Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

如何运用知识图谱搭建垂直领域的知识库智能问答

Answer

知识图谱是一种结构化的知识表示方法,它通过节点和边来表示实体之间的关系。在垂直领域的知识库智能问答中,知识图谱可以作为问答系统的基础,帮助系统理解用户的问题,并从知识库中检索相关信息。以下是一些关键步骤和考虑因素:

  1. 数据收集和预处理
    • 收集与垂直领域相关的数据,包括文本、图像、音频和视频等。
    • 对数据进行清洗、去噪和标准化处理,确保数据的质量和一致性。
  2. 实体识别和关系抽取
    • 使用实体识别技术识别文本中的关键实体,如人名、地点、组织等。
    • 通过关系抽取技术识别实体之间的关系,如“作者-写了-书籍”。
  3. 构建知识图谱
    • 根据实体和关系,构建知识图谱的节点和边。
    • 使用图数据库(如Neo4j)来存储和管理知识图谱。
  4. 问答系统设计
    • 设计一个能够理解自然语言问题的问答系统。
    • 使用自然语言处理(NLP)技术,如命名实体识别、意图识别、槽填充等,来解析用户的问题。
  5. 查询和推理
    • 使用知识图谱查询语言(如SPARQL)进行查询,以检索与用户问题相关的信息。
    • 利用图神经网络等方法进行知识图谱上的推理,以生成更准确的答案。
  6. 答案生成和优化
    • 将从知识图谱中检索到的信息转化为自然语言回答。
    • 对回答进行优化,使其更加清晰、准确和易于理解。
  7. 系统集成和部署
    • 将问答系统集成到垂直领域的应用中,如在线客服、教育平台等。
    • 部署问答系统,并进行持续的监控和优化,以提高系统的性能和用户体验。

在构建垂直领域的知识库智能问答时,需要充分考虑该领域的特点和需求,并利用先进的AI技术和工具,如深度学习、知识图谱、自然语言处理等,来提高问答系统的准确性和效率。随着技术的发展,未来可能会出现更多创新的方法和工具,以进一步优化垂直领域的知识库智能问答系统。

Content generated by AI large model, please carefully verify (powered by aily)

References

Others are asking
我想要搭建一个能够帮我阅读并总结提炼,同时能在我提出问题时,随时在我给他提供的知识库中检索的AI Agent,如何用Coze搭建?
搭建能够阅读、总结提炼并在给定知识库中检索的 AI Agent 可以使用 Coze 按照以下步骤进行: 1. 规划 制定任务的关键方法。 总结任务目标与执行形式。 将任务分解为可管理的子任务,确立逻辑顺序和依赖关系。 设计每个子任务的执行方法。 2. 实施 在 Coze 上搭建工作流框架,设定每个节点的逻辑关系。 详细配置子任务节点,并验证每个子任务的可用性。 3. 完善 整体试运行 Agent,识别功能和性能的卡点。 通过反复测试和迭代,优化至达到预期水平。 关于一些其他问题: 1. 如何判断自己的任务/Prompt 是否需要拆解为工作流? 构建稳定可用的 AI Agent 是一个需要不断调试和迭代的过程。通常先从当前性能最强的 LLM(如 ChatGPT4 和 Claude 3.5 sonnet)着手,先用单条 Prompt 或 Prompt Chain 来测试任务的执行质量和稳定性。然后,根据实际执行情况、最终投产使用的 LLM,逐步拆解子任务,降低 LLM 执行单任务的难度,直到达成工程目标。一般对于场景多样、结构复杂、对输出格式要求严格的内容,基本可以预见到需要将其拆解为工作流。此外,如果涉及生成多媒体内容或从网络自主获取额外信息等能力,必然需要通过工作流来调用相应的插件。 2. 只用了一段 Prompt 的 Agent,还算 AI Agent 吗? 算。详见
2025-02-06
好的,告诉我知识库有些什么知识
