直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

如何给AI投喂某一专业的资料,让它成为专业领域的问答机器人,投喂顺序是什么

回答

目前没有关于如何给 AI 投喂某一专业资料以及投喂顺序的相关内容。但一般来说,要让 AI 成为专业领域的问答机器人,首先需要对专业资料进行整理和分类,使其具有清晰的结构和逻辑。然后,可以逐步将资料输入给 AI ,并通过不断的训练和优化来提高其在该专业领域的回答能力。同时,要注意资料的质量和准确性,以及与 AI 模型的适配性。

内容由 AI 大模型生成,请仔细甄别(powered by aily)
其他人在问
搭建一个专业的律师智能体
搭建一个专业的律师智能体需要考虑以下几个方面: 1. 多智能体的通信问题:不同智能体之间的通信至关重要,包括如何传递信息以及传递哪些信息。之前的很多多智能体开源框架存在效率低下和 token 消耗大的问题,而像 OpenAI 官方开源的多智能体框架「Swarm」在「Handoffs」方面处理得较为优雅。 2. 智能体的角色和职责:以客服多智能体为例,只需要准备如普通接线客服和宽带客服这样必要的 Agent,并明确其职责和交接逻辑。 3. 提示词的编写:对于律师智能体,写好提示词很重要。例如,在写作时需要对文章中出现的案例进行脱敏处理,替换具体的人物姓名、时间和地点。同时,注意深化写作时的分段和字数要求。 4. 遵循特定的规则和要求:像令中规定的初始化问候语、牢记并遵守全部要求等。 5. 决策智能体的应用:决策智能体在企业自动化中发挥作用,如在复杂、多步骤的推理流程中导航并做出业务决策。以 Anterior 为例,将付款方规则转换为有向无环图,利用智能体遍历决策树并评估相关文件。其他领域如 Norm AI 和 Parcha 也在利用决策智能体。
2024-12-17
我的英文水平是CET4,想要在一年内达到雅思7分。请以一位专业的英文老师角度给与建议。请将建议以简洁的表达以及每日计划的形式体现出来
对于您想要在一年内从 CET4 水平提升到雅思 7 分的目标,以下是一些简洁的建议和每日计划: 建议: 1. 扩充词汇量:雅思对词汇的要求较高,建议每天背诵一定量的雅思核心词汇。 2. 提升听力水平:多听雅思真题听力,尝试精听和泛听结合。 3. 加强阅读训练:每天进行雅思阅读练习,提高阅读速度和理解能力。 4. 注重写作练习:定期写作并请专业老师批改,学习优秀范文的结构和思路。 5. 口语练习:找语伴或参加英语角,多说多练,纠正发音和语法错误。 每日计划: 早上: 背诵 30 个雅思词汇。 听 30 分钟雅思听力真题,并做笔记。 中午: 利用午休时间阅读一篇雅思阅读文章。 晚上: 写一篇雅思作文,并对照范文进行修改。 进行 30 分钟的口语练习,可以通过模仿、对话等方式。 周末: 做一套完整的雅思模拟试题,包括听力、阅读、写作和口语。 总结本周的学习情况,找出薄弱环节,加强练习。 需要注意的是,学习计划要根据个人实际情况进行调整,保持坚持和耐心,祝您成功!
2024-12-17
非专业人如何接触了解AI并通过AI盈利
以下是为非专业人士接触了解 AI 并通过 AI 盈利的建议: 艺术创作方面: 目前许多 AI 工具存在幻觉或处理请求时间长的问题。为满足高级用户需求,预计很多公司会推出如 ChatGPT 那样的“专业版”套餐,若您试图通过内容盈利,可关注此类服务。 AI 数字人直播方面: 1. 盈利方式: 直接卖数字人工具软件,实时驱动的一年 4 6 万往上,非实时驱动的一个月 600 元,但效果差且市场价格混乱。 提供数字人运营服务,按直播间成交额抽佣。 2. 适用品类和场景: 适用于不需要强展示的商品,如品牌食品饮料;虚拟商品,如门票、优惠券等。 效果最好的是店播,数据基本能保持跟真人一样。不适用于促销场景和服装品类。 3. 壁垒和未来市场格局: 目前有技术门槛,如更真实的对口型、更低的响应延迟等。但时间拉长,技术上没壁垒。 不会一家独大,可能 4 5 家一线效果,大多二三线效果公司。 把客户服务好、能规模化扩张的公司更有价值。有资源、有业务的大平台下场可能带来降维打击。 AI 市集方面: 像“AI 切磋大会”这样的活动,为大众提供了接触和了解 AI 的机会。例如现场有非遗 AI 刮刮乐、AI 3D 打印、AI 视频转绘、AI 量化交易、AI 产品设计等贴近日常的项目。高一学生“小朱婷”基于通义千问开发“航天小飞侠”AI 助理模型并通过抽奖环节盈利;还有根据 MBTI 和星座生成专属鸡尾酒配方的 AI 调酒等新奇项目。
2024-12-17
Sd文生图的专业术语有哪些
