Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

我没有知识库,如何让AI就某一问题穷尽搜索

Answer

要让 AI 就某一问题进行穷尽搜索,一般会涉及以下步骤:

  1. 文档向量化:知识库中的文档需要被转换成向量形式,以便在数值级别上与问题向量进行比较。使用知识库工具上传文档时,会完成文档的向量化,这依靠 Embedding Model 实现。
  2. 知识库检索:
    • 相似性计算:使用相似性度量方法(如余弦相似性)计算问题向量和各个文档向量之间的相似度,以找出与问题内容最接近的文档。
    • 排序与选择:根据相似性得分对所有文档进行排序,通常会选择得分最高的几个文档,认为这些文档与问题最相关。
    • 信息抽取:从选定的高相关性文档中抽取具体的信息片段或答案,可能涉及进一步的文本处理技术,如命名实体识别、关键短语提取等。
  3. 信息整合阶段:将检索到的全部信息连同用户问题和系统预设整合成一个全新的上下文环境,为生成回答提供基础。

此外,像生物进化中通过自然选择的方式,从特定规则开始逐步改变(可能随机),在每一步保留最有效的规则并丢弃其他,这种方法不是我们通常定义的“人工智能”(更像是“遗传算法”),但在高维规则空间中往往比低维规则空间效果更好,因为维度越多,陷入局部最小值的可能性越小。

同时,给 AI 配备随时更新的“活字典”即知识库是一个好方法。知识库就像 AI 随时可查阅的百科全书,当 AI 遇到不确定问题时,可从知识库中检索相关信息给出更准确回答。比如建立包含最新新闻、科技发展、法律法规等内容的知识库,或者利用整个互联网的实时数据作为知识库,通过搜索引擎获取最新信息。

Content generated by AI large model, please carefully verify (powered by aily)

References

【AI+知识库】商业化问答场景,让AI回复更准确,一篇专为所有“小白”讲透RAG的实例教程(上篇)

知识库中的文档也需要被转换成向量形式。这使得文档内容能够在数值级别上与问题向量进行比较。在我们使用知识库工具时,上传文档就会帮助我们完成文档的向量化。这一步就是依靠Embedding Modle完成的。2、知识库检索:根据前一步输出的问题向量,检索器开始在一个庞大的向量空间中搜索与问题相关的内容(既向量距离最接近)。检索器根据问题的关键词和上下文,选出最相关的信息片段。在这一步,检索器从知识库里,检索到了一些和用户问题最相关的内容。检索器具体进行了什么操作呢?(了解即可)1.相似性计算:2.使用一种相似性度量方法(如余弦相似性)来计算问题向量和各个文档向量之间的相似度。这一步是为了找出与问题内容最为接近的文档。3.排序与选择:4.根据相似性得分,所有文档会被排序。系统通常会选择得分最高的几个文档,认为这些文档与问题最相关。5.信息抽取:6.从选定的高相关性文档中抽取具体的信息片段或答案。这可能涉及到进一步的文本处理技术,如命名实体识别、关键短语提取等。③、信息整合阶段:1、信息融合:这里将接收到上一步中检索到的全部信息。然后把这些信息连带用户问题和系统预设,被整合成一个全新的上下文环境,为生成回答提供基础。具体进行了什么操作呢?

沃尔夫勒姆:人工智能能解决科学问题吗?

OK,but can we do better than exhaustive search?And can we,for example,find a way to figure out what rules to explore without having to look at every rule?One approach is to do something like what happens in biological evolution by natural selection:start,say,from a particular rule,and then incrementally change it(perhaps at random),at every step keeping the rule or rules that do best,and discarding the others.好的,但是我们能做得比穷举搜索更好吗?例如,我们能否找到一种方法来找出要探索的规则,而不必查看每条规则?一种方法是像生物进化中通过自然选择发生的事情一样:从一个特定的规则开始,然后逐步改变它(可能是随机的),在每一步中保留最有效的一个或多个规则,并丢弃其他。This isn’t “AI” as we’ve operationally defined it here(it’s more like a “genetic algorithm”)—though it is a bit like the inner training loop of a neural net.But will it work?Well,that depends on the structure of the rule space —and,as one sees in machine learning —it tends to work better in higher-dimensional rule spaces than lower-dimensional ones.Because with more dimensions there’s less chance one will get “stuck in a local minimum”,unable to find one’s way out to a “better rule”.这不是我们在这里定义的“人工智能”(它更像是“遗传算法”)——尽管它有点像神经网络的内部训练循环。但这会起作用吗?嗯,这取决于规则空间的结构——正如人们在机器学习中看到的那样——它在高维规则空间中往往比在低维规则空间中工作得更好。因为维度越多,“陷入局部最小值”、无法找到“更好规则”的出路的可能性就越小。