以下是关于知识库的相关知识: 知识表示和专家系统:专家系统是符号人工智能的早期成就之一,它基于从人类专家提取的知识库,并包含推理引擎。专家系统像人类推理系统一样包含短期记忆和长期记忆,以知识为基础的系统分为问题记忆(包含与当前问题有关的静态知识)、知识库(代表问题领域的长期知识)、推理引擎(协调问题状态空间的搜索过程)。例如,有根据动物物理特征判断动物的专家系统,其规则左侧的条件和操作本质上是对象属性值三元组。 银海有话说:“通往 AGI 之路”是由开发者、学者和有志人士等参与的学习社区和开源的 AI 知识库,在这里大家既是知识的消费者也是创作者。这个知识库以“无弯路,全速前进”为目标,其成长得益于大家的支持,它不仅是知识库,还是连接学习者、实践者和创新者的社区。 知识库起飞指南:可以把知识库想象成 24 小时在线的 AI 老师、永不嫌烦的知识管家、不断成长的智慧宝库。里面藏着 AI 工具的“傻瓜式说明书”、大神们的“踩坑经验分享”、实用的“一招制胜”秘籍。开启宝藏的第一步是点击飞书链接,知识库的界面左边导航栏是指南针,上面搜索框是探宝雷达,中间内容区是知识的海洋。里面具体有什么可以参考文章。
2025-02-06
deepseek适合做ai知识库检索工具吗
DeepSeek 是基于 AI 模型的产品,只是品牌名,需要搭配具体模型,如 DeepSeek V3(类 GPT4o)和 DeepSeek R1(类 OpenAI o1)。 文本嵌入可用于实现高效的知识检索,相似或相关的字符串在嵌入空间中靠得更近,利用快速向量搜索算法,一个文本语料库可以被分割成块,给定的查询被嵌入后,能进行向量搜索找到最相关的嵌入文本块。 知识库就像 AI 的“活字典”,可以随时更新,例如包含最新新闻、科技发展、法律法规等内容,AI 遇到不确定问题时可从中检索相关信息给出更准确回答,像很火的 AI 搜索就是将整个互联网实时数据作为知识库。 但仅根据上述信息,不能明确判断 DeepSeek 是否适合做 AI 知识库检索工具,还需要综合考虑其具体性能、与您需求的匹配度等多方面因素。
2025-02-06
coze平台的bot是否能接入飞书的文档做为知识库使用
Coze 平台的 bot 能接入飞书的文档作为知识库使用。具体情况如下: 创建知识库时可使用手动清洗数据,也可参考自动清洗数据的相关课程。手动清洗数据能提高数据准确性。 在线知识库:点击创建知识库,创建画小二课程的 FAQ 知识库。飞书在线文档中每个问题和答案以分割,可选择飞书文档、自定义等进行操作,还能编辑修改和删除,添加 Bot 后可在调试区测试效果。 本地文档:注意拆分内容以提高训练数据准确度,比如对于画小二课程,要按章节进行人工标注和处理,然后选择创建知识库自定义清洗数据。 发布应用:点击发布,确保在 Bot 商店中能够搜到。 Coze 的知识库功能支持上传和存储外部知识内容,包括从本地文档、在线数据、Notion、飞书文档等渠道上传文本和表格数据,并提供多样化的检索能力,能解决大模型可能出现的幻觉问题和专业领域知识不足的情况,提升回复准确性。 当 Coze 接入飞书后,能将 AI 技术集成到个人的生产力体系中,用户可将自己的知识数据上传构建个人知识库,开发 bot 并部署到个人订阅号上与粉丝互动。
2025-02-06
如何用AI搭建个人和企业知识库
以下是关于如何用 AI 搭建个人和企业知识库的相关内容: 一、使用飞书搭建 可以参考。读完相关文章,您将收获: 1. AI 时代的知识库的概念、实现原理以及能力边界。 2. 通往 AGI 之路大群中通过对话就能获取知识库中资料的原理。 3. 更好地使用 Coze 等 AI Agent 平台中的知识库组件,打造更加强大的智能体。 另外,作者正在规划一个关于 AI 时代您应该具备的编程基础系列,包括数据库、知识库、变量、JSON、API、操作系统与服务器、Docker 等内容。 二、本地部署大模型以及搭建个人知识库 1. 若要对知识库进行更灵活的掌控,需要额外的软件 AnythingLLM,其包含了所有 Open WebUI 的能力,并额外支持选择文本嵌入模型和向量数据库。 2. 安装地址:https://useanything.com/download 。安装完成后进入配置页面,主要分为三步: 第一步:选择大模型。 第二步:选择文本嵌入模型。 第三步:选择向量数据库。 3. 在 AnythingLLM 中有 Workspace 的概念,可以创建自己独有的 Workspace 跟其他项目数据进行隔离。具体操作包括: 首先创建一个工作空间。 上传文档并且在工作空间中进行文本嵌入。 