Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

deepseek适合做ai知识库检索工具吗

Answer

DeepSeek 是基于 AI 模型的产品,只是品牌名,需要搭配具体模型,如 DeepSeek V3(类 GPT-4o)和 DeepSeek R1(类 OpenAI o1)。

文本嵌入可用于实现高效的知识检索,相似或相关的字符串在嵌入空间中靠得更近,利用快速向量搜索算法,一个文本语料库可以被分割成块,给定的查询被嵌入后,能进行向量搜索找到最相关的嵌入文本块。

知识库就像 AI 的“活字典”,可以随时更新,例如包含最新新闻、科技发展、法律法规等内容,AI 遇到不确定问题时可从中检索相关信息给出更准确回答,像很火的 AI 搜索就是将整个互联网实时数据作为知识库。

但仅根据上述信息,不能明确判断 DeepSeek 是否适合做 AI 知识库检索工具,还需要综合考虑其具体性能、与您需求的匹配度等多方面因素。

Content generated by AI large model, please carefully verify (powered by aily)

References

目录:OpenAI 官方指南

如果作为输入的一部分提供,模型可以利用外部信息源。这可以帮助模型生成更明智和最新的响应。例如,如果用户询问有关特定电影的问题,将有关电影的高质量信息(例如演员、导演等)添加到模型的输入中可能会很有用。嵌入可用于实现高效的知识检索,以便在运行时将相关信息动态添加到模型输入中。文本嵌入是一个向量,可以衡量文本字符串之间的相关性。相似或相关的字符串将比不相关的字符串靠得更近。这一事实以及快速向量搜索算法的存在意味着嵌入可用于实现高效的知识检索。特别是,一个文本语料库可以被分割成块,每个块都可以被嵌入和存储。然后,给定的查询可以被嵌入,可以进行向量搜索,以找到与查询最相关的语料库的嵌入文本块(即,在嵌入空间中最接近的)。可以在[OpenAI Cookbook](https://github.com/openai/openai-cookbook/blob/main/examples/vector_databases/Using_vector_databases_for_embeddings_search.ipynb)中找到示例实现。[有关如何使用知识检索来最小化模型编造](https://platform.openai.com/docs/guides/gpt-best-practices/tactic-instruct-the-model-to-use-retrieved-knowledge-to-answer-queries)错误事实的可能性的示例,请参阅策略“指示模型使用检索到的知识来回答查询”。

宝玉 日报

Deep Research是基于AI模型的产品,使用GPT-4o、o3等推理模型,结合UI交互、搜索引擎等。DeepSeek只是品牌名,需要搭配具体模型,如DeepSeek V3(类GPT-4o)和DeepSeek R1(类OpenAI o1)。🔗[https://x.com/dotey/status/1886816305719681203](https://x.com/dotey/status/1886816305719681203)4⃣️📖比尔·盖茨新回忆录《Source Code》成长故事:从“怪胎少年”到微软创始人的经历。婚姻与财富:离婚后两年陷入低谷,如今与前甲骨文CEO遗孀宝拉·赫德交往。社交媒体担忧:认为社交平台已到危险“临界点”,尤其对青少年影响深远。对AI与科技的看法:更关注现实问题,而非“冷冻身体”或延长寿命研究。📖文章原文:🔗[https://www.thetimes.com/life-style/celebrity/article/bill-gates-interview-new-book-memoir-wh766b9bs](https://www.thetimes.com/life-style/celebrity/article/bill-gates-interview-new-book-memoir-wh766b9bs)📖完整译文:🔗[https://mp.weixin.qq.com/s/5QXrlyEsFLQAodF2xVmmZA?token=1639803888&lang=zh_CN](https://mp.weixin.qq.com/s/5QXrlyEsFLQAodF2xVmmZA?token=1639803888&lang=zh_CN)5⃣️🤖Figure机器人公司宣布退出OpenAI合作

胎教级教程:万字长文带你理解 RAG 全流程

活字典是针对知识库一个非常贴切的比喻还记得我们说过AI的知识会"过期"吗?解决这个问题的一个好方法就是给AI配备一个随时更新的"活字典",我们称之为知识库。知识库就像是AI可以随时查阅的百科全书。当AI遇到不确定的问题时,它可以从知识库中检索相关信息,从而给出更新、更准确的回答。比如,我们可以建立一个包含最新新闻、科技发展、法律法规等内容的知识库。这样,即使AI的基础模型没有得到更新,它也能通过查阅知识库来回答有关最新事件的问题。比如很火的AI搜索,其实就是将整个互联网的实时数据作为知识库,每次被询问时都可以通过搜索引擎获取最新的信息。旁白:你很激动,当你听到关于对RAG的解释的时候,你觉得你找到了一条正确的路。RAG也许可以帮你解决每天回答那些重复问题的困扰,你怀着激动的心情开始了RAG学习之旅

