,具备自主规划、执行复杂任务并直接交付完整成果的能力。其技术架构主要基于多智能体架构,运行在独立的虚拟机中,核心功能由多个独立模型共同完成,包括规划、执行和验证三个子模块,还包括虚拟机、计算资源、生成物、内置多个 agents 等关键组件,并采用了“少结构,多智能体”的设计哲学。 但对于其是否能本地私有化部署,现有资料未给出确切说明。在构建高质量的 AI 数字人方面,由于整个数字人的算法部分组成庞大,几乎不能实现单机部署,特别是大模型部分,算法一般会部署到额外的集群或者调用提供出来的 API。而在本地部署资讯问答机器人方面,有相关案例,但未提及与 AI Agent MANUS 个人助手的直接关联。
2025-03-07
AI Agent MANUS个人助手
AI Agent MANUS 个人助手是一种真正自主的 AI 代理。它区别于传统的 AI 助手,能够自主完成复杂任务,不仅生成想法,还能直接执行并交付结果。其核心亮点包括: 1. 自主执行:可直接执行任务,而非仅提供建议。 2. 类人工作模式:能解压文件、浏览网页、阅读文档、提取关键信息等。 3. 云端异步运行:在后台执行任务,完成后自动通知用户。 4. 持续学习和记忆:从用户反馈中学习,提高未来任务的准确性。 5. “心智与手”理念:象征着实际执行能力。 在构建高质量的 AI 数字人时,涉及到为数字人构建灵魂,使其具备各种智能,充当个人助手等。其中在构建数字人灵魂方面,有以下几个工程关键点: 1. AI Agent:要让数字人像人一样思考,需要编写一个像人一样的 Agent,工程实现所需的记忆模块、工作流模块、各种工具调用模块的构建存在挑战。 2. 驱动躯壳的实现:灵魂部分通过定义接口由躯壳部分通过 API 调用,调用方式视躯壳部分的实现而定。但包含情绪的语音表达以及保证躯壳的口型、表情、动作和语音的同步及匹配存在困难,目前主流方案只能做到预设一些表情动作,再做一些逻辑判断来播放预设,语音驱动口型相对成熟但闭源。 3. 实时性:由于数字人的算法部分组成庞大,几乎不能实现单机部署,特别是大模型部分,算法一般会部署到额外的集群或者调用提供出来的 API,会涉及到网络耗时和模型推理耗时,低延时是亟需解决的问题。 4. 多元跨模态:仅仅语音交互的数字人远远不够,可根据实际需求添加其他感官,如通过添加摄像头数据获取视觉信息,再通过系列 CV 算法做图像解析等。 5. 拟人化场景:正常与人交流时并非线性对话,会有插话、转移话题等情况,这些情景的工程处理需要优化。 在人工智能的发展历程中,Agent(智能代理)一直是令人着迷的概念之一。2024 年,Agent 技术实现了从概念到实践的关键突破。例如,当对手机下达指令“帮我给同事的朋友圈点赞”,AI 就能识别屏幕并完成操作。这种进化展示了 AI 不仅能“听懂”,还能“思考”和“行动”,会分析任务、规划步骤、选择工具,甚至在遇到问题时及时调整策略。2024 年,Anthropic 的 Computer Use、智谱 AI 的 AutoGLM 以及 Google 的 Gemini 2.0 等都展示了 AI Agent 的突破性进展。这种接近成型的工程化的 Agent 核心在于四个关键能力的进展,但在过往,类似的 Agent 能力存在成功率不高、泛化能力不够强等问题,训练模型识别所有 App 的 UI 很难,模型进行自主操作也是难点。
2025-03-07
数据分析产品的智能体有哪些