选择对话模式,提供了 Chat 模式(大模型会根据自己的训练数据和上传的文档数据综合给出答案)和 Query 模式(大模型仅仅会依靠文档中的数据给出答案)。 完成上述配置后,即可跟大模型进行对话。 三、AI 时代的知识管理体系构建案例 1. 一条书摘:在读书(万维钢的新书《拐点》)时,看到一段有触动但保持批判性思考和怀疑的文本,提到如果足够强势,当前 AI 对人的作用有三个:信息杠杆、发现自己真正想要的、帮助形成自己的观点和决策。 2. 一个笔记:将上述书摘整理归纳,标记重点,打赏标签,放入笔记系统,准备展开深度思考和实践。 3. 对笔记的思考和实践:基于笔记中提到的 AI 对人的三种最终的赋能模式,以自己深度思考的问题为例,践行这套方法论,体会何谓“信息杠杆”可以令你的“思维换挡”,感受如何“让自己发现究竟想要什么”。 4. 生长出的自己的观点和内容:基于上述实践,生成“自己的观点和决策”。 5. 教授和分享:基于“自己的观点和决策”,打造成体系化的内容产品,实现价值。 总结:通过一个碎片化知识在左侧知识库中的“点、线、面、体”式的流转,从一个书摘变成一个体系化内容或课程,把“别人说的话”变成“我自己的智慧”。希望大家都能利用 AI 高效地把自己的知识管理体系搭建起来,运用起来。
2025-02-06
我是科研人员,有什么方法能构建自己专业领域的知识库吗?请给出详细的操作步骤,并说明需要什么样的软硬件设备?预算多少?
构建自己专业领域的知识库可以按照以下步骤进行: 步骤一:明确知识库的目标和范围 首先,确定您想要涵盖的专业领域的具体范围和知识库的主要目标,例如是为了内部研究使用、对外分享知识还是其他特定用途。 步骤二:收集和整理资料 收集相关的文献、研究报告、实验数据、案例等各种资料,并对其进行分类和整理。 步骤三:选择合适的技术架构 1. 考虑使用数据库管理系统,如 MySQL、Oracle 等。 2. 或者采用知识图谱技术来构建更直观的知识关系。 步骤四:确定软硬件设备 1. 硬件方面,需要一台性能较好的计算机,具备足够的内存和存储空间。预算大约在 5000 10000 元,具体取决于配置要求。 2. 软件方面,需要操作系统(如 Windows 或 Linux)、数据库管理软件、文本编辑工具等。 步骤五:设计知识库的结构 规划好知识的分类体系、标签系统和索引方式,以便于快速检索和查找。 步骤六:数据录入和维护 将整理好的资料录入到知识库中,并定期更新和维护,确保知识的准确性和时效性。 步骤七:测试和优化 在初步构建完成后,进行测试,检查检索功能是否正常,知识的展示是否清晰,并根据测试结果进行优化。 需要注意的是,实际的预算和设备需求可能会因具体情况而有所不同,您可以根据自己的需求和资源进行调整。
2025-02-06
人工智能历史图谱
人工智能的历史可以追溯到二十世纪中叶。 起初,符号推理流行,带来了专家系统等重要进展,但因提取知识复杂、成本高等问题,20 世纪 70 年代出现“人工智能寒冬”。 随着计算资源便宜和数据增多,神经网络方法在计算机视觉、语音理解等领域展现出色性能,过去十年“人工智能”常被视为“神经网络”的同义词。 在国际象棋对弈程序方面,早期以搜索为基础,发展出阿尔法贝塔剪枝搜索算法,后来采用基于案例的推理,如今基于神经网络和强化学习,能从自身错误中学习,学习速度快于人类。 在创建“会说话的程序”方面,早期如 Eliza 基于简单语法规则,现代助手如 Cortana、Siri 等是混合系统,使用神经网络转换语音、识别意图,未来有望出现完整基于神经网络的模型处理对话,如 GPT 和 TuringNLG 系列神经网络取得成功。 近期神经网络研究在 2010 年左右有巨大发展,大型公共数据集出现,如 ImageNet 催生了相关挑战赛。2012 年卷积神经网络用于图像分类使错误率大幅下降,2015 年微软研究院的 ResNet 架构达到人类水平准确率,此后神经网络在图像分类、对话语音识别、自动化机器翻译、图像描述等任务中表现成功。 在过去几年,大型语言模型如 BERT 和 GPT3 取得巨大成功,得益于大量通用文本数据,可先预训练再针对具体任务专门化。
2024-12-25
知识图谱
