Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

分析某一领域的最新技术趋势,技术洞察,是否有合适的工具?

Answer

目前在分析某一领域的最新技术趋势和技术洞察方面,常见且有效的工具包括:

  1. Gartner 魔力象限:提供对特定技术领域供应商的评估和分析。
  2. Forrester 研究报告:涵盖了各种技术领域的趋势洞察。
  3. 行业专业数据库,如 IEEE Xplore、Web of Science 等,可获取最新的研究文献。

但具体选择哪种工具,取决于您所关注的领域以及具体的需求。

Content generated by AI large model, please carefully verify (powered by aily)
Others are asking
对AI未来发展的洞察
以下是对 AI 未来发展的洞察: 在 2024 年,人工智能领域呈现出以下特点和趋势: 1. 资金投入:预计会有团队花费超过 10 亿美元来训练单个大型模型,生成式 AI 的热潮持续且更加“奢华”。 2. 计算压力:政府和大型科技公司承受着逼近电网极限的计算需求压力。 3. 对选举的影响:虽尚未成真,但仍需警惕。 4. 引领新服务模式:如“智能即服务”,重塑工作和生活,为芯片和云计算行业带来新机遇,GPU 需求预计持续增长。 5. 投资领域:企业软件、AI 驱动的金融服务、AI 健康技术吸引投资,机器人行业投资额超过企业软件,有望成为重要爆发点。 6. 资本趋势:科技巨头通过资本控制 AI 模型公司,加速行业发展。 7. 企业竞争策略:分化为迅速成长为大型模型公司并寻找背书,或保持小规模专注盈利并灵活应对。 8. 大模型争霸:OpenAI、Gemini、Anthropic、LLama 以及来自法国的 Mistral 等公司在技术和标准设定上相互竞争。 未来展望: 1. 提示词工程重要性凸显,带来新挑战和责任。 2. AI 能力持续提升,为企业带来超级个性化、预测性决策、自动创新、智能流程优化等新机遇。 总之,人工智能领域充满惊喜、伦理挑战和巨大的商业价值,未来发展前景激动人心,同时也复杂多元。
2024-11-01
AI 分析调查结果并生成洞察报告
以下是关于 AI 分析调查结果并生成洞察报告的相关内容: User Evaluation: 这是一个利用人工智能(AI)来提升用户研究和数据分析的工具。 功能特点包括: AI 驱动的转录:支持 57 种以上语言的转录功能,能够即时转录视频和音频内容。 AI 洞察:从数据中快速生成有用的洞察,每个洞察都附有数据来源。 集合管理:使用直观的看板(Kanban)板来组织和分享洞察,添加标签和笔记。 AI 生成报告:生成包含文本、表格和图表的行为分析报告等。 AI 生成演示文稿:一键生成包含 AI 洞察和数据可视化的 PPTX 演示文稿。 多样化数据源:分析来自音频、视频、文本或 CSV 文件的信息以改进产品用户体验。 洞察模板:提供多种洞察模板,帮助提取最有价值的数据洞察。 情感分析:解释音频和视频文件中的客户情感,识别情绪趋势以优化策略。 FeaturesVote: 这是一个帮助企业通过用户反馈来驱动产品增长的工具。 主要功能有: 用户投票板:用户可以发布和投票他们希望看到的功能,企业可以根据投票结果优先开发这些功能。 快速设置:只需 2 分钟即可完成设置,并提供免费计划。 无缝集成:可以将投票小部件无缝添加到应用中,用户无需再次登录即可发布和投票,减少摩擦并增加反馈。 定制化:支持内置的浅色/深色模式,用户识别和配置。 透明度和信任:通过展示不断交付和构建用户需要的功能来增加用户信任和留存率。 中小企业利用人工智能(AI)进行转型: 在数据驱动决策方面,特别是数据分析和洞察部分: 目标是通过使用人工智能(AI)工具来分析大量的客户和市场数据,为企业决策提供有力支持。 首先,利用 AI 工具分析客户数据、市场数据,深入理解客户行为、市场趋势和业务机会。根据企业需求选择能处理大数据并提供深度分析的工具,如数据挖掘、机器学习模型等。收集不同渠道数据,进行分析,识别模式、趋势和相关性。 其次,为营销、产品开发等部门提供基于数据的建议和指导。利用数据分析结果指导企业策略,如市场定位、产品优化等。理解 AI 分析提供的洞察和建议,将其转化为实际业务策略。与相关部门紧密合作,确保数据洞察被有效利用。基于数据洞察制定或调整策略,实施后持续监控效果并收集数据,反馈到 AI 分析中形成闭环,不断优化数据分析和业务决策。 邬嘉文:AI 做用户研究|Claude 3 Opus 可以直接输出用户研究报告: 报告范例中包含了优势和劣势的相关内容及对应的频次。例如优势方面,高质量显示被提及 44 次等;劣势方面,兼容性问题被提及 68 次等。同时提到 GPT 有一定幻觉问题。
