直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

对AI未来发展的洞察

回答

以下是对 AI 未来发展的洞察:

在 2024 年,人工智能领域呈现出以下特点和趋势:

  1. 资金投入:预计会有团队花费超过 10 亿美元来训练单个大型模型,生成式 AI 的热潮持续且更加“奢华”。
  2. 计算压力:政府和大型科技公司承受着逼近电网极限的计算需求压力。
  3. 对选举的影响:虽尚未成真,但仍需警惕。
  4. 引领新服务模式:如“智能即服务”,重塑工作和生活,为芯片和云计算行业带来新机遇,GPU 需求预计持续增长。
  5. 投资领域:企业软件、AI 驱动的金融服务、AI 健康技术吸引投资,机器人行业投资额超过企业软件,有望成为重要爆发点。
  6. 资本趋势:科技巨头通过资本控制 AI 模型公司,加速行业发展。
  7. 企业竞争策略:分化为迅速成长为大型模型公司并寻找背书,或保持小规模专注盈利并灵活应对。
  8. 大模型争霸:OpenAI、Gemini、Anthropic、LLama 以及来自法国的 Mistral 等公司在技术和标准设定上相互竞争。

未来展望:

  1. 提示词工程重要性凸显,带来新挑战和责任。
  2. AI 能力持续提升,为企业带来超级个性化、预测性决策、自动创新、智能流程优化等新机遇。

总之,人工智能领域充满惊喜、伦理挑战和巨大的商业价值,未来发展前景激动人心,同时也复杂多元。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

2024 年人工智能现状:辉煌、戏谑和“牛市”

更多资金,更多问题:预计明年会有团队花费超过10亿美元来训练单个大型模型。生成式AI的热潮不会消退,只会变得更加“奢华”。😱计算压力的挑战:政府和大型科技公司将继续承受计算需求的压力,这些需求已经逼近电网的极限。这就像一个健身网红的体重增长超过了突破了牛顿定理、超过了人类健身房的承重能力——总有一天,天花板可能会真的塌下来。😱AI介入选举:虽然预期的AI对选举和就业的影响尚未成真,但这并不意味着我们可以掉以轻心。但请记住,AI的影响就像潘多拉魔盒:一旦打开,将会在接下来的几年里、几十年甚至百年亦或是人类此后的历史中都无处不在。而众所周知,诚如百年前的黑格尔所预言的那样,我们人类啊!从历史中获得唯一的教训就是……我们没有从历史中获得任何教训!🤔总而言之,言而总之,人工智能领域依然是一个充满惊喜、伦理挑战和很多真金白银的奇妙世界。在这个舞台上,OpenAI、Meta和来自东方的神秘力量等各方势力竞相角逐,2024年的AI领域更像是一场激动人心的UFC(无限制综合格斗冠军赛)比赛而非平静的学术研讨会。所以,请准备好你的爆米花和GPU吧——新的一年里,AI将继续突破界限、挑战极限,甚至可能重新定义一些我们熟悉的词汇!

2024年3月 / 科技变革与美股投资 2024

[title]2024年3月/科技变革与美股投资2024[heading1]III.智变时代AI将引领新的服务模式,即“智能即服务”,通过增强能力、自动化和改变交互方式,重塑我们的工作和生活。此外,AI的发展将重新赋能芯片和云计算行业,为它们带来第二春,并创造新的投资机会。在这个过程中,GPU的需求预计将持续增长,进一步推动AI技术的革新和应用。企业软件、AI驱动的金融服务以及AI健康技术成为了吸引投资的主要领域。但值得注意的是,机器人行业的投资额已经超过了企业软件,预示着它可能成为下一轮AI革命的重要爆发点。这一点在2024年末或2025年初有望得到进一步验证。科技巨头们通过资本来控制AI模型公司的趋势也越来越明显。例如,OpenAI与微软的合作,Anthropic与Google的合作,以及其他公司与NVIDIA和AWS的合作,都表明了这一点。这种背后的资本支持不仅为AI公司提供了必要的算力,还加速了整个行业的发展。在这个AI时代,企业的竞争策略主要集中在两个方向:一是迅速成长为大型模型公司并寻找强大的背书,以获得竞争优势;二是保持规模较小,专注于盈利并灵活应对市场变化。这种分化的竞争模式预示着AI行业的未来将更加多元化和复杂。展望2024年,我们有理由相信这将是大模型争霸的一年。OpenAI、Gemini、Anthropic、LLama以及来自法国的Mistral将是市场上最受瞩目的几家公司。他们不仅在技术上相互竞争,还在为未来AI的方向和应用设定标准。这种竞争不仅对技术的进步至关重要,也为投资者和市场观察者提供了了解AI发展趋势的重要视角。