知识图谱: 知识图谱是一种揭示实体之间关系的语义网络,能够对现实世界的事物及其相互关系进行形式化描述。它于 2012 年 5 月 17 日由 Google 正式提出,初衷是提高搜索引擎能力,增强用户搜索质量和体验,实现从网页链接到概念链接的转变,支持按主题检索和语义检索。 关键技术包括: 1. 知识抽取:通过自动化技术抽取可用的知识单元,包含实体抽取(命名实体识别)、关系抽取、属性抽取。 2. 知识表示:如属性图、三元组。 3. 知识融合:在同一框架规范下进行异构数据整合、消歧、加工、推理验证、更新等,包括实体对齐、知识加工、本体构建、质量评估、知识更新,以形成高质量知识库。 4. 知识推理:在已有知识库基础上挖掘隐含知识。 在 AI Agent 系列中,外置知识包括向量数据库、关系型数据库和知识图谱。知识图谱以图的形式组织数据,强调实体之间的关系,适合复杂的语义分析和知识推理。在实际应用中,外置知识的集成和管理常采用 RAG 架构,允许智能体实时检索和整合最新外部信息。 知识表示方面,知识是存在于我们脑海中、代表对世界理解的东西,通过活跃学习过程获得,将接收到的信息碎片整合进世界模型。知识与信息、数据等概念不同,在 DIKW 金字塔中,数据独立存在可传递,信息是头脑中解释数据的方式,知识是融入世界模型的信息,智慧是更高层次的理解。知识表示的问题是找到以数据形式在计算机中表示知识并能自动化使用的有效方法。
2024-12-19
如何用ai工具构建某一课程的知识图谱
以下是用 AI 工具构建某一课程知识图谱的方法: 一键知识图谱方法: 用 kimichat 让 AI 拆解这本书的三级章节并按照 Markdown 产出内容: Prompt:帮我拆解《爱的五种语言》,生成全书内容的思维导图,要求每个章节后面有三级展开,下一级是主要知识点,下下一级是知识点的论述。先输出对应的 Markdown。 访问地址: 复制 AI 内容粘贴到在线思维导图 Markmap 中,一键生成思维导图,还可以自定义微调内容,并免费导出图片: 访问地址: 推导知识图谱方法(可以参考下面 prompt 自己构建): 问题生成:使用大模型帮助生成一系列相关的、深入的问题。 探索性学习:将每个问题作为一个学习起点,利用 AI 搜索引擎和大模型进行深入探索。 知识图谱构建:随着学习的深入,使用大模型帮助构建和扩展知识图谱。 创造性应用:基于新获得的知识,尝试解决原问题或创造新的作品。 反思与迭代:定期反思学习过程,调整方向,并生成新的问题,形成持续学习和创作的循环。 此外,利用 AI 写课题的步骤和建议如下: 1. 确定课题主题:明确研究兴趣和目标,选择具有研究价值和创新性的主题。 2. 收集背景资料:使用 AI 工具如学术搜索引擎和文献管理软件搜集相关研究文献和资料。 3. 分析和总结信息:利用 AI 文本分析工具分析收集到的资料,提取关键信息和主要观点。 4. 生成大纲:使用 AI 写作助手生成课题大纲,包括引言、文献综述、方法论、结果和讨论等部分。 5. 撰写文献综述:利用 AI 工具帮助撰写文献综述部分,确保内容准确完整。 6. 构建方法论:根据研究需求,利用 AI 建议的方法和技术设计研究方法。 7. 数据分析:若课题涉及数据收集和分析,使用 AI 数据分析工具处理和解释数据。 8. 撰写和编辑:利用 AI 写作工具撰写课题各部分,并进行语法和风格检查。 9. 生成参考文献:使用 AI 文献管理工具生成正确的参考文献格式。 10. 审阅和修改:利用 AI 审阅工具检查课题逻辑性和一致性,并根据反馈修改。 11. 提交前的检查:最后,使用 AI 抄袭检测工具确保课题原创性,并进行最后的格式调整。 需要注意的是,AI 工具可作为辅助,但不能完全替代研究者的专业判断和创造性思维。在使用 AI 进行课题写作时,应保持批判性思维,并确保研究的质量和学术诚信。
2024-11-03
知识图谱