2024-10-29
帮我写一篇有关aigc的行业分析,标题为《AIGC行业洞察与概览》,其中框架内容包含以下部分,整体3万字 - 概念导入(AI、AIGC) - AI与人的区别 - AI衍生发展历程(诞生、发展、现状-中外各平台产品及语言模型介绍) - AI在社会各领域的应用实践 - AI技术的底层逻辑概览 - AI的弊端以及风险
以下是为您生成的《AIGC 行业洞察与概览》的部分内容: 一、概念导入 (一)AI 人工智能(Artificial Intelligence,简称 AI)是一种目标,旨在让机器展现智慧。 (二)AIGC GenAI(即生成式 AI)是一种能够从已有数据中学习并生成新的数据或内容的 AI 应用,利用 GenAI 创建的内容即 AIGC(全称 AIGenerated Content)。AIGC 是利用人工智能技术生成内容的新型生产方式,包括文本、图像、音频和视频等内容。 二、AI 与人的区别 三、AI 衍生发展历程 (一)诞生 (二)发展 (三)现状 1. 中外各平台产品及语言模型介绍 (1)语言文本生成利用马尔科夫链、RNN、LSTMs 和 Transformer 等模型生成文本,如 GPT4 和 GeminiUltra。 (2)图像生成依赖于 GANs、VAEs 和 Stable Diffusion 等技术,代表项目有 Stable Diffusion 和 StyleGAN 2。 (3)音视频生成利用扩散模型、GANs 和 Video Diffusion 等,代表项目有 Sora 和 WaveNet。 四、AI 在社会各领域的应用实践 AIGC 技术可以用于多种应用,如自动撰写新闻文章、生成艺术画作、创作音乐、制作视频游戏内容等。 五、AI 技术的底层逻辑概览 (一)机器学习:一种让机器自动从资料中找到公式的手段。 (二)深度学习:一种更厉害的手段,类神经网络,具有非常大量参数的函数。 (三)大语言模型:是一类具有大量参数的“深度学习”模型,Large Language Models,简称 LLMs。 六、AI 的弊端以及风险 作为一种强大的技术,生成式 AI 能够赋能诸多领域,但也存在多重潜在的合规风险。目前,我国对 AIGC 的监管框架由《网络安全法》《数据安全法》及《个人信息保护法》构成,并与《互联网信息服务算法推荐管理规定》、《互联网信息服务深度合成管理规定》、《生成式人工智能服务管理暂行办法》、《科技伦理审查办法(试行)》等形成了共同监管的形势。 由于篇幅限制,目前仅能为您提供约 2000 字的内容,距离 3 万字还有较大差距。后续还需要进一步丰富和完善各个部分的细节及案例分析等。
2024-09-03
有对用户画像洞察的AI工具吗
目前有多种与用户画像洞察相关的 AI 工具。例如,钉钉 AI 助理基于云雀模型开发,具有语音识别和自然语言处理能力,支持多种交互方式,能理解用户指令并回答问题。在目标市场分析方面,可使用能处理复杂数据集并提供深入洞察的 AI 工具,如机器学习模型、数据分析软件等,对包括消费者行为、购买历史、社交媒体互动等广泛的市场数据进行分析,以准确识别和细分目标客户群体。但关于专门针对用户画像洞察的特定 AI 工具,上述内容中未明确提及。
2024-08-14
有哪些AI工具可以辅助技术趋势研究和技术洞察
以下是一些可以辅助技术趋势研究和技术洞察的 AI 工具: 专利趋势分析和预测方面: Innography:利用 AI 技术分析专利数据,提供技术趋势分析和竞争情报。 PatSnap:AI 驱动的平台,分析专利数据和技术趋势,提供全面的专利情报和市场分析。 论文写作方面: 文献管理和搜索: Zotero:结合 AI 技术,可自动提取文献信息,帮助管理和整理参考文献。 Semantic Scholar:由 AI 驱动的学术搜索引擎,提供文献推荐和引用分析。 百度学术智能助手:百度推出的学术研究辅助工具,结合自然语言处理和大数据分析技术,能帮助用户快速找资料,提供文献推荐、资料整合和研究趋势分析等功能。 内容生成和辅助写作: Grammarly:通过 AI 技术提供文本校对、语法修正和写作风格建议,提高语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化内容。 知网 AI 智能写作:适用于各类文档写作场景,包括研究报告、调研报告、资讯报告等。 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于数据分析和可视化。 Knitro:用于数学建模和优化的软件,帮助进行复杂的数据分析和模型构建。