【全方位解析】企业如何通过提示词工程优化AI输出,提升市场竞争力

为了充分利用这些新机遇,企业需要不断更新和优化其提示词工程策略。例如,我们可以设计如下提示词来探索AI增强决策的潜力:这个高级提示词利用了AI的预测能力,帮助企业制定更具前瞻性和适应性的长期战略。

其他人在问
车载ai智能体
车载 AI 智能体是一种应用于车辆领域的智能体。 智能体一般被赋予更高级的目标,并拥有更多实现目标的方法和工具选择自由度。同时,受程序性知识指导,遵循组织期望的执行方式,拥有预定义工具,并受保护栏和审查措施约束。 在应用方面,智能体在各种领域扮演重要角色,如: 1. 自动驾驶:感知周围环境,做出驾驶决策。 2. 家居自动化:根据环境和用户行为自动调节设备。 3. 游戏 AI:游戏中的对手角色和智能行为系统。 4. 金融交易:根据市场数据做出交易决策。 5. 客服聊天机器人:通过自然语言处理提供客户支持。 6. 机器人:各类机器人中集成的智能控制系统。 设计和实现一个智能体通常涉及以下步骤: 1. 定义目标:明确需要实现的目标或任务。 2. 感知系统:设计传感器系统采集环境数据。 3. 决策机制:定义决策算法,根据感知数据和目标做决策。 4. 行动系统:设计执行器或输出设备执行决策。 5. 学习与优化:若为学习型智能体,设计学习算法以改进。 领先的智能体公司似乎正在收敛于一种在自主性和控制之间寻找折衷的架构。新兴的 AI 智能体示例包括;以及横跨销售、安全运营和供应链等领域的许多其他智能体。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-11-01
国内免费的AIGC平台有哪些?
以下是一些国内免费的 AIGC 平台: haiper:网址为 https://app.haiper.ai/ 。 PixVerse:网址为 https://pixverse.ai/ ,人少不怎么排队,还有换脸功能。 Leiapix:网址为 https://www.leiapix.com/ ,可以把一张照片转动态。 如果您希望自行部署 AIGC 服务,以下云服务平台可供选择: AWS(亚马逊云服务):提供多种 AI 服务,如 SageMaker、Rekognition、Polly 等,资源丰富,灵活性强,但费用相对较高,适合需求复杂、要求高可用的企业用户。 Google Cloud Platform:推出 Vertex AI 和多款预训练模型供使用,支持多种编程语言和框架,具有领先的计算机视觉和语音识别能力。 Microsoft Azure:Azure 机器学习服务涵盖多种 AI 工作负载,与微软其他产品融合度高,提供硬件加速等优化方案。 Huawei Cloud:提供 ModelArts 等 AI 开发和推理平台,融合 Ascend AI 处理器实现硬件加速,针对本地化部署和行业应用进行了优化。 阿里云:提供 PAI 和机器学习平台等 AI 产品,支持主流深度学习框架部署,与阿里云其他产品生态集成度高。 AIGC(人工智能生成内容)是一种利用人工智能技术生成各种类型内容的应用方式,能够通过机器学习和深度学习算法,根据输入的数据和指令生成符合特定要求的内容,在内容创作、广告、媒体等领域有着广泛的应用。AIGC、UGC(用户生成内容)和 PGC(专业生成内容)都是内容生成的不同方式,主要区别在于内容的创作者和生成方式。UGC 由用户通过社交媒体等平台发布自己的内容,优势在于内容丰富多样,能反映用户真实想法和创意,适用于社交媒体等互动性强的平台。PGC 由专业人士或机构根据特定标准和流程创作高质量内容,优势在于内容质量高、专业性强,适用于新闻媒体等需要高质量内容的平台。
2024-11-01
建筑设计的AI工具