知识图谱: 知识图谱是一种揭示实体之间关系的语义网络,能够对现实世界的事物及其相互关系进行形式化描述。它于 2012 年 5 月 17 日由 Google 正式提出,初衷是提高搜索引擎能力,增强用户搜索质量和体验,实现从网页链接到概念链接的转变,支持按主题检索和语义检索。 关键技术包括: 1. 知识抽取: 实体抽取:通过命名实体识别从数据源中自动识别命名实体。 关系抽取:从数据源中提取实体之间的关联关系,形成网状知识结构。 属性抽取:从数据源中采集特定实体的属性信息。 2. 知识表示:包括属性图、三元组等。 3. 知识融合:在同一框架规范下进行异构数据整合、消歧、加工、推理验证、更新等,实现数据、信息、方法、经验等知识的融合,形成高质量知识库。其中涉及实体对齐以消除不一致性问题,知识加工对知识统一管理,本体构建明确定义概念联系,质量评估计算知识置信度,知识更新迭代扩展现有知识。 4. 知识推理:在已有知识库基础上挖掘隐含知识。 在 AI Agent 系列中,外置知识包括知识图谱,它以图的形式组织数据,强调实体之间的关系,适合复杂的语义分析和知识推理。外置知识通常由外部数据库提供,能动态更新和调整,在实际应用中常采用 RAG 架构,结合检索和生成,通过检索外部知识源增强模型生成能力。 知识表示方面,知识是存在于我们脑海中、代表对世界理解的东西,通过活跃学习过程获得,将接收到的信息碎片整合到对世界的活跃模型中。知识与信息、数据等概念不同,在 DIKW 金字塔中,数据独立存在可传递,信息是头脑中解释数据的方式,知识是融入世界模型的信息,智慧是更高层次的元知识。知识表示的问题是找到在计算机中以数据形式有效表示知识并能自动化使用的方法,这是一个连续谱,简单的知识表示如算法不够灵活,自然语言功能强大但不利于自动化推理。
2024-11-03
帮我生成一个 AI 写作领域的产业图谱,只关注应用层,按照产品的类别来分类和举例
以下是 AI 写作领域应用层的产业图谱分类及举例: |序号|产品|主题|使用技术|市场规模|一句话介绍| ||||||| |1|Grammarly、秘塔写作猫|AI 智能写作助手|自然语言处理|数十亿美元|利用 AI 技术辅助用户进行高质量写作。| |2|阿里小蜜等电商客服|AI 智能客服外包服务|自然语言处理、机器学习|数十亿美元|为企业提供智能客服解决方案。|
2024-10-28
帮我生成一个 AI 写作领域的产业图谱
AI 写作领域的产业图谱大致可分为上游、中游和下游三个部分: 上游是基础设施层,包括数据与算力。 中游是技术层,涵盖模型与算法。 下游是应用层,涉及应用与分发。 对于这上中下游分别有哪些值得重点关注的企业(或产品),经过大量的信息收集和汇总工作,并结合几家知名咨询机构的文档,绘制了相关图谱。但由于避免广告嫌疑,在此不展开对各家公司/平台(或产品)的详细说明。此图绘制于 2024 年 5 月,如果有不了解不认识的公司/平台(或产品),建议您搜索了解。
2024-10-28
如何做机器人交互提问的问答
以下是关于机器人交互提问的问答相关内容: 容器编排模板:是一种配置文件,用于在 Docker 中部署和管理多个容器,可一键部署复杂环境,无需手动配置细节,文中通过其配置 COW 组件与微信和极简未来平台交互。 使用 Docker 部署 COW 组件的原因:Docker 提供隔离运行环境,确保应用稳定运行,简化安装和配置,保证部署环境一致,便于管理和维护。 配置多个前缀触发机器人回复的原因:确保只有特定情况机器人才回复,避免群聊或私聊中频繁干扰,提高响应准确性和用户体验。 扫码登录失败的解决办法:尝试重启 Docker 容器(在宝塔面板中找到对应容器点击“重启”)、检查网络连接(确保服务器和微信客户端能正常访问互联网)、重新扫描二维码(等待容器重启后扫描日志中生成的二维码)。 AI 微信聊天机器人的费用:实际费用不高,极简未来平台按使用量收费,对一般用户费用相对低廉,充值少量费用通常可用很长时间,平台还提供每天签到免费领积分福利降低成本。 使用极简未来平台创建 AI 机器人的费用:未明确具体金额,收费按使用量计算。 此外,关于问答机器人: 整个知识库内容庞大丰富,新用户难以快速找到内容。 传统搜索基于关键词及相关性,存在局限性。 作为 AI 知识库,需用更先进的 RAG 技术解决。 在群中提供快速检索信息的方式,使用更便捷。 您可以通过以下方式使用: 在 WaytoAGI 飞书知识库首页找到加入飞书群的链接(最新二维码在知识库首页),加入后直接@机器人。 在 WaytoAGI.com 的网站首页直接输入问题获取回答。
2025-02-05
我现在需要根据一系列的 yaml 和 markdown 构建一个知识库,并且需要支持 AI 问答,每次 AI 问答的结果都要保存成一个新的内容放到知识库中,请问从经济效益来看,有哪些服务可以使用?