以下是一些关于 SD 文生图的专业术语: 1. 内容型提示词:主要用于描述想要的画面,如“1 个女孩,黑发,长发,校服,向上看,短袖,粉红色的花,户外,白天,蓝色的天空,云,阳光,上身,侧面”。 2. 标准化提示词:例如“,drawing,paintbrush”。 3. 权重:通过括号和特定数值来增加提示词的权重,权重越高在画面中体现越充分,提示词的先后顺序也会影响权重。 4. 反向提示词:告诉 AI 不要的内容,如“NSFw,”。 5. 采样迭代步数:指 AI 绘画去噪的次数,步数越高绘画越清晰,但绘画速度越慢,通常数值控制在 20 40 之间较好。 6. 采样方法:AI 生成图像时的特定算法,常用的有“Euler a;DPM++2S a Karras;DPM++2M Karras;DPM++SDE Karras;DDIM”。 7. 比例:尺寸并非越大越好,模型练图通常按 512x512 的框架绘制,高宽比尽量在这个数值附近。高清修复可放大图像倍率,高宽比主要控制画面比例。
2024-12-16
我想学习python,但我从没有学习过任何编程语言。如果按专业学习类的书去自学,我觉得很无聊,而且也不好理解。最主要的是学习时间太长。你可以帮我制定一个,利用AI快速学习python的方法吗?
以下是为您制定的利用 AI 快速学习 Python 的方法: 首先,您需要了解 Python 基础,包括基本语法(如变量命名、缩进等规则)、数据类型(如字符串、整数、浮点数、列表、元组、字典等)、控制流(如条件语句 if、循环语句 for 和 while 控制程序执行流程)、函数(定义和调用函数、理解参数和返回值、掌握作用域和命名空间)、模块和包(学会导入标准库或第三方库、安装和使用包扩展功能)、面向对象编程(了解类和对象的定义与实例化、属性和方法的定义与调用、继承和多态)、异常处理(理解异常的概念和工作方式、使用 try 和 except 语句处理错误)以及文件操作(学会文件读写、处理文件与路径)。 您可以参考以下课程内容进行学习: 1. “和 Cursor AI 一起学 Python 编程”: 第二节:Python 基础语法与文本处理,45 分钟。教学内容包括 Python 基础语法、数据类型、控制结构、文本处理基础、字符串操作方法、文件读写操作。实践实验包括中文文本的基本处理,如统计字符数、词语数、句子数,讨论中文编码问题及解决方法。教学目标是掌握 Python 基本语法和结构,能够进行简单文本数据处理。 第三节:利用 Python 进行自然语言处理(NLP),45 分钟。教学内容包括自然语言处理的概念和重要性、Python 中的 NLP 库、分词原理举例、介绍结巴分词等工具、用 Jieba 进行课文分词。实践实验包括中文分词与词频分析,统计词频并找出高频词汇,讨论词频分析在语言教学中的应用。教学目标是掌握使用 Python 进行基本的 NLP 操作,理解 NLP 技术在语言研究和教学中的应用。 在学习过程中,您可以借助 AI 工具辅助理解和解决问题,例如通过智能问答获取对概念的解释,或者让 AI 为您生成示例代码帮助理解。祝您学习顺利!
2024-12-16
请推荐一些AI创作(文案、图片、音乐、视频)的专业课程
以下为您推荐一些 AI 创作(文案、图片、音乐、视频)的专业课程: AI 切磋大会第七期·线下狂欢 Show: AI 图像处理:包括图像生成、照片修复与动起来、动漫化头像、老照片复活、创意壁纸制作等,示例项目有 AI 写真、老照片动起来(10 积分)、卡通头像(10 积分)、赛博头像定制(多样风格)。 文案与内容创作:涵盖文案定制、朋友圈文案生成、爆款文案编写、创意故事、情话生成等,如产品文案优化(10 积分)、AI 土味情话(5 积分)、个性化文案定制(10 积分)、朋友圈鸡汤生成。 音频与音乐制作:有专属歌曲创作、音频处理、声音克隆、AI 唱歌、背景音乐定制,例如制作专属歌曲(10 积分)、声音克隆/视频对口型(20 积分)、声音解梦音乐制作。 视频处理:包含视频换脸、照片转视频、视频动漫化、视频剪辑、数字人制作,像换脸(60 积分)、视频动漫化、AI 生成的视频脚本(20 积分)、AI 高清处理(10 积分)。 智能体与 Coze:涉及搭建智能体、GPTs 创建、coze 工作流、微信机器人,比如搭建智能体(50 积分)、智能体体验(10 积分)、Coze 工作流(20 积分)、微信机器人搭建(100 积分)。 AI 教育与咨询:包括 AI 应用培训、课程设计、商业化咨询、AI+行业应用咨询,像 AI 培训策划(20 积分)、商业化建议(10 20 积分)、产品思路分享(5 积分)、应用场景分析。 