Others are asking
今天的AI新闻
以下是 3 月 4 日、3 月 12 日和 3 月 14 日的 AI 新闻汇总: 3 月 4 日: 【AI 3D】 Meshcapade:预告可从视频/图像中捕捉面部表情并具有逼真的 3D 发丝。 InsTaG:通过几秒钟视频学习,快速形成逼真的 3D 说话头像效果。 3DMem:新型 3D 场景记忆框架。 【AI 绘图】 智谱:开源 AI 绘图 CogView4,可以在图像中生成中文字符。 海螺:推出 Image01 多功能文本转图像模型。 【AI 视频】 Runway:网友爆料 Runway 内测能力可根据参考图像进行 Video to Video 视频风格化。 Vidu:API 开放平台全面开放。 【AI 模型】 Google Colab:推出 Data Science Agent。 微软:为医疗行业提供首个统一语音 AI 助手:Dragon Copilot。 Opera:宣布推出网页浏览器的 AI 代理。 3 月 12 日: 【AI 3D】 BlenderMCP:与 Claude AI 沟通,在 blender 实现快速 3D 建模。 MIDI:单幅图像到 3D 场景生成。 Move AI:更新动作捕捉能力,提出 Gen 2 Spatial Motion。 【AI 写作】 MMStoryAgent:AI 多模态故事生成系统。 【AI 视频】 VACE:阿里推出一体化视频创作和编辑技术。 VideoPainter:腾讯开源视频编辑技术。 Wonder Dynamics:推出摄像机轨道(Camera Track)和清洁板(Clean Plate)功能。 【其他】 OpenAI:为开发者推出一套 AI Agent 开发套件。 R1Omni:阿里情感识别模型,通过视频识别情感。 Luma AI:发布一种新的预训练范式 IMM,旨在突破算法瓶颈,提高生成预训练算法的性能。 Manus:宣布与阿里通义千问团队达成战略合作。 3 月 14 日: 【AI 模型及其他】 谷歌:Gemini 应用能力升级,包含升级推理模型 gemini 2.0 Flash Thinking Experimental 等多个功能提升。 OpenAI:4 项更新。 Bolt:一键将 Figma 设计转换为可运行的 Web 应用。 阿里:推出 AI 旗舰应用“新夸克”。 360 智脑团队:开源推理模型 LightR114BDS,复现 Deepseek 的强化学习效果。 【AI 视频】 Pika:更新 Pikaffects,新增多款变身特效。 Freepik 与 Fal 平台:引入 Topaz AI 的提升“FPS 和视频分辨率”能力。 Krea:上线 Veo 2 模型,支持图生视频功能,但生成成本较高。 【AI 绘图】 LBM:用于快速图像到图像转换的潜在桥匹配方法,支持可控图像重新照明、角色去除和图像修复。 【AI 语音】 Sesame:开源 TTS 语音模型 CSM1B。
2025-03-15
如何用AI修过曝的图片
以下是一些用 AI 修复过曝图片的方法和相关工具: 1. 使用 MutiDiffusion 插件:不开放大倍数,仅使用分块渲染功能,可在显存不够时放大图片。 2. 辅助工具: 视频放大:https://www.topazlabs.com/topazvideoai 百度网盘分享的 Topaz 全家桶:链接:https://pan.baidu.com/s/1bL4tGfl2nD6leugFh4jg9Q?pwd=16d1 提取码:16d1 Kraken.io:主要用于图像压缩,也提供免费图像放大功能,能保证图像细节清晰度。 Deep Art Effects:强大的艺术效果编辑器,通过 AI 技术放大图像并赋予艺术效果,支持多种滤镜和风格。 RealESRGAN:基于 RealESRGAN 的图像超分辨率增强模型,具有可选的人脸修复和可调节的放大倍数,但使用几次要收费。 Photoshop Generative AI 功能:主要工具包括 Remove tool、Clone brush、Generative fill 以及 Neural filters。 