胎教级教程:万字长文带你理解 RAG 全流程

活字典是针对知识库一个非常贴切的比喻还记得我们说过AI的知识会"过期"吗?解决这个问题的一个好方法就是给AI配备一个随时更新的"活字典",我们称之为知识库。知识库就像是AI可以随时查阅的百科全书。当AI遇到不确定的问题时,它可以从知识库中检索相关信息,从而给出更新、更准确的回答。比如,我们可以建立一个包含最新新闻、科技发展、法律法规等内容的知识库。这样,即使AI的基础模型没有得到更新,它也能通过查阅知识库来回答有关最新事件的问题。比如很火的AI搜索,其实就是将整个互联网的实时数据作为知识库,每次被询问时都可以通过搜索引擎获取最新的信息。旁白:你很激动,当你听到关于对RAG的解释的时候,你觉得你找到了一条正确的路。RAG也许可以帮你解决每天回答那些重复问题的困扰,你怀着激动的心情开始了RAG学习之旅

Others are asking
国内有什么免费好用的文字转图片AI吗?
目前国内免费好用的文字转图片 AI 工具包括: 1. DALL·E:由 OpenAI 推出,可根据输入的文本描述生成逼真的图片。 2. StableDiffusion:开源的文生图工具,能生成高质量图片,支持多种模型和算法。 3. MidJourney:因高质量的图像生成效果和友好的用户界面而受欢迎,在创意设计人群中流行。 您还可以在 WaytoAGI 网站(https://www.waytoagi.com/category/104 )查看更多相关工具。但需注意,内容由 AI 大模型生成,请仔细甄别。
2025-02-17
小红书与AI的结合
以下是关于小红书与 AI 结合的相关内容: 汉青老师曾分享,生成式 AI 的内容与传统社交媒体内容共存,如小红书、抖音、微信等。短期内可能因新鲜感获流量红利,长期人们仍在意高质量内容。我们掌握了多种先进工具,但应慢下节奏感受真实世界和身边普通人。目前还没想好具体如何与 AI 结合。 有朋友的朋友圈题材提到:同一条街道上,年轻女孩在街上,孤独老人在围墙里;一张照片传递了两种稳固关系和一种爱意;有人认为电商快递外卖的优势是劳动力,图中女孩的状态令人垂头丧气。 还有作者将 AI 与大理石这一古典媒介结合,认为当历史厚重与科技轻盈相遇会激发艺术可能。 此外,2024 年 11 月 30 日举办的 Show Me 扣子 AI 挑战赛大消费行业专场活动中,介绍了扣子平台最新公测的各项能力。活动旨在推动 AI 技术在大消费领域的应用与创新,为内容生产者寻求更多变现可能。获奖作品如“买买买!产品买点提炼神器强化版”专注于市场营销领域,能提炼卖点、生成营销文案等。
2025-02-17
中小学AI教育场景 生成式 全息
以下是关于中小学 AI 教育场景生成式的相关内容: 北京市新英才学校在中小学 AI 教育方面进行了积极探索。跨学科项目老师带着学生用 AIGC 做学校地图桌游,英语老师在 AIGC 帮助下备课和授课,生物和信息科技老师合作带着学生训练 AI 模型以识别植物。数字与科学中心 EdTech 跨学科小组组长魏一然深入参与其中。 在英语课上,对于初中以上学生,一开始更多是老师带着使用 AIGC 工具,由学生提出 prompt,老师引导。例如在研究学校食堂食物浪费问题时,老师带着学生与 ChatGPT 对话获取信息,还让 ChatGPT 生成单词解释和例句,加工生词生成题目、游戏或文章帮助学生复习单词。在社交媒体的英语辩论课上,尝试让学生自主使用 AIGC 工具做辩论准备。 教育科技长期以来在有效性和规模之间权衡,而有了 AI 这种状况不再存在。现在可以大规模部署个性化学习计划,为每个用户提供“口袋里的老师”。像 Speak、Quazel、Lingostar 已在做实时交流并给予反馈的语言教学。Photomath、Mathly 指导学生解决数学问题,PeopleAI、Historical Figures 通过模拟与杰出人物聊天教授历史。学生在作业中也利用 Grammarly、Orchard、Lex 等工具提升写作水平,处理其他形式内容的产品如 Tome、Beautiful.ai 协助创建演示文稿。