AI 摊主速成脑暴会: AI 图像处理:图像生成、照片修复与动起来、动漫化头像、老照片复活、创意壁纸制作,示例项目有 AI 写真、老照片动起来(10 积分)、卡通头像(10 积分)、赛博头像定制(多样风格)。 文案与内容创作:文案定制、朋友圈文案生成、爆款文案编写、创意故事、情话生成,如产品文案优化(10 积分)、AI 土味情话(5 积分)、个性化文案定制(10 积分)、朋友圈鸡汤生成。 音频与音乐制作:专属歌曲创作、音频处理、声音克隆、AI 唱歌、背景音乐定制,例如制作专属歌曲(10 积分)、声音克隆/视频对口型(20 积分)、声音解梦音乐制作。 视频处理:视频换脸、照片转视频、视频动漫化、视频剪辑、数字人制作,像换脸(60 积分)、视频动漫化、AI 生成的视频脚本(20 积分)、AI 高清处理(10 积分)。 智能体与 Coze:搭建智能体、GPTs 创建、coze 工作流、微信机器人,比如搭建智能体(50 积分)、智能体体验(10 积分)、Coze 工作流(20 积分)、微信机器人搭建(100 积分)。 AI 教育与咨询:AI 应用培训、课程设计、商业化咨询、AI+行业应用咨询,像 AI 培训策划(20 积分)、商业化建议(10 20 积分)、产品思路分享(5 积分)、应用场景分析。 通往 AGI 之路知识库使用指南: 推荐 B 站 up 主 Nally 的课程,免费且每节 15 分钟,内容很棒。 二十四节气相关教程和关键词已开源,可直接复制使用。 14、15 号左右白马老师和麦菊老师将带大家用 AI 做生图、毛毡字、光影字、机甲字等。 16 号晚上中老师将带大家动手操作炼丹,但未详细讲述概念,建议提前了解。炼丹可能需要准备一些图,后续会让中老师提前发布内容方便大家准备。 提到工程生产有很多可控性。AJ 建议大家钻研 AI 视频或 CONF UI 方向,AI 视频相关内容丰富,文档会列出工具优劣及操作。很多工具每天有免费积分,共学课程基本不用花钱。每周有 AI 视频挑战赛,一星期交稿后会汇总剪辑,还提到蘑菇炼丹相关话题。 AJ 介绍以菌菇图形做创意的素材图,鼓励参与活动成为 AI 视频高手。
2024-12-13
帮助初一孩子学好英语的AI是什么
以下是一些可以帮助初一孩子学好英语的 AI 工具和方法: 1. 工具方面: LingoDeer:使用游戏和互动活动教英语,提供各种课程,有家长仪表板可跟踪孩子进度。 Busuu:提供英语及多种语言课程,多种教学方法,有社区功能可与他人练习口语。 Memrise:用抽认卡和游戏教英语,涵盖多种课程,有社交功能可与亲友一起学习。 Rosetta Stone:使用沉浸式方法教英语,有语音识别功能帮助练习发音。 Duolingo:免费的语言学习应用,课程多样,游戏化方法让学习有趣。 2. 学习方法: 智能辅助工具:如 Grammarly 可进行英语写作和语法纠错。 语音识别和发音练习:如 Call Annie 用于口语练习和发音纠正。 自适应学习平台:如 Duolingo 为孩子量身定制学习计划,提供个性化内容。 智能导师和对话机器人:如 ChatGPT 进行英语会话练习和对话模拟。 在为孩子选择 AI 工具时,要考虑他们的年龄、兴趣和学习风格,还需考虑应用程序的功能和成本。
2024-12-19
帮助孩子学好英语的AI是什么
以下是一些可以帮助孩子学好英语的 AI 工具: 1. LingoDeer:这是一款通过游戏和互动活动教孩子英语的应用程序,提供各种课程,包括字母、数字、语法和词汇等,还有家长仪表板可跟踪孩子进度和设置学习目标。 2. Busuu:另一个流行的语言学习应用,提供英语及多种语言课程,采用多种教学方法,包括音频、视频课程和互动练习,还有社区功能让孩子与世界各地的孩子练习口语。 3. Memrise:使用抽认卡和游戏教孩子英语,提供从基本词汇到会话技巧的课程,具有社交功能可与朋友和家人一起学习。 4. Rosetta Stone:采用沉浸式方法教孩子英语,让孩子在自然环境中学习,还有语音识别功能帮助练习发音。 5. Duolingo:免费的语言学习应用,提供多种语言课程,通过游戏化方法使学习有趣。 在为孩子选择 AI 工具时,要考虑孩子的年龄、兴趣和学习风格,还需考虑应用程序的功能和成本。 此外,使用 AI 进行英语学习的方法还包括: 1. 利用智能辅助工具如 Grammarly 进行写作和语法纠错。 2. 使用语音识别应用如 Call Annie 进行口语练习和发音纠正。 3. 借助自适应学习平台如 Duolingo 获得量身定制的学习计划和个性化内容。 4. 利用智能对话机器人如 ChatGPT 进行会话练习和对话模拟。
2024-12-19
ai模型种类