2024-08-08
高效微调技术-LoRA 全量微调与少量参数微调
以下是关于高效微调技术 LoRA 全量微调与少量参数微调的相关信息: LoRA 微调: 微调脚本: 脚本见: 具体实现代码见: 单机多卡的微调可以通过修改脚本中的include localhost:0来实现。 加载微调模型: 基于 LoRA 微调的模型参数见:基于 Llama2 的中文微调模型,LoRA 参数需要和基础模型参数结合使用。 通过加载预训练模型参数和微调模型参数,示例代码中,base_model_name_or_path 为预训练模型参数保存路径,finetune_model_path 为微调模型参数保存路径。 全量参数微调: 微调脚本: 脚本见: 具体实现代码见: 加载微调模型: 对于全量参数微调的模型,调用方式同模型调用代码示例,只需要修改其中的模型名称或者保存路径即可。 此外,关于微调还有以下补充信息: 微调模型意味着改变模型的权重,现在微调变得越来越容易,因为开发了许多技术并建立了代码库。 像 LoRA 这样的参数高效微调技术只训练模型的小部分稀疏片段,模型大部分保持基础模型状态,效果好且成本低。 微调技术上更为复杂,需要更多技术专业知识,包括人工数据合同承包商的数据集和复杂的合成数据流程,会减慢迭代周期。 SFT(有监督的微调)相对简单明了,RLHF(基于人类反馈的强化学习)则是非常研究性的领域,难度大,不适合初学者。 目前除了传统的全量训练和 freeze 冻结某些层方式,还发展出了很多种高效的微调方法,如 LoRA、Prefix Tuning、PTuning、Prompt Tuning、AdaLoRA、3、MultiTask Prompt Tuning 等。本篇主要采用 LoRA 方式,主要思路是训练一个参数量较小的分支,然后再与底模合并,从而在模型中注入新的知识。
2025-01-06
RAG技术基本了解
RAG(Retrieval Augmented Generation,检索增强生成)是一种结合信息检索和文本生成能力的技术,主要用于处理需要广泛知识的任务,如问答系统,能够提供详细而准确的回答。 其基本流程包括以下几个步骤: 1. 文档加载:从多种不同来源加载文档,如 PDF 在内的非结构化数据、SQL 在内的结构化数据以及 Python、Java 之类的代码等。 2. 文本分割:文本分割器把文档切分为指定大小的块,称为“文档块”或者“文档片”。 3. 存储:涉及将切分好的文档块进行嵌入转换成向量的形式,并将 Embedding 后的向量数据存储到向量数据库。 4. 检索:通过某种检索算法从向量数据库中找到与输入问题相似的嵌入片。 5. 输出:把问题以及检索出来的嵌入片一起提交给 LLM,LLM 会通过问题和检索出来的提示一起来生成更加合理的答案。 RAG 由两部分组成:一个“检索器”和一个“生成器”。检索器从外部知识中快速找到与问题相关的信息,生成器则利用这些信息来制作精确和连贯的答案。 在实际应用中,例如构建能够利用私有数据或实时数据进行推理的 AI 应用时,将相关信息检索并插入到模型的输入中,即检索增强生成,可以提高生成的质量和准确性。首先给定一个用户的输入,RAG 会从一个数据源中检索出与之相关的文本片段作为上下文,然后将用户的输入和检索到的上下文拼接成一个完整的输入传递给大模型,最后从大模型的输出中提取或格式化所需的信息返回给用户。
2025-01-06
提示词工程技术
提示词工程师(Prompt Engineer)是在与人工智能模型交互时,负责设计和优化提示的专业人员。他们的目标是通过精心构造的提示,引导模型产生准确、有用和相关的回答。 提示词工程师的主要职责包括: 1. 设计提示:根据用户需求和模型能力设计有效的提示,考虑提示的长度、结构、措辞和信息量等因素,以清晰传达用户意图并引导模型生成满意结果。 2. 优化提示:通过收集用户反馈、分析模型结果和实验不同的提示策略等方式不断优化提示,提高模型性能。 3. 评估提示:使用各种指标如模型的准确率、流畅度和相关性等来评估提示的有效性。 提示词工程师需要具备以下技能和知识: 1. 领域知识:对所工作的领域有深入了解,以便设计出有效的提示。 2. 自然语言处理(NLP):了解 NLP 的基本原理和技术,能够理解和生成自然语言文本。 3. 人工智能(AI):了解 AI 的基本原理和技术,能够理解和使用 AI 模型。 4. 沟通能力:具备良好的沟通能力,与用户、团队成员和其他利益相关者有效沟通。 以下是一些提示词工程师工作的实际案例: 在推理任务方面,目前对于大语言模型来说具有挑战性,但通过更高级的提示词工程技术可以改进。