2025-02-17
有哪个AI可以读懂建筑施工图纸
以下是一些能够读懂建筑施工图纸的 AI 工具: 1. HDAidMaster:这是一款云端工具,建筑师能在平台上使用主流的 AIGC 功能进行有趣的集卡式方案创作,在建筑、室内和景观设计领域表现出色,搭载的建筑大模型 ArchiMaster 由建筑设计院开发,软件 UI 和设计成果颜值高。 2. Maket.ai:主要面向住宅行业,在户型和室内软装设计方面有 AI 技术探索,设计师输入房间面积需求和土地约束,软件能自动生成户型图并查看详细设计结果。 3. ARCHITEChTURES:AI 驱动的三维建筑设计软件,为设计师提供全新设计模式,在住宅设计早期可引入标准和规范约束 AI 生成的设计结果,保证设计合规性。 4. Fast AI 人工智能审图平台:从住宅设计图构件开始,形成全自动智能审图流程,能自动导入、划分区域、识别构件、审查强条和导出结果,同时为建筑信息自动建模打下基础,实现建筑全寿命周期内信息集成与管理。 但每个工具都有特定应用场景和功能,建议根据具体需求选择合适的工具。
2025-02-17
和教师相关的ai
以下是与教师相关的 AI 应用: 1. 帮助教师获取信息和学习:可以要求人工智能解释概念,获取良好结果。例如,可参考。 2. 作为自动导师:。但使用时需注意可能产生的幻觉,关键数据要根据其他来源仔细检查。 3. 重构教育服务:授课教师、游戏玩家、情感伴侣等服务都可被 AI 重构。 4. 作为数字教师:借助大型语言模型,人工智能生成的角色可以像古时候的苏格拉底、孔子一样,采用对话式、讨论式、启发式的教育方法授课。例如,让牛顿亲自授课《牛顿运动定律》,让白居易为你讲述《长恨歌》背后的故事。能实现一对一辅导,提高学生参与感,还能根据学生情况提供定制化学习计划和资源,缓解教育资源不平等问题。 5. 生成作业和试题:AI 可以生成作业单和各类测试题,如模仿中高考、托福雅思、SAT(美国高考)、GRE(美国研究生入学考)等的试题,为教师提供真题库,为学生提供错题练习库。
2025-02-17
目前ai有哪些活动
目前的 AI 活动包括: 1. 全新 AI 整活计划第七期:一起去抓小精灵! 可能会是新的流量爆款,ins 上已经火爆。 给大家准备好了海辛和阿文的教程。 活动链接:https://waytoagi.feishu.cn/wiki/DQj6waWzkiFkRQkSm1Ic5YKFnoe 2. 阿里云 AI 实训营全新升级上线!! 免费学习,交作业拿好礼。 共学、共享、共实践,1 月 24 号正式开课。 阿里云资深专家带你掌握 AI 应用场景最新实操。 加入学习链接:https://click.aliyun.com/m/1000401471/ 3. 投稿内容:使用 DeepSeek 写一篇以“反转”为主题的 1000 字内短篇小说,尽情挥洒你的创意叭! 投稿地址:通往 AGI 之路腾讯频道【deepseek 专区】点击投稿 小程序://腾讯频道/tN8kNr1nLwcAC0b 2 月 16 日晚 8 点截止并现场直播评选如何用 AI 评选出最佳小说家! 活动详情: 4. 摊位活动: 乐易科学院:通过 AI 的技术,结合量子、暗物质、天体运行规律等能量形式从科学、物理学、天文学、心理学等方面讲解国学和传统文化。可以通过技术方式批八字、调风水、进行性格色彩分析,让每个人找到方向,成为更好的自己。摊位区域:C,摊位编号:27,摊位类型:玄学+科学。 AIGC 策划程序美术(3AI 简称 3A 游戏)应用独立游戏开发:摊位区域:C,摊位编号:76,摊位类型:游戏宣传。 AI 人像摄影绘画:摊位区域:C,摊位编号:77,摊位类型:照片。 