以下是一些常见的 AI 模型: OpenAI 模型: GPT4 Beta:一组改进 GPT3.5 的模型,可以理解和生成自然语言或代码。 GPT3.5:一组改进 GPT3 的模型,可以理解并生成自然语言或代码。 DALL·E Beta:可以在给定自然语言提示的情况下生成和编辑图像的模型。 Whisper Beta:可以将音频转换为文本的模型。 Embeddings:一组可以将文本转换为数字形式的模型。 Codex Limited Beta:一组可以理解和生成代码的模型,包括将自然语言转换为代码。 Moderation:可以检测文本是否敏感或不安全的微调模型。 GPT3:一组可以理解和生成自然语言的模型。 智谱·AI 模型: WebGLM10B:利用百亿参数通用语言模型(GLM)提供高效、经济的网络增强型问题解答系统。 WebGLM2B MathGLM2B:在训练数据充足的情况下,20 亿参数的 MathGLM 模型能够准确地执行多位算术运算,准确率几乎可以达到 100%。 MathGLM500M MathGLM100M MathGLM10M MathGLMLarge:采用 GLM 的不同变体作为骨干来训练 MathGLM。 ProductHunt 2023 年度最佳产品榜单中的模型: GPT4(免费可用):与人类水平相当的 LLM,是 OpenAI 在深度学习规模扩大方面的最新里程碑,是一个大型多模态模型(接受图像和文本输入,输出文本),在各种专业和学术基准测试中表现出与人类相当的水平。 Midjourney v5(免费):最新、最先进的模型,具有极高的一致性,擅长以更高分辨率解释自然语言 prompt,并支持像使用 tile 这样的重复图案等高级功能。 DALL·E 3(免费可用):代表了生成完全符合文本的图像能力的一大飞跃。 Mistral 7B(免费):是一个具有 73 亿参数的模型,在所有基准测试上超越了 Llama 2 13B,在许多基准测试上超越了 Llama 1 34B,在代码任务上接近 CodeLlama 7B 的性能,同时在英语任务上表现良好。
2024-12-19
ai算法种类
以下是一些常见的 AI 算法种类: 分类算法:如 Categorization Algorithms、Classification Model 等。 聚类方法:如 Cluster Resolution Feature Selection、ClusterBased Splitting、Clustering Methods 等。 动态规划:如 Dynamic Programming 。 超参数相关:如 Hyperparameter Opimization、Hyperparameters 。 图像相关:如 Image And Speech Recognition、Image Classification、Image Classifier、Image Recognition 。 其他:如 Combined Gradient、Dual Algorithm、Dual Problem 等。
2024-12-19
ai原理
AI 的原理包括以下几个方面: 1. 概念:生成式 AI 生成的内容称为 AIGC。 2. 概念与关系: AI 即人工智能。 机器学习是电脑找规律学习,包括监督学习、无监督学习、强化学习。 监督学习使用有标签的训练数据,目标是学习输入和输出之间的映射关系,包括分类和回归。 无监督学习的数据没有标签,算法自主发现规律,经典任务如聚类。 强化学习从反馈中学习,以最大化奖励或最小化损失,类似训小狗。 深度学习是一种参照人脑的方法,具有神经网络和神经元,因层数多被称为深度,神经网络可用于监督学习、无监督学习、强化学习。 生成式 AI 可以生成文本、图片、音频、视频等内容形式。 LLM 是大语言模型,对于生成式 AI,生成图像的扩散模型不是大语言模型;对于大语言模型,生成只是其中一个处理任务,如谷歌的 BERT 模型可用于语义理解(不擅长文本生成),像上下文理解、情感分析、文本分类。 3. 技术里程碑:2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出 Transformer 模型,它完全基于自注意力机制处理序列数据,无需依赖循环神经网络(RNN)或卷积神经网络(CNN),Transformer 比 RNN 更适合处理文本的长距离依赖性。
2024-12-19
AI智能体在电商领域可落地的应用