以下是一些常见的数据分析产品的智能体类型: 1. 简单反应型智能体:根据当前的感知输入直接采取行动,不维护内部状态和考虑历史信息。例如温控器,根据温度传感器的输入直接控制加热器。 2. 基于模型的智能体:维护内部状态,对当前和历史感知输入进行建模,能推理未来的状态变化并据此行动。比如自动驾驶汽车,不仅感知当前环境,还维护和更新周围环境的模型。 3. 目标导向型智能体:具有明确的目标,能根据目标评估不同的行动方案并选择最优行动。像机器人导航系统,有明确目的地并规划路线以避开障碍。 4. 效用型智能体:不仅有目标,还能量化不同状态的效用值,选择效用最大化的行动,评估行动的优劣并权衡利弊。例如金融交易智能体,根据市场条件选择最优交易策略。 5. 学习型智能体:能够通过与环境的交互不断改进其性能,学习模型、行为策略以及目标函数。比如强化学习智能体,通过与环境互动不断学习最优策略。 此外,还有一些具体的数据分析产品智能体,如颖子团队的“市场分析报告”生成智能体,它能根据输入的行业/类目关键词自动检索关联信息并生成报告,数据化呈现且附带信息来源网址便于校正,适用于企业管理层、投资者、创业者、营销人员等,可减少信息收集时间,聚焦决策判断。 在智谱 BigModel 开放平台工作流搭建中,也有相关的智能体节点,如具有自主规划任务、使用工具、记忆的 Agent 节点。
2025-02-17
通过通用语言大模型能直接输出思维导图的AI智能体有那些推荐
以下是为您推荐的一些通过通用语言大模型能直接输出思维导图的 AI 智能体: 1. 豆包:输入简单提示词就能创建个人 AI 智能体。 2. GLM4flash:在处理纯文本总结任务时,仅需 13B 或更小参数的模型,加上精调的提示词,就能产生很好的结果。具有较长的上下文窗口、响应速度快、并发支持高、免费或价格低等优点。 需要注意的是,AI 领域发展迅速,新的产品和服务不断涌现,您可以持续关注相关领域的最新动态以获取更多更好的选择。
2025-01-20
AI智能体是什么?AI超级个体是什么?AI智能体和超级个体有什么区别和关联?
AI 智能体是不仅具备推理能力,还能执行全自动化业务的 AI。目前许多 AI 智能体产品在执行任务后仍需人类参与,尚未达到完全智能体的水平。 AI 超级个体可以理解为一种能够帮助我们充分发挥作为人类潜力的伙伴。它是我们的外脑,我们每个人独特的个性、经验和思考风格,将会与这些智能个体融合,成为我们的化身。超级智能将强化我们自身,与人类共生,共同汇聚成智能时代的新知识网络。 AI 智能体和超级个体的区别在于:AI 智能体更侧重于执行全自动化业务的能力,而超级个体更强调对人类潜力的辅助和强化,以及与人类的融合共生。它们的关联在于都是人工智能在不同应用和概念层面的体现,都旨在为人类提供帮助和服务,推动人类与人工智能的协同发展。
2025-01-16
AI对于自媒体有什么帮助的网站
以下是一些 AI 对于自媒体有帮助的网站和相关信息: 10 分钟在网站上增加一个 AI 助手: 方案概览:在网站中引入一个 AI 助手,只需 4 步。 创建大模型问答应用:先通过百炼创建一个大模型应用,并获取调用大模型应用 API 的相关凭证。 搭建示例网站:通过函数计算,快速搭建一个网站,模拟企业官网或者其他站点。 引入 AI 助手:通过修改几行代码,实现在网站中引入一个 AI 助手。 增加私有知识:准备一些私有知识,让 AI 助手能回答原本无法准确回答的问题,帮助更好地应对客户咨询。 AI 绘画在自媒体中的应用: 个体方面:成为自媒体博主、个体商户应用、实体印刷(T恤,杯子实物等)、AI 摄影、设计接单、AI 定制萌娃头像、电商商品、自媒体素材、AI 服装预售、AI 视频接单、培训老师。 公司方面:设计质量和效率提升、AI 绘画相关应用开发、CV 方面算法应用。 