以下是一些能够帮助建筑设计师审核规划平面图的 AI 工具: 1. HDAidMaster:这是一款云端工具,建筑师能在平台上使用主流的 AIGC 功能进行有趣的集卡式方案创作,在建筑设计、室内设计和景观设计领域表现出色,搭载了自主训练的建筑大模型 ArchiMaster,软件 UI 和设计成果颜值在线。 2. Maket.ai:主要面向住宅行业,在户型设计和室内软装设计方面有 AI 技术探索,设计师输入房间面积需求和土地约束,软件能自动生成户型图并查看详细设计结果。 3. ARCHITEChTURES:AI 驱动的三维建筑设计软件,为设计师提供全新设计模式,在住宅设计早期阶段可引入标准和规范约束 AI 生成的设计结果,保证设计合规性。 4. Fast AI 人工智能审图平台:从住宅设计图构件开始,形成全自动智能审图流程,将建筑全寿命周期内信息集成,实现数据汇总与管理。 每个工具都有特定应用场景和功能,建议根据具体需求选择合适的工具。 以下是一些制作网站的 AI 工具: 1. Wix ADI:基于用户提供的信息自动生成定制化网站,提供多个设计选项和布局,集成了 SEO 工具和分析功能。 2. Bookmark:AIDA 通过询问用户几个简单问题快速生成网站,提供直观拖放编辑器和多种行业模板及自动化营销工具。 3. Firedrop:Sacha 是其 AI 设计助手,可根据用户指示创建和修改网站设计,提供实时编辑和预览功能,包含多种现代设计风格和自定义选项。 4. The Grid:Molly 是其 AI 设计助手,可自动调整网站设计和布局,基于内容和用户互动优化,支持多种内容类型。 以下是一些可以画逻辑视图、功能视图、部署视图的工具: 1. Lucidchart:流行的在线绘图工具,支持多种图表创建,包括逻辑视图、功能视图和部署视图,可拖放创建架构图。 2. Visual Paradigm:全面的 UML 工具,提供创建各种架构视图的功能,包括逻辑视图、功能视图和部署视图。 3. ArchiMate:开源建模语言,与 Archi 工具一起使用,支持逻辑视图创建。 4. Enterprise Architect:强大的建模、设计和生成代码工具,支持创建多种架构视图。 5. Microsoft Visio:广泛使用的图表和矢量图形应用程序,提供丰富模板创建各种视图。 6. draw.io:免费在线图表软件,支持创建逻辑视图和部署视图等。 7. PlantUML:文本到 UML 转换工具,通过编写描述性文本自动生成序列图、用例图、类图等,帮助创建逻辑视图。 8. Gliffy:基于云的绘图工具,提供创建各种架构图的功能。 9. Archi:免费开源工具,用于创建 ArchiMate 和 TOGAF 模型,支持逻辑视图创建。 10. Rational Rose:IBM 的 UML 工具,支持创建多种视图,包括逻辑视图和部署视图。
2024-11-01
如何用AI进行建筑设计
以下是关于如何用 AI 进行建筑设计的相关内容: 能够帮助建筑设计师审核规划平面图的 AI 工具: 1. HDAidMaster:云端工具,建筑师可使用主流 AIGC 功能进行集卡式方案创作,在建筑、室内和景观设计领域表现出色,搭载自主训练的建筑大模型 ArchiMaster,软件 UI 和设计成果颜值在线。 2. Maket.ai:主要面向住宅行业,在户型和室内软装设计方面有 AI 技术探索,能根据输入的房间面积需求和土地约束自动生成户型图。 3. ARCHITEChTURES:AI 驱动的三维建筑设计软件,在住宅设计早期可引入标准和规范约束生成的设计结果,保证合规性。 4. Fast AI 人工智能审图平台:形成全自动智能审图流程,将建筑全寿命周期内的信息集成,实现数据汇总与管理。 使用 AI 进行室外设计的最佳实践: 1. 充分利用 AI 的创意生成能力,输入关键词生成多种创意方案,获取新颖灵感。 2. 结合 AI 的模拟和可视化功能,利用 AR/VR 等技术在实际环境中模拟和评估设计方案。 3. 运用 AI 的分析和优化能力,对采光、动线、材料等方面进行优化,满足实际需求。 4. 借助 AI 的自动化设计功能,自动生成符合规范的平面图、立面图等,提高效率。 5. 融合 AI 与人工设计的协作模式,发挥各自优势,在各环节充分利用 AI 能力。 关于 AI 绘画: AI 绘画是利用人工智能技术通过算法和模型让计算机生成具有艺术效果的图像。早期成果简单粗糙,随着技术进步,特别是深度学习算法应用,能生成更复杂、逼真和富有创意的图像,涵盖各种风格和题材,并在与人类艺术家互动融合中不断创新。其在广告设计、游戏开发、影视制作、建筑设计等领域有广泛应用,如广告的创意概念图生成、游戏的场景和角色创建、影视的特效场景和概念设计辅助、建筑的外观和内部布局构想等。您可以体验《AI 绘画助手》: ,BotID:7387390303403671587