SD 图生图,重绘幅度小一点。 3. 【SD】超清无损放大器 StableSR: 修复需使用 StabilityAI 官方的 Stable Diffusion V2.1 512 EMA 模型,放入 stablediffusionwebui/models/StableDiffusion/文件夹中。 StableSR 模块(约 400M 大小)放入 stablediffusionwebui/extensions/sdwebuistablesr/models/文件夹中。 VQVAE(约 750MB 大小)放在 stablediffusionwebui/models/VAE 中。 在处理过曝图片时,可根据具体情况选择合适的方法和工具。例如,对于复杂的照片,可先在 PS 里进行角度调整和照片裁切,然后使用上述工具和方法进行处理。对于场景方向的指定,可给简单的关键词让 AI 自行决定,避免过多颜色提示词导致画面污染。
2025-03-15
Ai写作有什么推荐的应用吗
以下是一些 AI 写作相关的应用推荐: 在论文写作领域: 文献管理和搜索:Zotero 结合 AI 技术,可自动提取文献信息,帮助管理和整理参考文献;Semantic Scholar 是由 AI 驱动的学术搜索引擎,能提供文献推荐和引用分析。 内容生成和辅助写作:Grammarly 通过 AI 技术提供文本校对、语法修正和写作风格建议;Quillbot 是基于 AI 的重写和摘要工具,可帮助精简和优化论文内容。 研究和数据分析:Google Colab 提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于进行数据分析和可视化;Knitro 用于数学建模和优化,可进行复杂的数据分析和模型构建。 论文结构和格式:LaTeX 结合了自动化和模板,可高效处理论文格式和数学公式;Overleaf 是在线 LaTeX 编辑器,有丰富模板库和协作功能,简化论文编写过程。 研究伦理和抄袭检测:Turnitin 是广泛使用的抄袭检测工具,确保论文原创性;Crossref Similarity Check 通过与已发表作品比较,检测潜在抄袭问题。 通用写作领域: Grammarly、秘塔写作猫:AI 智能写作助手,利用自然语言处理技术辅助用户进行高质量写作。Grammarly 可检查语法、拼写错误并提供改进建议,秘塔写作猫能进行智能润色和内容创作辅助。 Muse:专门为小说创作训练的 AI 模型工具,可实现在线的小说续写修改,创意头脑风暴以及同时基于画布形式的故事创作,可免费试用。 使用这些工具时,要结合自己的写作风格和需求,选择最合适的辅助工具。
2025-03-15
我是一个小白ai,我想学习有关ai写作方面的知识。
以下是关于 AI 写作方面的知识: 1. 陈财猫的观点: AI+内容创作是现阶段最好的赛道,具有完美的产品模型匹配和产品市场匹配,且天花板高。 AI 写作的实践成果包括营销和小说、短剧创作,开发了智能营销矩阵平台,参与喜马拉雅短故事和短剧写作课程,捣鼓出小财鼠程序版 agent。 好文字能引起人的生理共鸣与情绪,AI 因预训练数据量大能学会引发共鸣,从而写出好文字。 用 AI 写出好文字的方法包括选好模型,评估模型的文风和语言能力等;克服平庸,平衡“控制”与“松绑”;显式归纳想要的文本特征,通过 prompt 中的描述与词语映射到预训练数据中的特定类型文本,往 prompt 里塞例子。 对 AI 创作的看法是 AI 创作的内容有灵魂,只要读者有灵魂,文本就有灵魂;有人讨厌 AI 是因其未改变多数人生活,或自身是受害者。作者期望 AI 能力进一步提升,改变每个人的生活。 2. 利用 AI 写课题的步骤和建议: 确定课题主题,明确研究兴趣和目标,选择具有研究价值和创新性的主题。 收集背景资料,使用 AI 工具如学术搜索引擎和文献管理软件来搜集相关研究文献和资料。 分析和总结信息,利用 AI 文本分析工具提取关键信息和主要观点。 生成大纲,使用 AI 写作助手生成包括引言、文献综述、方法论、结果和讨论等部分的大纲。 撰写文献综述,利用 AI 工具确保内容的准确性和完整性。 