例如在涉及数学能力的推理任务中,通过设计不同的提示词和示例来展示算术功能。 在实现让 LLM 获得 tool calling 的功能方面,采用的提示词工程主要有两部分代码组成:提示词注入和工具结果回传。提示词注入用于将工具信息以及使用工具的提示词添加到系统提示中,包含 TOOL_EAXMPLE、tools_instructions、REUTRN_FORMAT 三个部分。工具结果回传则是解析 tool calling 的输出,并将工具返回的内容再次嵌入 LLM。利用正则表达式抓取输出中的“tool”和“parameters”参数,对于不同工具采用相应的处理方式。通过以上提示词工程,可以避免微调,让完全没有 tool calling 能力的 LLM 获得稳定的 tool calling 能力。 提示词工程师是一个新兴的职业,随着人工智能技术的不断发展,对提示词工程师的需求将会越来越大。
2025-01-06
RAG技术路线知识库搭建流程
RAG 技术路线知识库搭建流程主要包括以下步骤: 1. 文档加载:从多种不同来源加载文档,如 PDF 在内的非结构化数据、SQL 在内的结构化数据以及 Python、Java 之类的代码等。LangChain 提供了 100 多种不同的文档加载器。 2. 文本分割:文本分割器把 Documents 切分为指定大小的块,称为“文档块”或者“文档片”。 3. 存储: 将切分好的文档块进行嵌入转换成向量的形式。 将 Embedding 后的向量数据存储到向量数据库。 4. 检索:通过某种检索算法找到与输入问题相似的嵌入片。 5. 输出:把问题以及检索出来的嵌入片一起提交给 LLM,LLM 会通过问题和检索出来的提示一起来生成更加合理的答案。 在构建知识库的过程中,还涉及到文档解析环节,即将各种类型的资料(包括但不限于 Word、PDF、Excel 和图片等)转换成文字,为后续流程奠定基础。针对图片一般使用 OCR 图像识别技术,针对文档一般将其转换成 Markdown 格式。文档解析完成之后,要进行预处理。 基于 Coze 的知识库问答是典型的 RAG 方案,其重要一环是文档切片(Segment),但 RAG 方案存在一些缺点,如跨分片总结和推理能力弱、文档有序性被打破、表格解析失败等。
2025-01-06
RAG技术基本了解
RAG(Retrieval Augmented Generation,检索增强生成)是一种结合信息检索和文本生成能力的技术,主要用于处理需要广泛知识的任务,如问答系统,能够提供详细而准确的回答。 其基本流程包括以下几个步骤: 1. 文档加载:从多种不同来源加载文档,如PDF 在内的非结构化数据、SQL 在内的结构化数据以及 Python、Java 之类的代码等。 2. 文本分割:文本分割器把文档切分为指定大小的块,称为“文档块”或者“文档片”。 3. 存储:涉及将切分好的文档块进行嵌入转换成向量的形式,并将 Embedding 后的向量数据存储到向量数据库。 4. 检索:通过某种检索算法从向量数据库中找到与输入问题相似的嵌入片。 5. 输出:把问题以及检索出来的嵌入片一起提交给 LLM(大语言模型),LLM 会通过问题和检索出来的提示一起来生成更加合理的答案。 RAG 由两部分组成:一个“检索器”和一个“生成器”。检索器从外部知识中快速找到与问题相关的信息,生成器则利用这些信息来制作精确和连贯的答案。在给定一个用户的输入(如问题或话题)时,RAG 会从数据源中检索出相关的文本片段作为上下文,然后将用户输入和检索到的上下文拼接成完整输入传递给大模型,并从大模型的输出中提取或格式化所需信息返回给用户。
2025-01-06
端到端语音技术现在进展到什么程度了
端到端语音技术目前取得了显著进展。 在语音合成方面: 语音合成将文本转换为可听的声音信息,是人机交互的重要接口,一般包括 TTS、歌唱合成等领域。 当代工业界主流语音合成系统包括文本前端和声学后端两个部分。文本前端将输入文本转换为层次化的语音学表征,声学后端基于此生成语音,主要技术路线包括单元挑选波形拼接、统计参数和端到端语音合成方法,当代主要采用端到端声学后端。 端到端声学后端一般包括声学模型和声码器两部分,也出现了直接从音素映射为波形的完全端到端语音合成系统。 在全模态智能体方面: OpenAI 发布的 GPT4o 是新模型通过端到端的神经网络,把视觉、语音和文本数据混合训练,对音频输入的平均反应时间为 300 毫秒,与人类对话的反应时间相似。 直接拿音频数据来训练的好处是模型能从数据中感悟到人类表达的情绪、语调、风格等,能听到几乎真实的人类的声音。 OpenAI 未公开 GPT4o 的技术细节,唯一线索来自内部模型炼丹师的一篇博客,项目名是 AudioLM,目标是用端到端的方式扩大语音模型的能力。