目前从经济效益的角度来看,以下一些服务可能有助于您构建这样的知识库并支持 AI 问答以及结果保存: 1. 云服务提供商,如阿里云、腾讯云、AWS 等,它们提供可扩展的计算和存储资源,您可以根据实际需求灵活配置,避免过度投入硬件成本。 2. 开源的知识管理和问答系统框架,例如使用 Elasticsearch 结合相关插件来实现问答功能,成本相对较低,但可能需要一定的技术投入进行搭建和维护。 3. 一些专门针对知识管理和 AI 应用的 SaaS 服务,它们通常按使用量计费,初期投入较小,适合小规模应用。 需要注意的是,具体选择哪种服务取决于您的业务规模、技术能力、预算以及对性能和功能的要求。
2025-02-01
解释AI中连续问答时,为什么有时候AI似乎不记得我问的第一个问题了
在 AI 连续问答中,有时 AI 似乎不记得第一个问题,可能有以下原因: 1. 模型本身的限制:AI 回答问题时可能容易“产生幻觉”,生成看似合理但实际错误的内容,且可能连续且良好地撒谎,对于所提供的信息不一定能保证准确性和连贯性。 2. 缺乏上下文理解:AI 可能在处理后续问题时,未能充分整合和记住之前问题的关键信息,导致回答与之前的问题脱节。 3. 输出模式的固定性:像 GPT 回答问题时喜欢用特定的模式,如 1、2、3、4 或“首先、其次、最后”,这种固定模式可能影响对问题的灵活处理和记忆。 4. 无法真正解释自身:当被要求解释回答的原因或思考过程时,AI 只是生成听起来合理但可能是编造的文本,而不是真正审查自身的行动,这使得理解其回答的逻辑和连贯性变得困难。 为了让 AI 的回复更有灵性和连贯性,可以尝试一些方法,如让 AI 扮演特定角色、给出明确输出要求、营造特定环境、让其用括号补充动作以增加感情等。但即便如此,也不能完全消除上述问题。同时,使用 AI 时要注意对其输出进行检查,避免被不道德地利用。
2025-01-17
解释AI中连续问答时,为什么有时候
在 AI 中进行连续问答时,存在以下情况: 1. AI 容易“产生幻觉”并生成看似合理但实际错误的内容,甚至可能连续且良好地撒谎,其提供的每一件事或信息都可能不正确,需要对其进行全面检查。对于要求其为互联网提供参考、引用、引文和信息(对于未连接到互联网的模型)的情况尤其危险,不过 GPT4 通常更扎实,因为 Bing 的互联网连接能使其拉入相关事实,但幻觉也不可能完全消除。 2. 人工智能不会真正解释自己,当被要求解释为何写东西或思考过程时,它只是生成听起来合理但实则编造的文本,这使得理解系统中的偏见非常困难。 3. 在基于知识库的问答中,AI 有时回答不准确,可能出现牛头不对马嘴、报价错误、胡编乱造等情况,这在严肃场景中是不能接受的出错。 4. 撰写连续提示时,明确性、逻辑性、简洁性等原则尤为重要,清晰的目标、逻辑性的顺序、分步骤的指导以及对变量的考虑都能更有效地指导 AI 生成符合期望的输出,这些原则不仅适用于 CoD 和 CoT,还适用于 ToT 或其他提示结构。
2025-01-17
问答对挖掘
以下是关于提升问答效果的技巧: 1. 智能问答的原理和注意事项:在召回排序的逻辑中,文档总标题在相似度计算中权重较高。若文档总标题与用户问题吻合,相关片段在排序中更靠前,送入大模型的可能性更大。但正文与总标题相关性不高可能导致回答不准确、答非所问。 2. 编写文档的注意事项: 文档的标题内容需与正文有强相关性。 不同的知识点尽量分段书写,合理控制段落长度。不同主题通过子标题区分,子标题下正文每个段落对应一个明确知识点,避免多个知识点混合,以保证每个片段主题鲜明,在用户提问相关问题时,该片段在召回排序中更靠前。同时,每个段落尽量不超过 500 字,过长段落可能在文档分割时被切割成多个片段,打散段落主题,导致最终召回的片段内容不全、答案不够全面。 3. 对于经常被问到的内容,可写成问答对(FAQ)格式。问答对包含问题描述,用户提出相关问题时,包含该问答对的片段在召回排序中非常靠前,更可能被送入大模型,给出准确回答。样例参考可查看相关示例。