2024-11-01
用于老年人的ai
以下是关于用于老年人的 AI 的相关信息: 情感陪伴: 小冰公司会在 2025 年日本大阪世博会期间,为当地 60 万个老年家庭提供虚拟人,提供陪伴服务。 Replika 是一款由人工智能技术驱动的虚拟朋友应用程序,能够为用户提供情感支持、聊天互动、心理健康辅导等服务,一些用户将其视为树洞、日记本、情感羁绊等。 医疗保健:当人工智能在某些领域表现超过人类时,有望在医疗保健领域发挥更大作用,例如为老年人提供更多医生的照顾。 个性化用户体验:AI 能使产品个性化用户体验,这在教育科技和搜索中已有早期应用。
2024-11-01
国内有哪些可以解数学题的AI
国内可以解数学题的 AI 有以下几种: 1. 自适应学习系统:如 Khan Academy,结合 AI 技术为用户提供个性化的数学学习路径和练习题,根据能力和需求进行精准推荐。 2. 智能题库和作业辅助:如 Photomath,通过图像识别和数学推理技术为用户提供数学问题的解答和解题步骤。 3. 虚拟教学助手:如 Socratic,利用 AI 技术为用户解答数学问题、提供教学视频和答疑服务,帮助理解和掌握数学知识。 4. 交互式学习平台:如 Wolfram Alpha,利用 AI 技术进行数学建模和问题求解。 此外,还有 Mathly 等应用也能指导学生解决数学问题。
2024-11-01
AI 分析调查结果并生成洞察报告
以下是关于 AI 分析调查结果并生成洞察报告的相关内容: User Evaluation: 这是一个利用人工智能(AI)来提升用户研究和数据分析的工具。 功能特点包括: AI 驱动的转录:支持 57 种以上语言的转录功能,能够即时转录视频和音频内容。 AI 洞察:从数据中快速生成有用的洞察,每个洞察都附有数据来源。 集合管理:使用直观的看板(Kanban)板来组织和分享洞察,添加标签和笔记。 AI 生成报告:生成包含文本、表格和图表的行为分析报告等。 AI 生成演示文稿:一键生成包含 AI 洞察和数据可视化的 PPTX 演示文稿。 多样化数据源:分析来自音频、视频、文本或 CSV 文件的信息以改进产品用户体验。 洞察模板:提供多种洞察模板,帮助提取最有价值的数据洞察。 情感分析:解释音频和视频文件中的客户情感,识别情绪趋势以优化策略。 FeaturesVote: 这是一个帮助企业通过用户反馈来驱动产品增长的工具。 主要功能有: 用户投票板:用户可以发布和投票他们希望看到的功能,企业可以根据投票结果优先开发这些功能。 快速设置:只需 2 分钟即可完成设置,并提供免费计划。 无缝集成:可以将投票小部件无缝添加到应用中,用户无需再次登录即可发布和投票,减少摩擦并增加反馈。 定制化:支持内置的浅色/深色模式,用户识别和配置。 透明度和信任:通过展示不断交付和构建用户需要的功能来增加用户信任和留存率。 中小企业利用人工智能(AI)进行转型: 在数据驱动决策方面,特别是数据分析和洞察部分: 目标是通过使用人工智能(AI)工具来分析大量的客户和市场数据,为企业决策提供有力支持。 首先,利用 AI 工具分析客户数据、市场数据,深入理解客户行为、市场趋势和业务机会。根据企业需求选择能处理大数据并提供深度分析的工具,如数据挖掘、机器学习模型等。收集不同渠道数据,进行分析,识别模式、趋势和相关性。 其次,为营销、产品开发等部门提供基于数据的建议和指导。利用数据分析结果指导企业策略,如市场定位、产品优化等。理解 AI 分析提供的洞察和建议,将其转化为实际业务策略。与相关部门紧密合作,确保数据洞察被有效利用。基于数据洞察制定或调整策略,实施后持续监控效果并收集数据,反馈到 AI 分析中形成闭环,不断优化数据分析和业务决策。 邬嘉文:AI 做用户研究|Claude 3 Opus 可以直接输出用户研究报告: 报告范例中包含了优势和劣势的相关内容及对应的频次。例如优势方面,高质量显示被提及 44 次等;劣势方面,兼容性问题被提及 68 次等。同时提到 GPT 有一定幻觉问题。