主题是:B2B AI 营销与 AI 落地项目快速🔜落地~ 具体涵盖 3 个方向: AI 训练 to b,出应用,智能体 agent,文生图生视频都涉及。 美国独立站搭建,工作流给模特戴上珠宝饰品。 Google seo 与 AI 结合。 技术尝试: 好消息,代码写出来了,可以运行,也有 bug。 最近还做出来很多 AI 工具,帮 HR 筛选简历的 AI 工具,行业新闻 AI 生成与自动推送的工作流,小红书 AI 生成的工具,Newsletter AI 生成的工具…… 摊位区域:C,摊位编号:58,摊位类型:产品展示。 5. 030 基础建站相关活动: 共学活动课程安排:近日的共学活动包括建站、编程、用 AI 手搓机器人等课程,并有李吉刚等老师授课。 课程准备与作业:课程有回放链接,会在 B 站专题呈现,还有小作业,部分课程需提前准备材料和购买清单。 线下活动规则:学校若未组队可报名,满 30 人寄物料。活动有创业者、投资人、交易所三个角色,有初始资本,通过股权和现金交换,最终选出最佳投资人和创业者。 线下活动奖励:最佳投资人和创业者有礼品、奖品,config UI 赛道的优秀者可去东京参加 CCS 东京的 config UI 大会,包机酒。 线下活动赞助:活动有豆包、飞书等大厂工具赞助。 Config UI 共学活动:11 月 16 日至 17 日举办首次活动,有优质创作者和开发者参与,提供了课程和回放,左侧“社区共创项目”有文档内容,18 号海鑫、阿文将讲解搭建基础和小应用,共学结束后将开展第二期。 编程课程:大雨老师的编程课原本 10 天压缩为 2 天,先给概念,后续可深入学习。 AIGC 营销视频大赛:伊利主办,奖金丰厚,赛道多,明天早上 10 点有直播,下周开始相关教学,鼓励以赛代练,活动信息在知识库首页、网站和公众号。 交流渠道:QQ 群号码后续会公布,活动相关疑问可在群里交流。
2025-02-17
对作为知识库的数据进行预处理,用哪个软件比较哈
以下是一些可用于对作为知识库的数据进行预处理的软件和方法: 1. LangchainchatGLM:对于知识库内容的组织要求较高,无需微调训练,适合有结构、界限分明的数据。可使用langchain库比对字典的关键词keys部分,找到相似度最高的相关keys对应的内容文本,送进提示词模板(prompt_template),然后送到LLM进行后处理。 2. 在检索原理方面,可通过嵌入模型(如Word2Vec、GloVe、BERT)将问题文本转化为向量,用于后续检索。例如,在商业化问答场景中,会对接收的问题进行预处理和向量化。 3. 在创建知识库并上传表格数据时,可通过API获取在线API的JSON数据上传,或手动自定义创建数据表结构和数据。需注意指定语义匹配字段,在响应用户查询时,将用户查询内容与该字段内容进行比较,根据相似度进行匹配。
2025-02-17
我手里有一个文件知识库,想锻炼一个ai,按照这个文件知识库的习惯帮我改写新的文件
以下是为您整理的内容: 南瓜博士:平生第一次写小说获奖,是 AI 帮我的! 三、丰富细化 接下来要让 AI 一段一段进行细节描写。为确保文章前后一致,先让 AI 帮助写故事概要和角色背景介绍,并按自己的审美略做修改。使用了一个重要技巧,让 AI 以表格形式输出细节描述,这样有三个好处: 1. 打破 AI 原本的叙事习惯,避免出现陈词滥调。 2. 按编号做局部调整容易,指哪改哪,其他内容能稳定不变。 3. 确保内容都是具体细节,避免整段输出时因缩减而丢光细节只剩笼统介绍。 四、串联成文 把上一步生成的五个表格依次复制粘贴,AI 就照着写文章了,偶尔需要帮忙给点建议。 五、失败的局部修改 小说大赛要求最后的作品必须是 AI 直接吐出来的,不能有任何改动且不能超过 2000 字,而自己的小说 2300+字,只好让 GPT4 做修改,一开始它表现不错,但很快暴露出记性不好的缺点。还没来得及高兴,就发现它失忆得很彻底。