2024 年 10 月 8 日的相关信息: 《》鼓励每个人建立自媒体。AI 播客方面,推出中文版 Demo 并吸引大量参与者。同时,开设了 AI 酒吧 Bar2AGI,成为行业交流的新场所。参与了活动,包括 Demo Inn 和云栖大会,感受到行业的快速发展和乐观氛围。 《》国庆节期间的重要 AI 新闻,如 OpenAI 推出 Canvas 功能和实时 API,微软发布新版 Copilot,具备深度系统集成和实时语音功能;Meta 发布 Meta Movie Gen 视频生成模型,自动配音质量高;LiquidAI 发布非 Transformer 模型 LFMs,推理效率显著提高。此外,Sora 项目负责人离职、多个新模型和工具发布,以及 OpenAI 完成新一轮融资,估值达到 1570 亿美元。
2025-01-14
工作流对于智能体有什么作用
工作流对于智能体具有以下重要作用: 1. 可视化组合功能:工作流就像可视化的拼图游戏,能将插件、大语言模型、代码块等功能组合在一起,创建出复杂且稳定的业务流程。 2. 应对复杂任务:当面对多步骤且对结果要求严格的任务时,如结果需准确无误、格式正确,工作流能发挥重要作用。 3. 构成基本单元:工作流由多个小块块(节点)组成,这些小块块包括大语言模型、自定义代码、判断逻辑等,是工作流的基本单元。 4. 明确起点和终点:工作流有开始和结束的特定小块块,开始的小块块包含输入信息,结束的小块块展示运行结果。 5. 信息传递与自定义:不同小块块工作所需的信息有引用前面小块块给出的信息和自行设定的信息两种。 在具体应用中,如在品牌卖点提炼中,工作流确定了以品牌卖点提炼六步法为核心的流程,并将其他分析助手加入其中,包括品牌卖点定义与分类助手、STP 市场分析助手、用户画像分析助手、触点收集助手等,还包括一些未在结构中体现但有效的分析工具,如用户需求分析的 KANO 助手、营销六层转化漏斗分析、超级转化率六要素等。 在 Bot 智能体中,Bot 由 4 个不同的工作流组成,会根据用户的不同输入调用不同工作流完成自动化任务,如在不同的查询和发送需求场景下,分别采用相应的工具。同时,还通过变量设置、开场白设置等与工作流中的信息交互联动,提升用户交互体验。
2024-11-23
什么是AI 智能体?具体有哪些形式的产品?
AI 智能体简单来说就是 AI 机器人小助手。参照移动互联网,类似 APP 应用的概念。随着 ChatGPT 与 AI 概念的爆火,出现了诸如“智能体 Agent”、bot 和 GPTs 等新名词。 AI 大模型是技术,面向用户提供服务的是产品,因此很多公司关注 AI 应用层的产品机会,出现了不少做 Agent 创业的公司。 在 C 端,比如社交方向,用户注册后先捏一个自己的 Agent,让其与他人的 Agent 聊天,聊到一起后真人再介入,这是一种有趣的场景;还有借 Onlyfans 入局打造个性化聊天的创业公司。 在 B 端,如果字节扣子和腾讯元器是面向普通人的低代码平台,类似 APP 时代的个人开发者,那么还有帮助 B 端商家搭建 Agent 的机会,类似 APP 时代专业做 APP 的。 以 ChatGPT 的 GPTs 举例,一个智能体应用通常由以下几部分自定义操作组成: 1. 提示词:描述智能体的作用,定义智能体的回复格式。 2. 知识库:上传私有文件作为回答参考。 3. 外挂 API:请求第三方 API 获取实时数据。 4. 个性化配置:包括是否联网、是否使用图片生成、是否使用数据分析等。 常见的智能体开发平台有字节的扣子 Coze、Dify.AI 等。
2024-10-30
哪有有别人搭建完成的智能体我可以直接拿来使用呢?