2024-10-29
帮我写一篇有关aigc的行业分析,标题为《AIGC行业洞察与概览》,其中框架内容包含以下部分,整体3万字 - 概念导入(AI、AIGC) - AI与人的区别 - AI衍生发展历程(诞生、发展、现状-中外各平台产品及语言模型介绍) - AI在社会各领域的应用实践 - AI技术的底层逻辑概览 - AI的弊端以及风险
以下是为您生成的《AIGC 行业洞察与概览》的部分内容: 一、概念导入 (一)AI 人工智能(Artificial Intelligence,简称 AI)是一种目标,旨在让机器展现智慧。 (二)AIGC GenAI(即生成式 AI)是一种能够从已有数据中学习并生成新的数据或内容的 AI 应用,利用 GenAI 创建的内容即 AIGC(全称 AIGenerated Content)。AIGC 是利用人工智能技术生成内容的新型生产方式,包括文本、图像、音频和视频等内容。 二、AI 与人的区别 三、AI 衍生发展历程 (一)诞生 (二)发展 (三)现状 1. 中外各平台产品及语言模型介绍 (1)语言文本生成利用马尔科夫链、RNN、LSTMs 和 Transformer 等模型生成文本,如 GPT4 和 GeminiUltra。 (2)图像生成依赖于 GANs、VAEs 和 Stable Diffusion 等技术,代表项目有 Stable Diffusion 和 StyleGAN 2。 (3)音视频生成利用扩散模型、GANs 和 Video Diffusion 等,代表项目有 Sora 和 WaveNet。 四、AI 在社会各领域的应用实践 AIGC 技术可以用于多种应用,如自动撰写新闻文章、生成艺术画作、创作音乐、制作视频游戏内容等。 五、AI 技术的底层逻辑概览 (一)机器学习:一种让机器自动从资料中找到公式的手段。 (二)深度学习:一种更厉害的手段,类神经网络,具有非常大量参数的函数。 (三)大语言模型:是一类具有大量参数的“深度学习”模型,Large Language Models,简称 LLMs。 六、AI 的弊端以及风险 作为一种强大的技术,生成式 AI 能够赋能诸多领域,但也存在多重潜在的合规风险。目前,我国对 AIGC 的监管框架由《网络安全法》《数据安全法》及《个人信息保护法》构成,并与《互联网信息服务算法推荐管理规定》、《互联网信息服务深度合成管理规定》、《生成式人工智能服务管理暂行办法》、《科技伦理审查办法(试行)》等形成了共同监管的形势。 由于篇幅限制,目前仅能为您提供约 2000 字的内容,距离 3 万字还有较大差距。后续还需要进一步丰富和完善各个部分的细节及案例分析等。
2024-09-03
有对用户画像洞察的AI工具吗
目前有多种与用户画像洞察相关的 AI 工具。例如,钉钉 AI 助理基于云雀模型开发,具有语音识别和自然语言处理能力,支持多种交互方式,能理解用户指令并回答问题。在目标市场分析方面,可使用能处理复杂数据集并提供深入洞察的 AI 工具,如机器学习模型、数据分析软件等,对包括消费者行为、购买历史、社交媒体互动等广泛的市场数据进行分析,以准确识别和细分目标客户群体。但关于专门针对用户画像洞察的特定 AI 工具,上述内容中未明确提及。
2024-08-14
有哪些AI工具可以辅助技术趋势研究和技术洞察