眼看截止时间快到了,只能求助 Claude,把文章和 GPT 生成的修改意见都给它,让它生成作品,匆匆截图提交。没想到,Claude 把关键情节改没了,如马克偷偷看艾拉、无名猫受伤的原因等。 熊猫 Jay:AI 编程 Cursor 来了,你没理由说不会写代码了 四、初体验:Cursor 的安装和使用 三、新增/修改代码、文字 选中代码,使用 Command+K 打开窗口,并输入修改要求。不选中代码打开窗口,可要求 AI 实现新功能,比如让 AI 增加一个广告位。当然,除了代码,也可选中文字进行修改,如改写、翻译等。 四、自动补全代码、注释、文字 输入代码或注释,Cursor 会自动补全代码,按 Tab 生效。除补全代码外,还能补全文字,可尝试。 五、对话窗口 Mac 使用 Shift+Command+L 打开聊天窗口,输入优化页面的需求,AI 能提供不同方案。比如倾向于使用好看的配色方案,点击 Apply,再点击 Accept 生效。要记得保存文件,Mac 的快捷键是 Command+S。这不是成品,若要做完整功能,需不停和 Cursor 对话,在案例部分会介绍完整制作过程。 六、全局搜索 还可把它当作简易的 AI 搜索工具,让它根据现有文件夹下的内容回答问题,比如问到基于文件内容,温度值设置的误区在哪里,回答准确度很高,甚至能定位到具体文件的行。
2025-02-17
给我flux的提示词结构的知识库我以他作为知识库
以下是关于 Flux 提示词结构的相关知识: 大语言模型就像一个学过无数知识、拥有无穷智慧的人,但在工作场景中,需要通过提示词来设定其角色和专注的技能,使其成为满足需求的“员工”。知识库则相当于给“员工”发放的工作手册,提供特定的信息。 提示词可以设定 Bot 的身份及其目标和技能,例如产品问答助手、新闻播报员、翻译助理等,决定 Bot 与用户的互动方式。详情可参考。 学习提示词可以分为五个维度,从高到低依次是思维框架、方法论、语句、工具和场景。但舒适的学习顺序应反过来,先从场景切入,直接了解在不同场景下提示词的使用及效果对比;然后使用提示词工具,如 Meta Prompt、Al 角色定制等;接着学习有效的提示语句,包括经典论文中的相关语句;再学习有效的方法论,将有效语句及其背后的原理整合成稳定可控的方法;最后掌握思维框架。 此外,还可以通过插件、工作流、记忆库等功能定制 AI Bot。插件可通过 API 连接集成各种平台和服务扩展 Bot 能力,详情参考。
2025-02-16
知识库RAG方案
RAG(检索增强生成)是一种在 AI 领域中用于处理知识库的方案。 大模型的训练数据有截止日期,当需要依靠不包含在大模型训练集中的数据时,RAG 是主要方法之一。 RAG 的应用可以抽象为以下 5 个过程: 1. 文档加载:从多种不同来源加载文档,如 PDF 等非结构化数据、SQL 等结构化数据以及代码等。 2. 文本分割:把文档切分为指定大小的块,称为“文档块”或“文档片”。 3. 存储:包括将切分好的文档块进行嵌入转换成向量形式,并将向量数据存储到向量数据库。 4. 检索:通过某种检索算法找到与输入问题相似的嵌入片。 5. 输出:把问题以及检索出来的嵌入片一起提交给 LLM,LLM 会通过问题和检索出来的提示生成更合理的答案。 基于 Coze 的知识库问答是典型的 RAG 方案,其重要一环是文档切片。但 RAG 方案存在一些缺点,如跨分片总结和推理能力弱、文档有序性被打破、表格解析失败等。 相关的海外官方文档:https://www.coze.com/docs/zh_cn/knowledge.html ,国内官方文档:https://www.coze.cn/docs/guides/use_knowledge 。 在实际操作中,如使用外贸大师产品的帮助文档创建知识库时,要注意文档的分片策略会严重影响查询结果。
2025-02-16
你的知识库架构是怎样的,普通人如何迅速找到目标靶向,比如我想学ai绘画