以下是一些可以获取搭建完成的智能体并直接使用的途径: 1. 在五津的“宝藏智能体 club”中,创建智能体,输入人设等信息,放上创建的工作流。配置完成后进行测试,但千万不要直接发布。工作流中的某些节点使用的插件 api_token 填的是您的 token,其他人调用会消耗您的费用。您可以将 api_token 作为工作流最开始的输入,用户购买后输入 api_token 再发布。 2. 通过 Coze 接入: 2 月 14 日 8 点有火山引擎解决方案专家在飞书会议的直播,直播结束后可看回放: 。 学习文档: 。 模板更新: 。 创建账号,如果是普通账号,请自行升级或注册专业号后使用。 点击创建智能体,完成创建后,如果已创建好推理点,可在 Bot 编排里直接看到和选择创建好的推理模型,测试可用后直接发布。注意,如果发布到公共空间,其他人使用会消耗您的 Token(也可设置成仅自己使用)。 3. 在阿里云百炼平台中: 模型广场丰富,有各种模型,包括音频理解、视频理解等,通义的一些强模型也在其中。 无需部署直接用,和摩搭的最大区别在于无需部署,直接就能使用 Deepseek R1 模型。 价格与免费额度:价格与各大平台差不多,有大量免费额度,如 100 万 token,不同版本的模型如 7B、14B、32B 等也送 100 万 token,LLAVA 限时免费。 授权与实名认证:使用需要解锁和授权,没有授权按钮的需要对阿里云进行实名认证,可通过支付宝扫码或在右上角头像处进行,共学群里有相关指引。 模型效果对比:在首页体验模型页面可对比不同模型的效果,如 V3 和 R1,R1 会先思考,速度较快。 多模态能力介绍:多模态可以识别更多输入信息,如读文件、图片等,而 Deepseek R1 本身不是多模态模型。 连接 Chat Box:通过模型广场的 API 调用示例获取链接,截断后粘贴到 Chat Box 的设置中,添加自定义提供方,设置模型名称为 Deepseek R1,并获取 API key。 API key 重置:可删除旧的 API key 并重新创建,方便本地软件连接。 模型应用:如语音识别模型,能将语音快速转成文字,有多种应用场景。 智能体搭建:新建智能体应用,可选择模型,调整参数,如回复字数限制和携带上下文轮数等。 互联网搜索:在检索配置中开启互联网搜索,能从新闻网站获取最新新闻和天气等信息,会判断检索结果的合适性。
2025-03-10
智能体能够在工作为我们解决哪些具体的问题,怎么搭建自己的智能体
智能体能够在工作中为我们解决以下具体问题: 1. 回答私有领域问题,如公司制度、人员信息等。 2. 及时获取最新信息,如实时天气、比赛结果等。 3. 准确回答专业问题,如复杂数学计算、图像生成等。 智能体的典型应用场景包括: 1. 私有领域知识问答:准备好相关知识库文件,可在百炼控制台快速创建应用,适用于公司制度、人员信息等场景。 2. 个性化聊天机器人:百炼提供长期记忆功能,保存关键历史对话信息,还集成夸克搜索和图像生成等插件,扩展聊天功能。 3. 智能助手:引入 RAG(检索增强生成)能力、长期记忆和自定义插件等功能,帮助提升工作效率,如处理邮件、撰写周报等。 搭建自己的智能体的一般步骤如下: 1. 创建一个智能体,输入人设等信息。 2. 放上创建的工作流。 3. 配置完成后进行测试。 需要注意的是,在工作流中,若【所有视频片段拼接】节点使用的插件 api_token 填的是您的 token,为避免他人调用消耗您的费用,不能直接发布。您可以将 api_token 作为工作流最开始的输入,用户购买后输入 api_token 再发布。 目前有不少大厂推出自己的 AI 智能体平台,如字节的扣子、阿里的魔搭社区等。以扣子为例,其是字节跳动旗下的新一代一站式 AI Bot 开发平台,无论是否具备编程基础,都能在该平台上迅速构建基于 AI 模型的各类问答 Bot,开发完成后还可发布到各种社交平台和通讯软件上。搭建扣子智能体可以通过简单 3 步:首先起一个智能体的名称,然后写一段智能体的简单介绍,最后使用 AI 创建一个头像即可。