以下是一些可以辅助技术趋势研究和技术洞察的 AI 工具: 专利趋势分析和预测方面: Innography:利用 AI 技术分析专利数据,提供技术趋势分析和竞争情报。 PatSnap:AI 驱动的平台,分析专利数据和技术趋势,提供全面的专利情报和市场分析。 论文写作方面: 文献管理和搜索: Zotero:结合 AI 技术,可自动提取文献信息,帮助管理和整理参考文献。 Semantic Scholar:由 AI 驱动的学术搜索引擎,提供文献推荐和引用分析。 百度学术智能助手:百度推出的学术研究辅助工具,结合自然语言处理和大数据分析技术,能帮助用户快速找资料,提供文献推荐、资料整合和研究趋势分析等功能。 内容生成和辅助写作: Grammarly:通过 AI 技术提供文本校对、语法修正和写作风格建议,提高语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化内容。 知网 AI 智能写作:适用于各类文档写作场景,包括研究报告、调研报告、资讯报告等。 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于数据分析和可视化。 Knitro:用于数学建模和优化的软件,帮助进行复杂的数据分析和模型构建。
2024-08-08
分析某一领域的最新技术趋势,技术洞察,是否有合适的工具?
目前在分析某一领域的最新技术趋势和技术洞察方面,常见且有效的工具包括: 1. Gartner 魔力象限:提供对特定技术领域供应商的评估和分析。 2. Forrester 研究报告:涵盖了各种技术领域的趋势洞察。 3. 行业专业数据库,如 IEEE Xplore、Web of Science 等,可获取最新的研究文献。 但具体选择哪种工具,取决于您所关注的领域以及具体的需求。
2024-08-08
AI Infra 市场未来的想象空间
在生成式 AI 革命进入第二个年头时,研究从迅速生成预训练结果的“快速思考(System 1)”转向推理过程中深度思考的“慢速思考(System 2)”,为全新自主型应用程序开启大门。自《生成式 AI:一个创意新世界》发表的两年间,AI 生态系统变化巨大,也有了新预测。生成式 AI 市场基础层趋于稳定,由 Microsoft/OpenAI、AWS/Anthropic、Meta 和 Google/DeepMind 等重要玩家和联盟主导,形成平衡态,只有具备经济实力和巨额资本的玩家仍在竞争,市场结构逐渐明朗,未来生成下一个 token 的成本会降低,数量会增多。随着大规模语言模型(LLM)市场稳定,竞争前沿转向以“系统 2”思维主导的推理层开发和扩展,受 AlphaGo 等模型启发,旨在让 AI 系统进行深思熟虑的推理和问题解决,新的认知架构和用户界面也在改变推理能力与用户的互动方式。 综上所述,对于 AI Infra 市场未来的想象空间,其可能在推理层的开发和扩展方面有更多的发展和创新,市场结构会进一步优化,成本降低和数量增加的趋势也将持续。
2024-11-01
未来,想要用AI更多,买苹果电脑还是windows电脑
在未来如果想要更多地使用 AI ,选择苹果电脑还是 Windows 电脑取决于您的具体需求和使用场景。 苹果电脑通常具有出色的稳定性和优化的操作系统,其硬件和软件的整合度较高,对于一些特定的 AI 应用,如基于苹果生态的开发和设计工作,可能会有较好的体验。 Windows 电脑则具有更广泛的硬件选择和软件兼容性。在 AI 领域,许多专业的软件和工具在 Windows 平台上也有良好的支持。 如果您更注重系统的稳定性和一体化体验,且对苹果的生态系统有偏好,那么苹果电脑可能是不错的选择。但如果您需要更多的硬件配置选择和更广泛的软件支持,Windows 电脑可能更适合您。 最终的决策还需综合考虑您的预算、具体的 AI 应用需求以及个人使用习惯等因素。
2024-11-01
未来AI的发展趋势是什么?