2025-01-03
我没有知识库,如何让AI就某一问题穷尽搜索
要让 AI 就某一问题进行穷尽搜索,一般会涉及以下步骤: 1. 文档向量化:知识库中的文档需要被转换成向量形式,以便在数值级别上与问题向量进行比较。使用知识库工具上传文档时,会完成文档的向量化,这依靠 Embedding Model 实现。 2. 知识库检索: 相似性计算:使用相似性度量方法(如余弦相似性)计算问题向量和各个文档向量之间的相似度,以找出与问题内容最接近的文档。 排序与选择:根据相似性得分对所有文档进行排序,通常会选择得分最高的几个文档,认为这些文档与问题最相关。 信息抽取:从选定的高相关性文档中抽取具体的信息片段或答案,可能涉及进一步的文本处理技术,如命名实体识别、关键短语提取等。 3. 信息整合阶段:将检索到的全部信息连同用户问题和系统预设整合成一个全新的上下文环境,为生成回答提供基础。 此外,像生物进化中通过自然选择的方式,从特定规则开始逐步改变(可能随机),在每一步保留最有效的规则并丢弃其他,这种方法不是我们通常定义的“人工智能”(更像是“遗传算法”),但在高维规则空间中往往比低维规则空间效果更好,因为维度越多,陷入局部最小值的可能性越小。 同时,给 AI 配备随时更新的“活字典”即知识库是一个好方法。知识库就像 AI 随时可查阅的百科全书,当 AI 遇到不确定问题时,可从知识库中检索相关信息给出更准确回答。比如建立包含最新新闻、科技发展、法律法规等内容的知识库,或者利用整个互联网的实时数据作为知识库,通过搜索引擎获取最新信息。
2024-11-13
如何用ai工具构建某一课程的知识图谱
以下是用 AI 工具构建某一课程知识图谱的方法: 一键知识图谱方法: 用 kimichat 让 AI 拆解这本书的三级章节并按照 Markdown 产出内容: Prompt:帮我拆解《爱的五种语言》,生成全书内容的思维导图,要求每个章节后面有三级展开,下一级是主要知识点,下下一级是知识点的论述。先输出对应的 Markdown。 访问地址: 复制 AI 内容粘贴到在线思维导图 Markmap 中,一键生成思维导图,还可以自定义微调内容,并免费导出图片: 访问地址: 推导知识图谱方法(可以参考下面 prompt 自己构建): 问题生成:使用大模型帮助生成一系列相关的、深入的问题。 探索性学习:将每个问题作为一个学习起点,利用 AI 搜索引擎和大模型进行深入探索。 知识图谱构建:随着学习的深入,使用大模型帮助构建和扩展知识图谱。 创造性应用:基于新获得的知识,尝试解决原问题或创造新的作品。 反思与迭代:定期反思学习过程,调整方向,并生成新的问题,形成持续学习和创作的循环。 此外,利用 AI 写课题的步骤和建议如下: 1. 确定课题主题:明确研究兴趣和目标,选择具有研究价值和创新性的主题。 2. 收集背景资料:使用 AI 工具如学术搜索引擎和文献管理软件搜集相关研究文献和资料。 3. 分析和总结信息:利用 AI 文本分析工具分析收集到的资料,提取关键信息和主要观点。 4. 生成大纲:使用 AI 写作助手生成课题大纲,包括引言、文献综述、方法论、结果和讨论等部分。 5. 撰写文献综述:利用 AI 工具帮助撰写文献综述部分,确保内容准确完整。 6. 构建方法论:根据研究需求,利用 AI 建议的方法和技术设计研究方法。 7. 数据分析:若课题涉及数据收集和分析,使用 AI 数据分析工具处理和解释数据。 8. 撰写和编辑:利用 AI 写作工具撰写课题各部分,并进行语法和风格检查。 9. 生成参考文献:使用 AI 文献管理工具生成正确的参考文献格式。 10. 审阅和修改:利用 AI 审阅工具检查课题逻辑性和一致性,并根据反馈修改。 11. 提交前的检查:最后,使用 AI 抄袭检测工具确保课题原创性,并进行最后的格式调整。 需要注意的是,AI 工具可作为辅助,但不能完全替代研究者的专业判断和创造性思维。在使用 AI 进行课题写作时,应保持批判性思维,并确保研究的质量和学术诚信。
2024-11-03
如何给AI投喂某一专业的资料,让它成为专业领域的问答机器人,投喂顺序是什么
目前没有关于如何给 AI 投喂某一专业资料以及投喂顺序的相关内容。但一般来说,要让 AI 成为专业领域的问答机器人,首先需要对专业资料进行整理和分类,使其具有清晰的结构和逻辑。然后,可以逐步将资料输入给 AI ,并通过不断的训练和优化来提高其在该专业领域的回答能力。同时,要注意资料的质量和准确性,以及与 AI 模型的适配性。
2024-08-09
怎样拥有一个对某一方面知识全知全能的伙伴?