2025-03-10
智能体
智能体(Agent)在人工智能和计算机科学领域是一个重要概念,指能够感知环境并采取行动以实现特定目标的实体,可以是软件程序或硬件设备。 智能体的定义: 智能体是一种自主系统,通过感知环境(通常通过传感器)并采取行动(通常通过执行器)来达到某种目标。在 LLM 支持的自主 Agent 系统中,LLM 充当 Agents 的大脑,并辅以几个关键组成部分,包括规划、子目标和分解、反思和完善、记忆(短期记忆和长期记忆)、工具使用。 智能体的类型: 1. 简单反应型智能体(Reactive Agents):根据当前的感知输入直接采取行动,不维护内部状态,也不考虑历史信息。例如温控器。 2. 基于模型的智能体(Modelbased Agents):维护内部状态,对当前和历史感知输入进行建模,能够推理未来的状态变化,并根据推理结果采取行动。例如自动驾驶汽车。 3. 目标导向型智能体(Goalbased Agents):除了感知和行动外,还具有明确的目标,能够根据目标评估不同的行动方案,并选择最优的行动。例如机器人导航系统。 4. 效用型智能体(Utilitybased Agents):不仅有目标,还能量化不同状态的效用值,选择效用最大化的行动,评估行动的优劣,权衡利弊。例如金融交易智能体。 5. 学习型智能体(Learning Agents):能够通过与环境的交互不断改进其性能,学习模型、行为策略以及目标函数。例如强化学习智能体。 智能体功能实现: 本智能体主要通过一个工作流实现,采用单 Agent(工作流模式)。工作流全景图按照市场分析报告内容划分,分成 7 个分支处理,每个分支调研并生成报告中的一部分,以发挥并行处理的效率。工作流主要节点包括文本处理节点、必应搜索节点、LinkerReader 节点、在 LinkerReader 节点前的代码节点、代码节点、大模型节点和结束节点。文本处理节点将用户输入与报告某一部分的主题拼装,形成用于网络搜索的关键词句。必应搜索节点根据指定的关键词句搜索相关网络内容。LinkerReader 节点从必应搜索到的网页链接中获取网页详细内容。在 LinkerReader 节点前的代码节点用于等待 2 3 秒,错开众多 LinkerReader 节点的执行时间,避免拥塞。代码节点将搜索到的网页链接信息进行过滤,只保留网页名称、摘要、url 信息,以备后面大模型进行处理。大模型节点根据多个网页中获取的内容按照指定的格式生成报告内容,并根据代码过滤后的搜索摘要信息列表将引用链接加到报告内容中。结束节点将 7 部分大模型节点生成的内容拼接并流式输出。
2025-03-10
具身智能
具身智能是人工智能领域的一个子领域,以下是关于具身智能的详细介绍: 定义:强调智能体(如机器人、虚拟代理等)通过与物理世界或虚拟环境的直接交互来发展和展现智能。 核心:在于智能体的“身体”或“形态”,其可以是物理形态(如机器人的机械结构)或虚拟形态(如模拟环境中的虚拟角色)。这些身体不仅是互动手段,也影响智能体的学习和发展。 涉及学科:包括机器人学、认知科学、神经科学和计算机视觉等。 机器人学:关注设计能自主行动和适应环境的机器人。 认知科学和神经科学:探索大脑处理与身体相关信息的机制及应用于人造智能系统。 