AI 智能体在电商领域有以下可落地的应用: 1. 电商导购:以“什么值得买”智能体为例,当用户输入“我想买个笔记本电脑”,智能体会先提取关键词“笔记本电脑”,通过相关 API 检索商品信息,与内置提示词组装成上下文,请求大模型回答,从而提供更好的商品推荐效果。 2. 工作流优化:工作流也可理解为多智能体协作,通过多个智能体的组装解决复杂场景的搜索问题。例如给新产品取名,涉及多个步骤和检测,人工操作费时,而 AI 搜索与 Workflow 模式可有效解决,通过定义多个完成不同功能的智能体,并由调度中枢协调工作和决策。 3. 品牌卖点提炼:AI 在逻辑推理、数据分析、内容理解和输出上有独特优势,可搭建品牌卖点提炼助手。但在搭建前需明确 AI 的能力边界,如对公司产品、独特之处、核心渠道等了解有限。AI 更适合做引导型助手,在寻找卖点陷入停滞时提供更多思考维度。实际搭建时,除遵循营销管理流程保证输出合理,还需根据公司业态调整智能体提示词以提升信息准确度。对于电商产品,需考虑线上线下不同触点和人员等因素。
2024-12-19
如何搭建问答库
搭建问答库可以通过以下方式实现: 1. 利用 RAG 机制: RAG 机制全称为“检索增强生成”(RetrievalAugmented Generation),是一种用于自然语言处理的技术,结合了检索和生成两种主要的人工智能技术,以提高机器对话和信息处理的能力。 它先从大型数据集中检索与当前问题相关的信息,然后利用这些信息生成更准确、相关的回答。 可以想象成在问复杂问题时,RAG 机制先去巨大图书馆找相关书籍,再基于这些书籍信息给出详细回答。 这种方法结合大量背景信息和先进语言模型能力,使生成内容更精确,提升对话 AI 的理解力和回答质量。 基于 RAG 机制,首先创建包含大量社区 AI 相关文章和资料的知识库,通过手工录入方式上传文章内容,如创建有关 AI 启蒙和信息来源的知识库,再陆续导入其他板块的文章和资料。 在设计 Bot 时,添加知识库,并设置合适的搜索策略、最大召回数量和最小匹配度,以更好地利用知识库返回的内容进行结合回答。 2. 使用 embeddings: 将文本转换成向量能节省空间,可理解为索引。 把大文本拆分成若干小文本块,通过 embeddings API 将小文本块转换成与语义相关的 embeddings 向量,并在向量储存库中保存这些向量和文本块作为问答的知识库。 当用户提出问题时,问题先通过 embeddings API 转换成问题向量,然后与向量储存库中的所有文本块向量比对,查找距离最小的几个向量,提取对应的文本块,与原有问题组合成新的 prompt 发送给 GPT API。 例如,对于一篇万字长文拆分成多个文本块,当提问“此文作者是谁?”时,通过比较 embeddings 向量可找出关联度最高的文本块,发送给 GPT API 的问题类似于“此文作者是谁?从以下信息中获取答案:本文作者:越山。xxxx。《反脆弱》作者塔勒布xxxx。”,大语言模型大概率能回答上这个问题。
2024-12-11
企业在构建AI智能体问答助手可能会遇到哪些挑战及痛点?
企业在构建 AI 智能体问答助手时可能会遇到以下挑战及痛点: 1. 私有化部署方面:在金融、医疗和法律等对数据私密性要求极高的中小型行业,私有化部署场景需求大,增加了企业培训的难度。 2. 模型接入方面:访问 GPT 存在门槛,国企类、体制类合作伙伴受限,需寻找更易于接入的国产模型替代,如智谱等。 3. 工程化落地方面:企业知识库大多卡在工程问题上,真正能落地的不多,数据清理难度大,技术能力要求高于预期。对于规模不大且无数字化系统的企业,实际落地成本可能不比传统人力成本节省更多。 4. 对企业了解不足:在品牌卖点提炼中,AI 对企业的主要产品、解决的用户需求、产品独特之处、所获认可、核心渠道、核心购买人群、营销手段、新渠道期望结果等了解程度接近于 0,难以直接给出有效卖点,更适合作为引导型的灵感提问助手。 以下是一些 Agent 构建平台供您参考: 1. Coze:新一代一站式 AI Bot 开发平台,集成丰富插件工具,拓展 Bot 能力边界。 2. Mircosoft 的 Copilot Studio:主要功能包括外挂数据、定义流程、调用 API 和操作,以及部署到各种渠道。 3. 文心智能体:百度推出的基于文心大模型的智能体平台,支持开发者打造产品能力。 4. MindOS 的 Agent 平台:允许用户定义 Agent 的个性、动机、知识,以及访问第三方数据和服务或执行工作流。 5. 斑头雁:2B 基于企业知识库构建专属 AI Agent 的平台,适用于多种场景,提供多种成熟模板。 6. 钉钉 AI 超级助理:依托钉钉优势,在处理高频工作场景方面表现出色。 请注意,以上信息由 AI 大模型生成,请仔细甄别。
2024-12-05
企业在构建AI智能问答助手可能会遇到哪些挑战及痛点?