拥有一个对某一方面知识全知全能的AI伙伴是一个理想化的目标,但现实中可能无法完全实现。然而,你可以通过以下方法来接近这个目标: 1. 专业领域定制:选择或开发一个专注于特定领域的AI系统,例如医学、法律、工程等。 2. 持续学习:利用机器学习技术,让AI系统能够不断从新的数据和信息中学习,以保持知识的更新。 3. 数据输入:提供大量的高质量数据作为训练材料,包括书籍、论文、在线资源等。 4. 专家合作:与领域内的专家合作,确保AI系统能够获取最准确和权威的知识。 5. 知识图谱构建:构建详细的知识图谱,将不同概念和实体之间的关系进行组织和链接。 6. 自然语言处理:强化AI的自然语言处理能力,使其能够理解和生成自然语言。 7. 交互式学习:设计AI系统以支持交互式学习,通过与用户的交流来不断优化自己的知识库。 8. 个性化定制:根据用户的需求和偏好,对AI系统进行个性化定制。 9. 多模态能力:开发AI的多模态能力,使其能够处理文本、图像、声音等多种类型的数据。 10. 伦理和合规性:确保AI系统遵循伦理准则和法律法规,特别是在处理敏感信息时。 11. 用户反馈:建立机制收集用户反馈,用于改进AI系统的性能和知识准确性。 12. 技术整合:整合最新的AI技术,如深度学习、强化学习等,以提高AI的智能水平。 13. 可扩展性:设计AI系统时考虑其可扩展性,以便未来可以添加更多的知识和功能。 14. 持续维护:定期维护和更新AI系统,以修复错误并整合新的知识。 15. 社区和网络:加入相关的AI社区和网络,与其他研究者和开发者交流,获取最新的信息和技术。 虽然创建一个全知全能的AI伙伴具有挑战性,但通过上述方法,你可以逐步构建一个高度专业化和智能化的AI助手,帮助你在特定领域内获取和应用知识。
2024-07-11
我是一名一线教师,想要学习如何搭建智能体。请跟我一起制定合适的进阶路径和推荐资源链接。
以下是为您制定的学习搭建智能体的进阶路径和推荐资源链接: 进阶路径: 1. 注册智谱 Tokens 智谱 AI 开放平台:https://bigmodel.cn/ 新注册用户可获得 2000 万 Tokens。 可通过充值/购买多种模型的低价福利资源包,如直接充值现金,所有模型可适用:https://open.bigmodel.cn/finance/pay ;免费 GLM4Flash 语言模型/ 。所有资源包购买地址:https://bigmodel.cn/finance/resourcepack 。 共学营报名赠送资源包。 2. 先去【财务台】左侧的【资源包管理】查看自己的资源包,本次项目会使用到的有 GLM4、GLM4VPlus、CogVideoX、CogView3Plus 模型。 3. 进入智能体中心我的智能体,开始创建智能体。此流程会手把手进行编辑,完成一个简单智能体的搭建。 推荐资源链接: 1. 智谱 BigModel 共学营第二期:把您的微信变成超级 AI 助理 https://bigmodel.cn/ 2. 教师的 AI 减负指南 3. 提示词培训课——Part2 在搭建智能体的过程中,您需要像导演一样,编排具体流程,检查结果,修改流程,反复迭代。提示语的核心是逻辑,要将复杂的任务拆分成科学合理的步骤,并且让前一步的结果都成为后一步的基础。同时,不要害怕犯错,每一次尝试都是向成功迈进的一步。