未来 AI 的发展趋势主要包括以下几个方面: 1. 技术模型方面:o1 preview 模型升级迅速,将很快达到 GPT4 水平。 2. 发展阶段方面:AI 会经历从聊天机器人到推理系统、智能体、创新者,最终到完整组织的五个阶段。 3. 研究方向方面:OpenAI 坚持专注于深度学习,并实现 AGI 且持续调整策略。 4. 应用领域方面:看好 AI 在医疗、教育和科学领域的应用,有可能降低这些关键领域的成本,使人们更容易获得和负担得起相关服务。AI 可以通过抽象出琐碎的工作,让人们把注意力集中在更重要的问题上,并为未来提供更好的工具。 5. 资金投入方面:预计明年会有团队花费超过 10 亿美元来训练单个大型模型,生成式 AI 的热潮不会消退,只会变得更加“奢华”。 6. 计算压力方面:政府和大型科技公司将继续承受计算需求的压力,这些需求已经逼近电网的极限。 7. 社会影响方面:虽然预期的 AI 对选举和就业的影响尚未成真,但仍需警惕。AI 的影响如同潘多拉魔盒,一旦打开,将会在未来长期存在。 8. 领域拓展方面:从 2024 年 AI50 强榜单中可以看出,AI 涉及的领域有扩大的趋势,预计在未来几年,这份榜单的深度和广度都将不断扩大。
2024-10-30
AI 未来的发展趋势是什么?
AI 未来的发展趋势主要包括以下几个方面: 1. 模型升级:o1 preview 模型升级迅速,将很快达到 GPT4 水平。 2. 发展阶段:从聊天机器人到推理系统、智能体、创新者,最终到完整组织。 3. 技术专注:OpenAI 坚持专注方向,实现 AGI 并持续调整策略。 4. 应用领域:看好在医疗、教育和科学领域的应用。 5. 企业赋能:提示词工程作为人机交互关键接口,重要性日益凸显。AI 能力持续提升,为企业带来超级个性化、预测性决策、自动创新、智能流程优化等新机遇。 6. 成本与生产力:AI 革命促使成本下降,有可能降低医疗、教育等关键领域成本,改变成本结构并提高生产力。 7. 领域扩展:从 AI50 强榜单可看出,AI 涉及领域有扩大趋势,预计未来榜单的深度和广度将不断扩大。
2024-10-30
从事AI行业,未来好找工作吗
从事 AI 行业,未来相对来说好找工作。 短期内,AI 提示词工程师有较大需求,目前(2023 年 8 月)处于供不应求的状态,且需求会越来越多,主要因为 AI 与各种跨领域结合的可能性较大,而普通人难以利用其结合自身业务。但提示词不应作为一个长久稳定的独立岗位,而应成为每个人的一项技能。 在 AI 时代,技术专业人士需要发展 AI 难以替代的技能,如团队建设、跨文化交流、创新解决方案的设计等。技术就业市场将为能够融合技术智慧和人际交往能力的人提供机会。对于从事可能被 AI 取代风险工作的技术工作者,需要重新规划职业生涯,学习新技能或转向更需要人类特质的工作领域。 学了 AI 有可能赚钱,人工智能领域有很多高薪工作,如数据科学家、机器学习工程师等,掌握 AI 技术可增加在金融、医疗、制造业等行业的就业机会和职业发展可能性。但能否赚钱取决于个人学习能力、实际应用能力、对市场和商业的理解等因素,仅学会基础知识可能难以在竞争中脱颖而出,需要持续学习和实践。
2024-10-21
AI的未来
AI 的未来充满了机遇和挑战。 在应用场景方面,AI 已经广泛应用于多个领域: 交通领域:包括自动驾驶、交通管理等,能提高交通安全性和效率,缓解拥堵。 物流配送:可优化物流路线和配送计划,降低运输成本,甚至实现无人机送货。 教育领域:能提供个性化学习体验。 农业领域:用于分析农田数据,提升农作物产量和质量。 娱乐领域:开发虚拟现实和增强现实体验。 能源领域:优化能源使用,提高能源效率。 技术发展方面,AI 技术为人类社会带来巨大机遇的同时也带来挑战。我们要克服如“AI 幻觉”等带来的挑战,充分发挥其潜力,让其成为社会进步的强大引擎。 未来预测: 资金投入:预计 2024 年有团队会花费超 10 亿美元训练单个大型模型,生成式 AI 热潮持续且更“奢华”。 计算压力:政府和大型科技公司将持续承受计算需求逼近电网极限的压力。 社会影响:AI 对选举和就业的影响虽尚未完全显现,但不能掉以轻心。 总之,人工智能领域充满惊喜、伦理挑战和巨大的商业价值,各方势力激烈竞争,未来将不断突破界限、挑战极限,甚至重新定义熟悉的词汇。
2024-10-19
中国的AI发展到什么程度了?