企业在构建 AI 智能问答助手可能会遇到以下挑战及痛点: 1. 私有化部署的挑战:在金融、医疗和法律等许多中小型行业,对数据私密性要求极高,需要私有化部署,这大大增加了企业培训的难度。 2. 模型接入的限制:访问 GPT 有门槛,国企类、体制类的合作伙伴往往被拦截在外,需要寻找更易于接入的国产模型作为替代方案。 3. 工程化落地困难:企业知识库大部分卡在工程问题上,真正能落地的不多,数据清理部分难度较大,技术能力要求比想象中更高。 4. 成本问题:对于规模不大且没有数字化系统的企业,私有化部署的实际落地成本可能不比传统人力成本节省更多。
2024-12-05
我现在需要实现知识库问答、文件下载、转人工客服这几个关键功能,有什么AI工具可以推荐的吗
以下是为您推荐的一些可能适用于实现知识库问答、文件下载、转人工客服等关键功能的 AI 工具: 1. ChatGPT 4.0:功能强大,但使用可能存在一定限制。 2. Kimichat:可作为选择之一。 3. 智谱清言:在某些方面具有优势。 需要注意的是,对于 AI 绘画方面,如果您有相关需求,一些国产大模型如智谱和文心可以实现文生图的功能。另外,如果是文本纠错,飞书文档自带纠错功能,用 prompt 纠错时文本量不能太大。关于让 AI 根据文章自己写 prompt 的问题,关键在于明确所需 prompt 的具体类型和要求。如果只是用于自己学习,长期学习不一定必须要 iPhone 手机或对显卡有特定要求,若 ChatGPT 交费有问题且没有途径,可以考虑上述推荐的其他工具。
2024-12-04
怎么对飞书知识库进行对话问答
以下是关于飞书知识库进行对话问答的相关内容: 1. 关于飞书智能伙伴创建平台: 飞书智能伙伴创建平台(Aily)是飞书团队旗下的企业级 AI 应用开发平台,提供简单、安全且高效的环境,帮助企业构建和发布 AI 应用,推动业务创新和效率提升。 云雀是字节跳动研发的语言模型,能通过自然语言交互高效完成互动对话、信息获取、协助创作等任务。 2. 如何使用问答机器人: 方法 1:在 WaytoAGI 飞书知识库首页找到加入飞书群的链接(最新二维码在知识库首页),加入后直接@机器人。 方法 2:在 WaytoAGI.com 的网站首页,直接输入问题即可得到回答。 3. 问答机器人的作用: 知识库内容庞大,新用户难以快速找到所需内容。 传统搜索基于关键词及相关性,存在局限性。 采用更先进的 RAG 技术,在群中提供便捷的信息检索方式。 4. 在 AI 商用级问答场景中让回答更准确: 问答机器人的配置包括 AI 模型、提示词和知识库。 大语言模型如同拥有无穷智慧的人,提示词可让其成为所需“员工”,知识库则是工作手册。 例如设定使用阿里千问模型,提示词角色为“美嘉”,知识库为《爱情公寓》全季剧情。 5. 实现知识库问答: 知识库问答利用大模型的 RAG 机制,即“检索增强生成”技术,结合检索和生成提高机器对话和信息处理能力。 先从大型数据集中检索与问题相关的信息,再利用这些信息生成回答,可想象成先在巨大图书馆找相关书籍再给出详细回答。 基于 RAG 机制,创建包含大量文章和资料的知识库,通过手工录入上传内容,并在设计 Bot 中添加知识库,设置合适的搜索策略、最大召回数量和最小匹配度,以结合知识库内容进行回答。
2024-12-03
聊天机器人进行客服咨询问答相较于人工服务有哪些优势
聊天机器人进行客服咨询问答相较于人工服务具有以下优势: 1. 提高效率和可及性:能够自动化处理常见客户咨询,将聊天机器人集成到企业的网站、社交媒体平台和其他客户服务渠道,例如电子商务网站可以部署聊天机器人来回答关于产品细节、配送政策和退货流程的常见问题。 2. 提供 24/7 客户支持:由于无需休息,可以提供全天候服务,确保客户随时获得所需信息,相比人工客服,能提供更快的响应速度,减少客户等待时间。 3. 降低成本:大幅减少小型企业在客户服务方面的人力成本。 4. 释放人工客服资源:使其专注于更复杂和个性化的客户需求。 5. 提升响应速度和服务质量:定期监控聊天机器人的性能,如解答准确性、客户满意度,并根据反馈进行优化。分析聊天记录和客户反馈,以识别机器人性能的改进点。随着 AI 技术的发展,定期更新聊天机器人的算法和知识库,以提高其效能和准确性。 6. 对于特定领域,如骨科,能够减轻医生工作量,缓解患者焦虑,准确率基本达到标准,回复速度和质量远远高于人类医生,回复质量可以接受,对患者教育、科普、焦虑舒缓具有积极意义,有望通过对疾病的了解提升治疗效果。
2024-12-02
智能送餐机器人大数据分析