以下是关于您想学习 AI 绘画的相关内容: 1. 知识库提到明天银海老师将详细讲解 AI agent,同时表示知识库内容丰富,您可挑选感兴趣的部分学习,比如较轻松的 AI 绘画等。 2. 强调 AI 绘画是视觉基础,还介绍了针对 AI 绘画学社做的关键词词库精选活动。 3. 讲述了 AI 绘画中的 stable diffusion 扩散模型的运作方式,是通过加噪和去噪,随机生成种子来形成最终图像,还提到生成式 AI 做高清放大可增加细节的原理。 您可以根据以上信息,逐步深入了解 AI 绘画的相关知识。
2025-02-15
知识库里面哪里有讲解AI在各行业应用现状的材料
以下是知识库中关于 AI 在各行业应用现状的相关材料: 在音乐创作方面,通过输入更高级的词汇与 AI 音乐对话能产生更好效果,有 AI 音乐的版块、挑战、分享会和教程,可通过王贝加入 AI 音乐社区。 在数字人语音合成方面,介绍了声音克隆技术,提到了微软、阿里等的相关成果,常用的是 JPT service。 在 config UI 的应用方面,能降低成本、提高效率,在图书出版、引流等方面有应用,岗位稀缺,社区有相关共学课程。 在零售电商行业,有《2024 生成式 AI 赋能零售电商行业解决方案白皮书》。 在招聘领域,牛客的《AI 面试实践手册(2024)》深入探讨了 AI 面试的应用现状、价值和未来发展,指出其在多个行业尤其在管培生、产品、IT 基础岗位和蓝领岗位中广泛应用。 在 PC 行业,腾讯广告 TMI 与 GfK 联合发布了《AI PC 行业趋势与潜力消费者洞察白皮书(2024 版)》。 在医疗领域,蛋壳研究院发布了《医疗人工智能走到新的十字路口》。 在新闻媒体领域,新华社研究院发布了《人工智能时代新闻媒体的责任与使命》。 在情感陪伴方面,头豹研究院发布了《AI 情感陪伴:缔造温情链接,拥抱智慧关怀新纪元》。
2025-02-15
AI搜索
以下是为您介绍的一些 AI 搜索引擎: 1. 秘塔 AI 搜索:由秘塔科技开发,具有多模式搜索、无广告干扰、结构化展示和信息聚合等功能,能提升用户搜索效率和体验。 2. Perplexity:聊天机器人式搜索引擎,允许用自然语言提问,通过生成式 AI 技术从各种来源收集信息并给出答案。 3. 360AI 搜索:360 公司推出,通过 AI 分析问题,生成清晰有理答案,支持增强模式和智能排序。 4. 天工 AI 搜索:昆仑万维推出,采用生成式搜索技术,支持自然语言交互和深度追问,未来将支持多模态搜索。 5. Flowith:创新的 AI 交互式搜索和对话工具,基于节点式交互,支持多种 AI 模型和图像生成技术,有插件系统和社区功能。 6. Devv:面向程序员的 AI 搜索引擎,专注提供编程、软件开发和人工智能等领域专业建议和指导。 7. Phind:专为开发者设计,利用大型语言模型提供相关搜索结果和动态答案,擅长处理编程和技术问题。 开搜 AI 搜索是一款免费无广告、直达结果的面向大众的搜索工具。它在以下方面有出色表现: 1. 论文资料搜集与整理:帮助在校学生快速搜集专业学术资料,智能总结关键信息,助力撰写论文和报告,且支持查看来源出处,参考价值高。 2. 教学内容准备:让教育教师群体获取丰富教学资源,自动生成教案和课题研究报告,提高教学准备效率。 3. 职场信息检索:使职场办公人群高效查找工作所需信息,简化文案撰写、PPT 制作和工作汇报准备工作。 4. 行业研究分析:为学术研究人员提供深入行业分析,通过 AI 技术整合和总结大量数据,形成有深度的研究报告。 从 AI 搜索引出 RAG:在学习 RAG 之初,可从 AI 搜索切入。AI 大模型擅长语义理解和文本总结,不擅长获取实时信息;搜索引擎擅长获取实时信息,但信息分散,需人为总结。AI 与搜索引擎结合,给 AI 配备活字典,让其随时查阅。
2025-02-15
AI搜索如何商业变现