目前中国的 AI 发展呈现出强势崛起的态势。中国的模型在面对制裁时展现出坚韧和战略智慧,在一些方面取得了显著成果: 达到或超过了 GPT4 水平。 华为昇腾生态开始形成,国内推理芯片开始国产替代(训练替代稍晚)。 模型凭借自身优势正在“屠榜”,证明在 AI 领域仍占据重要地位。 同时,AI 在中国的发展也带来了一些新的现象和挑战,如 AI 造成的 DeepFake、诈骗、网络攻击等开始进入公众视野,并引发担忧;AI 立法、伦理讨论仍然大规模落后于技术进展。
2024-10-31
人工智能发展历史
人工智能的发展历史如下: 起源阶段: 1943 年,心理学家麦卡洛克和数学家皮特斯提出机器的神经元模型,为后续的神经网络奠定基础。 1950 年,图灵最早提出图灵测试,作为判别机器是否具备智能的标准。 1956 年,在美国达特茅斯学院,马文·明斯基和约翰·麦凯西等人共同发起召开达特茅斯会议,“人工智能”一词被正式提出,并确立为一门学科。 发展历程: 二十世纪中叶,符号推理流行,带来专家系统等重要进展,但因方法局限性,20 世纪 70 年代出现“人工智能寒冬”。 随着时间推移,计算资源变便宜,数据增多,神经网络方法在计算机视觉、语音理解等领域展现出色性能,过去十年中,“人工智能”常被视为“神经网络”的同义词。 早期阶段(1950s 1960s):有专家系统、博弈论、机器学习初步理论。 知识驱动时期(1970s 1980s):专家系统、知识表示、自动推理。 统计学习时期(1990s 2000s):机器学习算法如决策树、支持向量机、贝叶斯方法等。 深度学习时期(2010s 至今):深度神经网络、卷积神经网络、循环神经网络等。 前沿技术点: 大模型:如 GPT、PaLM 等。 多模态 AI:视觉 语言模型(CLIP、Stable Diffusion)、多模态融合。 自监督学习:自监督预训练、对比学习、掩码语言模型等。 小样本学习:元学习、一次学习、提示学习等。 可解释 AI:模型可解释性、因果推理、符号推理等。 机器人学:强化学习、运动规划、人机交互等。 量子 AI:量子机器学习、量子神经网络等。 AI 芯片和硬件加速。
2024-10-30
根据数智经济你觉得它的发展是怎样的
数智经济在过去十年中已极大地改变了经济和社会,影响了所有活动领域和日常生活。数据处于这一变革的核心,数据驱动的创新为欧盟公民和经济带来了巨大利益,例如改善和个性化医疗、提供新的出行方式,并有助于实现欧洲绿色协议。为使数据驱动经济惠及所有欧盟公民,必须特别关注缩小数字鸿沟、促进女性参与数据经济以及培养欧洲在技术领域的前沿专业知识。 发展需要一个强大且更协调的数据保护框架,以增强自然人和相关机构的法律及实际确定性。同时,要改善内部市场的数据共享条件,创建统一框架,制定数据治理的基本要求,特别关注促进成员国之间的合作。特定行业的欧盟法律可根据行业特点进一步发展、调整并提出新的补充元素。某些经济部门已受特定的欧盟法律监管,包括与跨境或跨欧盟的数据共享或访问相关的规则。 总之,数智经济的发展前景广阔,但也需要在法律、政策和技术等多方面不断完善和协调,以实现可持续和包容性的增长。
2024-10-29
根据数智经济、银发经济、低空经济、单身经济其中有什么痛点和创新发展内容
数智经济的痛点可能包括数据安全与隐私保护问题、数字鸿沟导致的发展不平衡、技术更新换代快带来的高投入成本等。创新发展方面,可以加强数据治理和安全防护技术,推动数字技术与传统产业深度融合,拓展数字经济新场景。 银发经济的痛点或许有产品和服务针对性不足、市场标准和规范不完善、养老服务专业人才短缺等。创新发展可着眼于开发个性化的老年产品和服务,建立健全行业标准,加强养老服务人才培养。 低空经济的痛点可能存在政策法规不完善、基础设施建设不足、技术创新能力有待提高等。创新发展可以从完善政策法规、加大基础设施投资、推动技术研发和应用等方面入手。 单身经济的痛点也许是消费市场细分不够精准、社交需求满足不足、部分产品和服务质量参差不齐等。创新发展能够在精准定位消费需求、创新社交模式、提升产品和服务品质上下功夫。
2024-10-29