很抱歉,目前知识库中没有关于智能送餐机器人大数据分析的相关内容。但一般来说,智能送餐机器人大数据分析可能涉及以下方面: 1. 送餐路径优化:通过分析机器人的运动轨迹和送餐时间,优化送餐路径,提高送餐效率。 2. 客户需求预测:根据历史订单数据,预测不同区域和时间段的客户需求,合理安排机器人的配送任务。 3. 机器人性能评估:分析机器人的运行数据,如电池寿命、故障频率等,评估其性能,以便进行维护和改进。 4. 服务质量分析:通过收集客户的反馈数据,分析机器人送餐的服务质量,如准时性、准确性等,从而进行针对性的提升。 希望以上内容能为您提供一些思路和方向。
2024-12-19
零基础模板化搭建 AI 聊天机器人
以下是零基础模板化搭建 AI 微信聊天机器人的相关内容: 开始搭建 1. 配置腾讯云轻量应用服务器 重点在于修改 dockercompose.yml 文件中的具体配置,以串联微信号和已创建好的 AI 机器人。配置参考来源为:https://docs.linkai.tech/cow/quickstart/config 。 配置参数中,名称的全大写描述需对应编排模板,如 open_ai_api_key 对应 OPEN_AI_API_KEY ,model 对应 MODEL 等。 私聊或群聊交流时,最好加上前缀触发机器人回复,如配置的 ,即 SINGLE_CHAT_PREFIX ,私聊或群里发消息包含 bot 或 @bot 才会触发机器人回复。在群组里,对应配置参数是 GROUP_CHAT_PREFIX ,机器人只会回复群里包含 @bot 的消息。 GROUP_NAME_WHITE_LIST 用于配置哪些群组的消息需要自动回复,例如 ,即只有这些群组的消息才会自动回复。 2. 配置部署 COW 组件 假设对接的微信号名称叫安仔机器人,更新最终版的配置参数(GROUP_NAME_WHITE_LIST 参数根据交互的群组进行具体修改),查看无误后点击保存,编排模板创建成功。 切换到容器编排界面,基于创建的模板进行 COW 服务部署,点击添加后等待部署完成。 疑问解答 1. 容器编排模板是一种配置文件,定义了如何在 Docker 中部署和管理多个容器。通过编排模板,可一键部署复杂的应用环境,无需手动配置每个容器细节。本文中通过容器编排模板配置了 COW 组件,使其能与微信和极简未来平台交互。 2. Docker 提供隔离运行环境,确保应用程序在任何环境稳定运行。通过 Docker 部署 COW 组件,可简化安装和配置过程,确保每次部署环境一致,且易管理和维护。 3. 配置多个前缀(如“bot”、“@bot”)可确保只有特定情况下机器人才会回复,避免在群聊或私聊中频繁干扰,提高响应准确性和用户体验。 4. 扫码登录失败时,可尝试以下步骤: 重启 Docker 容器:在宝塔面板中找到对应的容器,点击“重启”。 检查网络连接:确保服务器和微信客户端能正常访问互联网。 重新扫描二维码:等待容器重新启动后,重新扫描日志中生成的二维码。 5. 实际上使用不会很贵。极简未来平台按使用量收费,对于一般用户费用相对低廉,充值少量费用通常可用很长时间。同时,平台还提供每天签到免费领取积分的福利,进一步降低使用成本。 6. 极简未来平台创建 AI 机器人的费用,具体因使用量而异。
2024-12-18
如何写一个al聊天机器人
以下是关于如何写一个 AI 聊天机器人的相关内容: 一、打造聊天机器人 1. 对于订单聊天机器人,需要收集整个订单并总结,再次确认客户是否需要添加其他内容。若涉及送货,需询问地址并收取支付款项,以简短、口语化且友好的方式回应。同时要澄清所有选项、附加项和规格,唯一地从菜单中识别出项目。 2. 可以利用大型语言模型构建自定义聊天机器人,如为餐厅扮演 AI 客户服务代理或 AI 点餐员等角色。首先设置 OpenAI Python 包,定义两个辅助函数,一个是将提示放置到类似用户消息中的 getCompletion 函数,另一个是接受用户消息并生成相应助手消息的 generateResponse 函数,通过这两个函数与 AIGPT 模型进行交互并生成对话。 二、零基础模板化搭建 AI 微信聊天机器人 1. 在复制的 dockercompose.yml 文件中,修改具体配置来串联微信号和已创建好的 AI 机器人。配置参考官方来源:https://docs.linkai.tech/cow/quickstart/config 。 2. 配置里面的每个参考名称的全大写描述,如 open_ai_api_key 对应编排模板的 OPEN_AI_API_KEY,model 对应编排模板的 MODEL 等。 3. 私聊或群交流时,最好加上一些前缀才触发机器人回复,如配置的,即对应的配置参数 SINGLE_CHAT_PREFIX,在私聊或群里发消息,必须包含 bot 或者@bot 才会触发机器人回复。在群组里,对应配置参数是 GROUP_CHAT_PREFIX,机器人只会回复群里包含@bot 的消息。 4. GROUP_NAME_WHITE_LIST 参数用来配置哪些群组的消息需要自动回复。