AI 搜索的商业变现方式主要有以下几种: 1. 开放接口 API:将联网判断、意图识别、问题改写、信息源检索等步骤封装进黑盒,导出标准 API,让 ChatBot 类产品快速集成。开放 API 后,ChatBot 类应用只需修改 API 的域名前缀即可集成联网检索功能,这对 AI 搜索产品自身而言,增加了面向小 B 的营收途径。 2. 自定义信息源 Source:允许用户自定义信息源,满足个性化搜索需求。比如允许第三方创作者通过 Form 表单填写信息源的相关信息,调试通过后完成集成。 在 AI 时代,一些优秀的 AI 搜索产品如秘塔搜索(https://metaso.cn/)、Perplexity(https://www.perplexity.ai/?loginsource=oneTapHome)已展现出强大的搜索能力。同时,大型科技公司在 AI 搜索领域的动作也备受关注,如微软和苹果自愿放弃 OpenAI 董事会观察员席位,监管机构关注大型科技公司与初创企业的关系。人工智能驱动的搜索虽已开始出现成效,但也存在可靠性等问题。
2025-02-11
ai搜索引擎
以下是为您提供的关于 AI 搜索引擎的相关信息: 推荐的 AI 搜索引擎: 1. 秘塔 AI 搜索:由秘塔科技开发,具有多模式搜索、无广告干扰、结构化展示和信息聚合等功能,能提升搜索效率和体验。 2. Perplexity:聊天机器人式搜索引擎,允许用自然语言提问,通过生成式 AI 技术收集信息并给出答案。 3. 360AI 搜索:360 公司推出,通过 AI 分析问题,生成清晰有理答案,支持增强模式和智能排序。 4. 天工 AI 搜索:昆仑万维推出,采用生成式搜索技术,支持自然语言交互和深度追问,未来将支持多模态搜索。 5. Flowith:创新的交互式搜索和对话工具,基于节点式交互,支持多种 AI 模型和图像生成技术,有插件系统和社区功能。 6. Devv:面向程序员,专注提供编程、软件开发和人工智能等领域的专业建议和指导。 7. Phind:专为开发者设计,利用大型语言模型提供相关搜索结果和动态答案,擅长处理编程和技术问题。 个人制作 AI 搜索引擎的经历: 选择做 AI 搜索引擎产品基于三个原则:感兴趣、有价值能带来成就感、在能力范围内。起初认为搜索引擎技术壁垒高,不敢尝试。但后来研究了贾扬清老师开源的 Lepton Search 源码和 float32 的 AI 搜索引擎源码,了解到底层技术“RAG”(检索增强生成),包括检索、增强、生成三个步骤,即拿用户 query 调搜索引擎 API 拿到搜索结果,设置提示词把检索结果作为挂载上下文,大模型回答问题并标注引用来源。之后决定在这个领域尝试,所做的 AI 搜索引擎产品取名“ThinkAny”。 XiaoHu.AI 日报中的相关内容: 4 月 27 28 日的 XiaoHu.AI 日报中提到了 Perplexica AI 驱动的搜索引擎,它提供多种搜索模式,如学术、视频等,并支持本地部署的大型语言模型。
2025-02-11
AI全称是什么 和传统搜索引擎有什么不同,为什么说AI未来会取代人类
AI 的全称是“Artificial Intelligence”,即人工智能。 AI 搜索引擎与传统搜索引擎的不同主要体现在以下方面: 1. 信息处理方式:AI 搜索引擎能够更高效地处理信息,例如智能摘要功能,可辅助快速筛选信息,实现信息降噪。 2. 信息表达:用自然语言描述就能生成美观可用的图片,降低了创作门槛和周期,使信息表达更简便。 3. 工作流重塑:AI 可以重新构建工作流,如产品经理可使用 AI 进行用户画像、竞品调研、设计产品测试用例、绘制产品功能流程图等。 4. 协同关系:生成式 AI 的人机协同分为 Embedding(嵌入式)、Copilot(副驾驶)、Agent(智能代理)3 种产品设计模式,协作流程有所差异。 5. 知识传播与管理:正在发生的生成式 AI 革命正在吞噬搜索与社交网络时代的全部数字信息,未来知识可能由机器通过 AI 拥有和管理。 关于“AI 未来会取代人类”这种说法是不准确的。虽然 AI 在某些方面表现出强大的能力,但人类具有独特的创造力、情感、判断力和复杂问题解决能力等,AI 更多是辅助和增强人类的能力,而非完全取代。