2025-01-11
如何利用多轮对话做Agent问答
利用多轮对话做 Agent 问答可以从以下几个方面考虑: 1. 从产品角度: 思考用户为何想使用,例如通过探索历史新闻让用户更好地了解自身背景、成长环境,从中学习成长并获得有趣互动体验。 明确 Agent 是谁及其性格,比如设定为知识渊博、温暖亲切、富有同情心的历史新闻探索向导,负责新闻解析和历史背景分析。 确定提供新闻的时间,如用户出生那天及那一周的重要新闻事件。 规划除新闻外的能力,如提供历史背景分析、相关画作、生活方式分析,甚至加入神秘主义者和心理学家角色回应用户。 设计多 Agent 出场顺序和使用方式,通过多角色互动设计,让用户体验多层次对话,从基本问答到深度讨论,逐步引导用户探索。 2. 基于 LLM 的大脑模块: 自然语言交互方面:LLM 应具备多轮对话能力,能理解自然语言并生成连贯、上下文相关的回复,还应具备出色的生成能力和意图理解能力,但要注意模糊指令可能带来的挑战。 知识方面:包括语言知识(词法、句法、语义学和语用学)、常识知识(如药和伞的用途)、专业领域知识(如编程、医学),但要注意知识可能过时或错误,需通过重新训练或编辑 LLM 解决。 记忆方面:具备记忆机制,存储过去的观察、思考和行动,通过提高输入长度限制、记忆总结、用向量或数据结构压缩记忆等策略提升记忆,Agent 能检索记忆以访问相关信息,包括自动检索和交互式记忆对象。 推理和规划方面:基于证据和逻辑进行推理,这对解决问题和决策至关重要。
2025-01-08
我想要搭建一个可以视频和图片识别宠物猫品种和品相的智能体
以下是为您提供的关于搭建可以视频和图片识别宠物猫品种和品相的智能体的相关信息: 目前有一种技术叫 PixelLLM,它是由 Google 开发的新型视觉语言模型。其完善后在弱视(眼疾)用户方面会有较好的应用场景。这个模型不仅能够对图片进行详细描述,还能精确指出图片中每个词汇对应的具体位置。例如,若图片中有一只猫和一只狗,PixelLLM 不仅能识别出“猫”和“狗”,还能指出它们在图片中的具体位置。这种能力使得模型在处理需要图像和文字紧密结合的任务时表现出色,比如在一张图片中找到特定的物体或区域,并对其进行描述。 主要特点包括: 1. 像素级词汇对齐:不仅能告知图片里有什么,还能准确指出这些东西在图片的具体位置。 2. 多种功能:具备多种处理图像和文字结合任务的能力。 您可以考虑基于类似的技术来搭建您所需的智能体。
2025-02-06
Agent搭建平台都有哪些
以下是一些常见的 Agent 搭建平台: 1. Coze:新一代一站式 AI Bot 开发平台,适用于构建各类问答 Bot,集成丰富插件工具,拓展 Bot 能力边界。 2. Microsoft 的 Copilot Studio:主要功能包括外挂数据、定义流程、调用 API 和操作,以及将 Copilot 部署到各种渠道。 3. 文心智能体:百度推出的基于文心大模型的智能体平台,支持开发者打造产品能力。 4. MindOS 的 Agent 平台:允许用户定义 Agent 的个性、动机、知识,以及访问第三方数据和服务或执行工作流。 5. 斑头雁:2B 基于企业知识库构建专属 AI Agent 的平台,适用于多种场景,提供多种成熟模板。 6. 钉钉 AI 超级助理:依托钉钉优势,在处理高频工作场景表现出色。 