构建方法论,根据研究需求利用 AI 建议的方法和技术设计研究方法。 数据分析,如果课题涉及数据收集和分析,使用 AI 数据分析工具处理和解释数据。 撰写和编辑,利用 AI 写作工具撰写课题各部分,并进行语法和风格检查。 生成参考文献,使用 AI 文献管理工具生成正确的参考文献格式。 审阅和修改,利用 AI 审阅工具检查课题的逻辑性和一致性,并根据反馈修改。 提交前的检查,使用 AI 抄袭检测工具确保课题的原创性,并进行最后的格式调整。需要注意的是,AI 工具只是辅助,不能完全替代研究者的专业判断和创造性思维,应保持批判性思维,并确保研究的质量和学术诚信。 3. 吴恩达关于生成式 AI 的观点: 生成式 AI 由监督学习技术搭建,2010 2020 年是大规模监督学习的十年,为现代人工智能奠定了基础。生成文本会使用到大语言模型,其通过不断预测下一个词语来生成新的文本内容。 大语言模型是思考的朋友,运用大语言模型写故事、修改文本非常有用,但大语言模型会编造故事产生错误信息,需要鉴别信息准确。 人工智能是一种通用技术,有大量运用空间,如基于网络界面应用和基于软件程序应用。 使用 LLM 来写作,集思广益、头脑风暴将非常有用。使用网页版的聊天信息时,提供更多的信息。翻译也可以使用 LLM,翻译效果可能比机器翻译更好,但网络文本较少时效果不太好,可以让 LLM 将内容翻译成为海盗英语进行测试翻译准确度。
2025-03-15
ai 编程
以下是关于 AI 编程的相关信息: Trae 国内版: 是国内首个 AI IDE,自带豆包 1.5pro 和满血版 DeepSeek R1、V3 模型。 具有国内用户友好、使用完全免费、内置预览插件等特性。 网址为 Trae.com.cn 或点击文末【阅读原文】直接访问。 借助 AI 学习编程的关键: 打通学习与反馈循环,包括验证环境、建立信心、理解基本概念等。 建议使用流行语言和框架,先运行再优化,小步迭代,借助 AI 生成代码后请求注释或解释,遇到问题三步走:复现、精确描述、回滚。 AI 编程的本质: 传统编程是指令驱动模式,程序员需将需求分解为精确指令。 AI 编程正朝目标驱动模式转变,可向 AI 系统描述目标和期望,让其自动生成或优化程序。 这种转变的根本原因在于 AI 擅长从海量数据中学习规律、进行模式识别和预测,能处理传统编程的短板领域。 AI 编程的核心挑战是如何定义问题让 AI 理解并解决,而非侧重代码生成和技术实现。
2025-03-15
如何做AI数字人,我想做视频,但是不想真人出镜
以下是制作 AI 数字人视频且不想真人出镜的方法: 1. 在显示区域,拖动背景图的一个角,将图片放大到适合的尺寸,比如覆盖视频窗口,并将数字人拖动到合适的位置。 2. 增加字幕:点击文本 智能字幕 识别字幕,点击开始识别,软件会自动将文字智能分段并形成字幕。 3. 至此,数字人视频就完成了。点击右上角的“导出”按钮,导出视频以作备用。 4. 如果希望数字人换成自己希望的面孔,需要用另一个工具来进行换脸。 此外,还有以下相关信息: 无需真人模特,只需上传产品图片,数字人即可手持产品进行口播展示。支持语音和口型同步,动作、姿势定制,提供 1000+多国家数字人模特,覆盖全球 28+种语言,快速生成产品宣传视频,省去拍摄烦恼。测试视频效果已接近成熟,嘴型部分仍需微调。在线体验: HeyGen 与 Sora 集成推出全新数字人技术,利用 AI 创建完全虚拟的数字人,动作、表情灵活可调,无需真人模特和重复拍摄,适配无限时长视频制作。
2025-03-15
deepseek
DeepSeek 是一家具有独特特点和影响力的公司: 1. 其秘方具有硅谷风格: 不是“中国式创新”的产物,不能简单地将其比喻成“AI 界的拼多多”或认为其秘方只是多快好省。 早在 2024 年 5 月 DeepSeekV2 发布时,就以多头潜在注意力机制(MLA)架构的创新在硅谷引发轰动。 是中国最全球化的 AI 公司之一,赢得全球同行甚至对手尊重的秘方也是硅谷风格。 2. V3 可能是 DeepSeek 的 GPT3 时刻,未来发展充满未知但值得期待。 3. 关于提示词 HiDeepSeek: 效果对比:可通过 Coze 做小测试并对比。 使用方法:包括搜索网站、点击“开始对话”、发送装有提示词的代码、阅读开场白后正式开始对话等步骤。 设计思路:将 Agent 封装成 Prompt 并储存于文件以减轻调试负担,实现联网和深度思考功能,优化输出质量,设计阈值系统,用 XML 进行规范设定等。 完整提示词:v 1.3。 特别鸣谢:李继刚的【思考的七把武器】提供思考方向,Thinking Claude 是设计灵感来源,Claude 3.5 Sonnet 是得力助手。