2025-02-08
DeepSeek深度推理+联网搜索 目前断档第一
DeepSeek 深度推理+联网搜索目前断档第一,具有以下特点和成就: 发布了大一统模型 JanusPro,将图像理解和生成统一在一个模型中。 统一 Transformer 架构,使用同一个模型就能完成图片理解和生成。 提供 1B 和 7B 两种规模,适配多元应用场景。 全面开源,支持商用,MIT 协议,部署使用便捷。 Benchmark 表现优异,能力更全面。 模型(7B):https://huggingface.co/deepseekai/JanusPro7B 模型(1B):https://huggingface.co/deepseekai/JanusPro1B 官方解释:JanusPro 是一种新型的自回归框架,通过将视觉编码解耦为独立路径解决先前方法局限性,利用单一统一 Transformer 架构处理,缓解视觉编码器角色冲突,增强框架灵活性,超越之前统一模型,匹配或超过特定任务模型性能,成为下一代统一多模态模型有力候选者。 下载地址:https://github.com/deepseekai/Janus 官方频道: 微信公众号:DeepSeek 小红书:@DeepSeek(deepseek_ai) X DeepSeek R1 的成就: App Store 排名:冲到美国区 App Store 第一名,超越 OpenAI 的 ChatGPT。 口碑与技术实力:依靠技术实力和口碑赢得用户认可,没有市场部和市场投放。 技术特点: 性能与成本:效果比肩顶尖闭源模型 o1,价格仅为 o1 的 27 分之一。 开源与创新:开源让行业认知整体拉齐,得到全世界尊重和喜爱。 创新模型 R1 Zero:跳过监督微调训练,发现模型思考能力可自我涌现。 影响: 行业影响:引发美国科技界恐慌,Meta 内部对 DeepSeek V3 出色表现感到震惊。 市场影响:低成本和高性能使英伟达市场地位受挑战,股价短期内大跌超 3%,市值蒸发超 300 亿美元(27 日盘前又跌 14%)。 未来展望: 开源模型的进步将超越闭源模型,顶级模型推理价格急速下降,技术更加普惠平权。 AI 编程将随着模型能力提高显著提升效率并降低门槛,AI 创作能力不断提升,催生更多 AI 创作的可消费内容形式。
2025-02-08
ai搜索引擎
以下是一些常见的 AI 搜索引擎: 1. 秘塔 AI 搜索:由秘塔科技开发,具有多模式搜索、无广告干扰、结构化展示和信息聚合等功能,能提升搜索效率和体验。 2. Perplexity:聊天机器人式搜索引擎,允许用自然语言提问,通过生成式 AI 技术收集信息并给出答案。 3. 360AI 搜索:360 公司推出,能通过 AI 分析问题,生成清晰有理的答案,支持增强模式和智能排序。 4. 天工 AI 搜索:昆仑万维推出,采用生成式搜索技术,支持自然语言交互和深度追问,未来将支持多模态搜索。 5. Flowith:创新的 AI 交互式搜索和对话工具,基于节点式交互,支持多种 AI 模型和图像生成技术,有插件系统和社区功能。 6. Devv:面向程序员的 AI 搜索引擎,专注于提供编程、软件开发和人工智能等领域的专业建议和指导。 7. Phind:专为开发者设计,利用大型语言模型提供相关搜索结果和动态答案,擅长处理编程和技术问题。 有人做了一个名为“ThinkAny”的 AI 搜索引擎,其作者选择做这个产品基于三个原则:感兴趣、有价值能带来成就感、在能力范围内。作者在了解了一些相关项目代码和底层技术“RAG”(检索增强生成,包括检索、增强、生成三个步骤)后决定尝试。
2025-02-07