2024-12-30
以下是大致可以采用的步骤来实现这样一个能自动在大语言模型网站生成不同场景机器人图片的程序(以下以Python语言示例,不过不同平台具体实现会有差异且需遵循对应网站的使用规则和接口规范): ### 1. 选择合适的大语言模型网站及确认其API(应用程序编程接口)情况 不同大语言模型网站对于图片生成通常会提供相应的API来允许外部程序与之交互,比如部分知名的AI绘画相关平台。你需要先确定要使用哪些网站,然后去注册开发者账号等,获取对应的API Key以及详细的API文档,了解如何通过代码向其发起图
以下是为您整合的相关内容: Ollama 框架: 1. 支持多种大型语言模型,如通义千问、Llama 2、Mistral 和 Gemma 等,适用于不同应用场景。 2. 易于使用,适用于 macOS、Windows 和 Linux 系统,支持 cpu 和 gpu,用户能轻松在本地环境启动和运行大模型。 3. 提供模型库,用户可从中下载不同模型,这些模型有不同参数和大小以满足不同需求和硬件条件,可通过 https://ollama.com/library 查找。 4. 支持用户自定义模型,例如修改模型的温度参数来调整创造性和连贯性,或者设置特定的系统消息。 5. 提供 REST API 用于运行和管理模型,以及与其他应用程序的集成选项。 6. 社区贡献丰富,包括多种集成插件和界面,如 Web 和桌面应用、Telegram 机器人、Obsidian 插件等。 7. 安装:访问 https://ollama.com/download/ 进行下载安装。安装完后,确保 ollama 后台服务已启动(在 mac 上启动 ollama 应用程序,在 linux 上通过 ollama serve 启动),可通过 ollama list 确认。 基于 COW 框架的 ChatBot 实现步骤: 1. COW 是基于大模型搭建的 Chat 机器人框架,将多模型塞进自己的微信里实现方案。 2. 基于张梦飞同学的教程: 。 3. 实现内容: 打造属于自己的 ChatBot(文本对话、文件总结、链接访问、联网搜索、图片识别、AI 画图等)。 常用开源插件的安装应用。 4. 正式开始前需知: ChatBot 相较于在各大模型网页端使用区别:本实现思路需要接入大模型 API 的方式实现(API 单独付费)。 风险与注意事项: 微信端因非常规使用,有封号危险,不建议主力微信号接入。 只探讨操作步骤,请依法合规使用。 大模型生成的内容注意甄别,确保所有操作均符合相关法律法规要求。 禁止用于任何非法目的。 处理敏感或个人隐私数据时注意脱敏,以防滥用或泄露。 5. 多平台接入:微信、企业微信、公众号、飞书、钉钉等。 6. 多模型选择:GPT3.5/GPT4.0/Claude/文心一言/讯飞星火/通义千问/Gemini/GLM4/LinkAI 等。 7. 多消息类型支持:能处理文本、语音和图片,以及基于自有知识库进行定制的企业智能客服功能。 8. 多部署方法:本地运行、服务器运行、Docker 的方式。
2024-12-29
我想写旅游攻略。请问有什么ai合适?