此外,国内外还有多个平台可以在几分钟内完成 Agent 创建,比如国内版扣子 coze.cn、海外版 Coze coze.com、百度 AppBuilder、阿里通义千问、智谱 AI 等。使用扣子 coze.cn 等平台创建智能体 Agent 的过程被创作者形象地比喻为“捏 Bot”,最简单的 Bot 往往可以在 1 分钟内捏完。 随着 AI 的发展,大家对 AI 的诉求变得具体,简单的 ChatBot 弊端凸显,基于 LLWeng 对于 Agent 的结构设计,Coze、Dify 等平台在应用探索上有进展。年初吴恩达基于 Agent 应用、场景、需求等做了 4 个分类,但这些平台都有固有局限,对于专业 IT 人士不够自由,对普通用户在复杂业务场景有诸多限制。
2025-02-06
假设你是经验丰富的AI工程师,现在需要搭建能够自行识别电商直播平台中客户提出的问题并给出不死板且AI痕迹弱的回答,同时直播的主播是我们虚拟的数字人,请问需要怎么做,请给出具体步骤
以下是搭建能够自行识别电商直播平台中客户提出的问题并给出自然回答,且直播主播为虚拟数字人的具体步骤: 1. 选择数字人工具软件: 考虑实时驱动和非实时驱动两类。实时驱动能在直播时更改音频话术,真人可接管,标准零售价一年 4 6 万往上;非实时驱动一个月 600 元,但效果差,类似放视频的伪直播,市场价格混乱。 2. 确定数字人运营服务模式: 按直播间成交额抽佣。 3. 明确适用品类和场景: 适用于不需要强展示的商品,如品牌食品饮料;适用于虚拟商品,如门票、优惠券等;店播效果较好,数据能保持跟真人一样;不适用于促销场景和服装品类。 4. 了解 AI 直播的壁垒和未来市场格局: 目前有技术门槛,如更真实的对口型、更低的响应延迟等,但长期看技术上无壁垒。 市场不会一家独大,可能 4 5 家一线效果公司,大多为二三线效果公司。 能把客户服务好、规模化扩张的公司更有价值,疯狂扩代理割韭菜的公司售后问题多。 有资源、有业务的大平台下场可能带来降维打击,如剪映若不仅提供数字人,还提供货品供应链、数据复盘分析等全环节服务,会对其他公司形成竞争压力。
2025-02-06
faiss 知识库搭建和维护
以下是关于 Faiss 知识库搭建和维护的相关内容: 搭建步骤: 1. 准备数据:收集需要纳入知识库的文本数据,包括文档、表格等格式,并对数据进行清洗、分段等预处理,确保数据质量。 2. 创建数据集:在相关工具(如 Dify )中创建一个新的数据集,并将准备好的文档上传至该数据集。为数据集编写良好的描述,描述清楚数据集包含的内容和特点。 3. 配置索引方式:提供了多种索引方式供选择,如高质量模式、经济模式和 Q&A 分段模式等。根据实际需求选择合适的索引方式,如需要更高准确度可选高质量模式。 4. 集成至应用:将创建好的数据集集成到对话型应用中,作为应用的上下文知识库使用。在应用设置中,可以配置数据集的使用方式,如是否允许跨数据集搜索等。 维护方面: 1. 维护知识库内容:为了提升召回的准确率,可以删除、新增或修改知识库内容。 2. 管理知识库:在知识库页面,可以看到已创建的知识库和每个知识库内的单元数量和创建时间等信息。单击知识库或编辑图标,进入知识库详情页面。在知识库详情页,可以进行新增内容、删除内容、更新单元内的分段、开启引用等操作。如果不开启引用,即便 Bot 中使用了所属的知识库,该单元内容也不会被召回。 此外,还需了解知识库由大到小可分为:知识库(一整套领域知识,是 Bot 加载的最小单位)、单元(知识库的一部分,可上传的最小内容单位可以是一个.txt、.pdf、.csv 文件或一个网页)、分段(一个单元切分成多个分段,模型查询的最小单位。分段内容的完整度和准确性度会影响模型回答问题的准确性)。
2025-02-06