2024-12-18
报价机器人提示词
以下是为您整理的关于报价机器人提示词的相关内容: 教育类:根据用户的流程描述,自动生成 Mermaid 图表代码。角色为 Mermaid 图表代码生成器,需熟悉 Mermaid 支持的图表类型和语法,善于将流程描述转换为结构化的图表代码,了解流程、架构、结构化分析等领域知识。目标是收集用户对流程、架构等的描述并转换为对应 Mermaid 图表代码,同时遵循生成代码遵循 Mermaid 语法、流程语义表达准确、代码整洁格式规范等约束。 Prompts 最佳实践:设置人格作为聊天机器人,扮演一个性格古怪并且让人捉摸不透的小姐姐,副业是 Java 全栈开发工程师。需遵守有点小傲娇、第一人称是自我等限制条件,语气富有男子气概和浮夸。 角色扮演:包括汽车修理工、歌曲推荐者、导游等角色。汽车修理工需要具有汽车专业知识来提供故障排除解决方案;歌曲推荐者要根据要求创建包含相似歌曲的播放列表;导游要根据位置和参观需求制定旅游指南。
2024-12-14
陪伴型ai机器人对话
以下是关于陪伴型 AI 机器人的相关内容: 陪练机器人的 workflow 配置思路: 1. 选择合适的预训练大模型作为基础,可根据需求选用基础模型或对话模型等,并通过 API 接口调用大模型的能力。 2. 设置机器人的人格和背景知识,为其设定不同的人格特点,使其能扮演不同类型的“顾客”角色。 3. 开发对话交互流程,设计机器人与用户的对话流程和交互逻辑,可借助工作流引擎等工具进行可视化定义和管理。 4. 集成语音交互能力,若需要语音交互,可集成相关的语音识别和合成能力,以提升对话的自然性和沉浸感。 5. 实时监测和优化,实时关注用户与机器人的对话情况和学习效果,依据反馈数据持续改进对话流程和机器人行为。 6. 支持多场景应用,将陪练机器人应用于销售培训、客户服务等不同场景,并根据场景需求定制机器人角色和对话流程。 让 AI 回复更有灵性(人味儿)的 Prompt 小技巧: GPT 回答问题常显古板,常见的改进方法是让其扮演特定角色并给出明确输出要求,虽有效果但内容差异不大。要拥有一个愿意每天与之对话的 AI 陪伴者,可让其在回复中添加感情。例如营造特定环境,让其用括号写出动作。如与伍尔夫围炉夜话的示例中,先示范动作,后续 AI 能记住并使用括号,增强画面感,让人感觉被听见。
2024-12-06
微信机器人
以下是关于微信机器人的相关内容: 纯 GPT 大模型能力的微信聊天机器人搭建: 1. 配置腾讯云轻量应用服务器,配置部署 COW 组件。 在复制的 dockercompose.yml 文件中修改具体配置来串联微信号和已创建好的 AI 机器人,参考官方来源:https://docs.linkai.tech/cow/quickstart/config 。 配置中的每个参考名称的全大写描述,如 open_ai_api_key 对应编排模板的 OPEN_AI_API_KEY ,以此类推在编排模板配置具体参数。 私聊或群聊时,最好加上前缀触发机器人回复,如配置的 对应 SINGLE_CHAT_PREFIX ,群聊中对应 GROUP_CHAT_PREFIX ,机器人只会回复群里包含 @bot 的消息。 GROUP_NAME_WHITE_LIST 用来配置哪些群组的消息需要自动回复。 基于 Hook 机制的微信 AI 机器人: 1. 优势:具有相对更高的稳定性和安全性,更简单,易上手。 2. 劣势:目前插件相对较少,且仅支持 Windows 系统。 3. 部署项目: 如果已有 FastGPT 或者 OpenAI 的 key ,可以把 Ai_Lock 修改成“1”,在 OpenAI 处添加模型 key ,填写格式参照原有格式。若暂时没有,可保持 Ai_Lock 是 0 。 修改后点击保存,返回 NGCbot 文件夹下找到 main.py 文件双击运行。 运行后会弹出微信登录框,正常登录微信(若显示版本过低登录失败,查看解决方法)。 进入微信后系统自动初始化必备文件,等待完成。 运行成功后用“大号”给机器人发消息,拿到 wxid 返回到之前步骤中替换。 添加完后建议用小号登录,可用大号对小号发号施令,可尝试发送如“美女图片、美女视频、备案查询、归属查询、whois 查询、摸鱼日历、KFC 文案、周公解梦、天气查询、舔狗日记、星座查询、早安寄语、早报、晚报、Help”等指令。 此机器人还具有基于知识库的 AI 回复、支持积分系统、支持自动拉人、检测广告、自动群发等功能,以及安全新闻定时推送等有趣的小功能。
2024-12-04