计算机视觉:致力于开发使智能体能够理解和解释视觉信息,进行有效空间导航和物体识别的算法。 应用: 机器人领域:在服务机器人、工业自动化和辅助技术等方面,使机器人更好地理解和适应人类生活环境,提供更自然有效的人机交互。 虚拟现实、增强现实和游戏设计等领域:创造更具沉浸感和交互性的体验。 重要要素和模块: 三要素:“本体”(硬件载体)、“智能”(大模型、语音、图像、控制、导航等算法)、“环境”(本体所交互的物理世界),三者高度耦合是高级智能的基础。 四个模块:感知决策行动反馈,形成一个闭环。 尽管具身智能在理论和技术上取得显著进展,但仍面临诸多挑战,如智能体身体设计、复杂环境中的有效学习、与人类社会的伦理和安全问题等。未来研究将继续探索这些问题以推动其发展和应用。
2025-03-10
人工智能发展历史
人工智能的发展历史如下: 起源于二十世纪中叶,最初符号推理流行,带来了专家系统等重要进展,但因方法局限性和成本问题,20 世纪 70 年代出现“人工智能寒冬”。 随着计算资源变便宜和数据增多,神经网络方法在计算机视觉、语音理解等领域展现出色性能,过去十年中“人工智能”常被视为“神经网络”的同义词。 1943 年,心理学家麦卡洛克和数学家皮特斯提出机器的神经元模型,为神经网络奠定基础。 1950 年,图灵最早提出图灵测试作为判别机器是否具备智能的标准。 1956 年,在美国达特茅斯学院召开的会议上,“人工智能”一词被正式提出并确立为一门学科。此后近 70 年,AI 的发展起起落落。 AI 技术发展历程包括早期阶段(1950s 1960s)的专家系统、博弈论、机器学习初步理论;知识驱动时期(1970s 1980s)的专家系统、知识表示、自动推理;统计学习时期(1990s 2000s)的机器学习算法(决策树、支持向量机、贝叶斯方法等);深度学习时期(2010s 至今)的深度神经网络、卷积神经网络、循环神经网络等。 当前 AI 前沿技术点包括大模型(如 GPT、PaLM 等)、多模态 AI(视觉 语言模型、多模态融合)、自监督学习(自监督预训练、对比学习、掩码语言模型等)、小样本学习(元学习、一次学习、提示学习等)、可解释 AI(模型可解释性、因果推理、符号推理等)、机器人学(强化学习、运动规划、人机交互等)、量子 AI(量子机器学习、量子神经网络等)、AI 芯片和硬件加速。
2025-03-10
人工智能简史
人工智能作为一个领域始于二十世纪中叶。最初,符号推理流行,带来了如专家系统等重要进展,但因从专家提取知识并以计算机可读形式表现及保持知识库准确的复杂性和高成本,20 世纪 70 年代出现“人工智能寒冬”。 随着时间推移,计算资源更便宜,数据更多,神经网络方法在计算机视觉、语音理解等领域展现出卓越性能,过去十年中“人工智能”常被视为“神经网络”的同义词。 在国际象棋对弈程序方面,早期以搜索为基础,发展出阿尔法贝塔剪枝搜索算法,后来采用基于案例的推理,而现代能战胜人类棋手的程序基于神经网络和强化学习。 在创建“会说话的程序”方面,早期如 Eliza 基于简单语法规则,现代助手如 Cortana、Siri 或谷歌助手是混合系统,未来有望出现完整基于神经网络的模型处理对话,如 GPT 和 TuringNLG 系列神经网络已取得巨大成功。 最初查尔斯·巴贝奇发明计算机用于按明确程序运算,现代计算机仍遵循相同理念。但有些任务如根据照片判断人的年龄无法明确编程,这正是人工智能感兴趣的。 译者:Miranda,原文见 https://microsoft.github.io/AIForBeginners/lessons/1Intro/README.md 。
2025-03-10