以下是一些适合用于写旅游攻略的 AI 工具和相关建议: 1. Bot 智能体:它自带的插件可以根据您想去的地方做出合适的规划,比如路线规划、周边规划等。您可以通过输入一定的 Prompt 描述,利用官方的优化功能获得不错的效果。 当您询问关于爬山的问题时,它会根据您的情况给出相应建议,如身体状况、路线和装备选择等。 当您询问登山路线时,它会为初学者推荐合适的线路。 当您询问登山装备时,它会告知必备的物品。 当您询问登山安全时,它会强调相关注意事项。 当您询问登山技巧时,它会提供提高技巧的方法。 2. 穷游网社区:这是一个 AI 旅游体验分享平台,利用自然语言处理和图像识别技术。它可以让用户分享旅游体验,发现更多美好。例如,当用户分享自己的欧洲之旅,APP 会根据照片的内容和文字描述,推荐相关的旅游攻略和景点。
2024-11-21
合适搭建个人知识库的人工智能软件有哪一些
以下是一些适合搭建个人知识库的人工智能软件: 1. AnythingLLM:包含所有 Open WebUI 的能力,额外支持选择文本嵌入模型和向量数据库。安装地址为 https://useanything.com/download 。安装完成后需进行配置,主要分为三步:选择大模型、选择文本嵌入模型、选择向量数据库。在使用时,可创建独有的 Workspace 与其他项目数据隔离,包括创建工作空间、上传文档并进行文本嵌入、选择对话模式(Chat 模式会综合训练数据和上传文档给出答案,Query 模式仅依靠文档数据给出答案),配置完成后可进行测试对话。 2. Coze:如果您想使用专门搭建个人知识库的软件,可参考文章 ,忽略本地部署大模型环节,直接看其中推荐的软件。但使用该软件可能需要对接一些额外的 API 。
2024-11-11
我只是想要修改背景和提高图片质量,哪个图片AI工具最合适
以下是一些适合修改背景和提高图片质量的图片 AI 工具: Liblibai:具有迭代步数、尺寸、生成批次、每批数量、提示词引导系数、随机数种子、ADetailer、ControlNet、重绘幅度等设置,可调整图片内容。 迭代步数:调整图片的次数,越多理论上效果越好,但并非越多越好。 尺寸:影响生成图片的大小,需适中选择。 生成批次和每批数量:控制生成图片的数量。 提示词引导系数:影响图像与提示的匹配程度,过高会使质量下降。 ADetailer 和 ControlNet 为高阶技能。 重绘幅度:用于图生图,决定输出图与输入图的差别。 辅助工具: 本地工具放大:https://www.upscayl.org/download SD 放大:扩散模型可增加细节。 开源工作流: stability.ai 的 https://clipdrop.co/tools 画质增强: magnific:https://magnific.ai/ Krea:https://www.krea.ai/apps/image/enhancer Image Upscaler:https://imageupscaler.com/ 佐糖:https://picwish.cn/photoenhancerapi?apptype=apsbdapi&bd_vid=8091972682159211710 腾讯 ARC:https://arc.tencent.com/zh/aidemos/humansegmentation?ref=88sheji.cn 腾讯开源的模型,能恢复老照片:https://github.com/TencentARC/GFPGAN 在线测试地址:https://replicate.com/tencentarc/gfpgan 美图老照片修复:https://www.xdesign.com/quality/?channel=sllbd90&bd_vid=11711254260543749686 Imglarger:https://imglarger.com/ Let's Enhance:https://letsenhance.io/ Waifu2x:http://waifu2x.udp.jp/ Photoshop 2023 Beta:更擅长对原有图像的扩充,具有创成式填充功能,可去除人物、添加元素等,但生成的某些图形质量可能不如 MJ 和 SD 的效果,仍需后期处理来达到满意效果。
2024-11-04
我计划编写一本关于生成式人工智能的书籍,但是在开始前,我需要确定一个合适的大纲框架来组织我的思路。这个框架应该包括那些部分,以及如何将各个部分连接起来,以便读者能够理解掌握AIGC的概念和应用
以下是为您编写关于生成式人工智能书籍提供的大纲框架建议: 一、引言 介绍编写本书的目的和背景,引导读者进入生成式人工智能的世界。 二、基础概念 1. 什么是生成式人工智能(AIGC) 定义和特点 与传统人工智能的区别 2. 相关技术名词 AI(人工智能) 机器学习(包括监督学习、无监督学习、强化学习) 深度学习(神经网络、神经元) 生成式 AI(可生成文本、图片、音频、视频等内容形式) LLM(大语言模型) 三、AIGC 的应用领域 1. 文字生成(如使用大型语言模型生成文章、故事、对话等) 2. 图像生成(如使用 Stable Diffusion、DALLE 等模型生成艺术作品、照片等) 3. 视频生成(如使用 Runway、KLING 等模型生成动画、短视频等) 四、AIGC 与其他内容生成方式的关系 1. AIGC 与 UGC(用户生成内容) 区别与联系 各自的优势和适用场景 2. AIGC 与 PGC(专业生成内容) 区别与联系 相互的影响和融合 五、技术原理 1. Transformer 模型 自注意力机制 处理序列数据的优势 2. 技术里程碑(如谷歌团队发表的《Attention is All You Need》论文) 六、实际案例分析 展示不同领域中成功的 AIGC 应用案例,分析其实现过程和效果。 七、挑战与展望 1. 面临的挑战(如数据隐私、伦理问题等) 2. 未来发展趋势和前景 八、结论 总结全书重点内容,对 AIGC 的未来发展进行展望。 各个部分之间可以通过逻辑递进、案例引用、对比分析等方式进行连接,使读者能够逐步深入理解掌握 AIGC 的概念和应用。
2024-10-23