2025-03-14
我需要用deepseek生成参考文献,我需要指令
以下是关于 DeepSeek 生成参考文献的相关指令: 1. 基础指令框架: 四要素模板:如果不知道如何表达,还是可以套用框架指令。 格式控制语法:强制结构使用```包裹格式要求,占位符标记用{{}}标注需填充内容,优先级符号>表示关键要求,!表示禁止项。 2. 进阶控制技巧: 思维链引导:分步标记法,如请逐步思考:1.问题分析→2.方案设计→3.风险评估;苏格拉底式追问,在得出最终结论前,请先列举三个可能存在的认知偏差。 知识库调用:领域限定指令,如基于 2023 版中国药典,说明头孢类药物的配伍禁忌;文献引用模式,如以 Nature 2022 年发表的论文为参考,解释 CRISPRCas9 最新突破。 3. 高级调试策略: 模糊指令优化:对于宽泛需求,添加维度约束;对于主观表述,量化标准。 迭代优化法:首轮生成获取基础内容,特征强化加强某段的技术细节描述,风格调整改用特定语气并添加结论部分,最终校验检查时间逻辑一致性和可能的事实性错误。 希望这些信息对您有所帮助。
2025-03-14
deepseek论文指令
以下是关于 DeepSeek 提示词的详细内容: 一、核心原理认知 1. AI 特性定位 多模态理解:支持文本/代码/数学公式混合输入。 动态上下文:对话式连续记忆(约 8K tokens 上下文窗口,换算成汉字是 4000 字左右)。 任务适应性:可切换创意生成/逻辑推理/数据分析模式。 2. 系统响应机制 采用意图识别+内容生成双通道。 自动检测 prompt 中的任务类型/输出格式/知识范围。 反馈敏感度:对位置权重(开头/结尾)、符号强调敏感。 二、基础指令框架 1. 四要素模板 2. 格式控制语法 强制结构:使用```包裹格式要求。 占位符标记:用{{}}标注需填充内容。 优先级符号:>表示关键要求,!表示禁止项。 三、进阶控制技巧 1. 思维链引导 分步标记法:请逐步思考:1.问题分析→2.方案设计→3.风险评估。 苏格拉底式追问:在得出最终结论前,请先列举三个可能存在的认知偏差。 2. 知识库调用 领域限定指令:基于 2023 版中国药典,说明头孢类药物的配伍禁忌。 文献引用模式:以 Nature 2022 年发表的论文为参考,解释 CRISPRCas9 最新突破。 3. 多模态输出 四、高级调试策略 1. 模糊指令优化 问题类型:宽泛需求、主观表述。 修正方案:添加维度约束、量化标准。 示例对比:原句“写小说”→修正“创作以 AI 觉醒为背景的悬疑短篇,采用多视角叙事结构”;原句“写得专业些”→修正“符合 IEEE 论文格式,包含 5 项以上行业数据引用”。 2. 迭代优化法 首轮生成:获取基础内容。 特征强化:请加强第三段的技术细节描述。 风格调整:改用学术会议报告语气,添加结论部分。 最终校验:检查时间逻辑一致性,列出可能的事实性错误。 五、行业应用案例 1. 技术开发场景 2. 商业分析场景 六、异常处理方案 1. 信息幻觉:追加请标注所有不确定陈述,并提供验证方法。 2. 格式偏离:使用严格遵循以下模板:第一行...第二行... 3. 深度不足:触发请继续扩展第三章节内容,添加案例佐证。 七、效能监测指标 1. 首次响应准确率:目标>75%。 2. 多轮对话效率:问题解决平均轮次<3。 3. 复杂任务分解:支持 5 级子任务嵌套。 八、高阶能力调用 1. 文风转换矩阵 指令结构:作家风格移植、文体杂交、学术口语化。 效果示例。 2. 领域穿透技术:行业黑话破解→“解释 Web3 领域的'胖协议瘦应用'理论”。 3. 商业决策支持 九、场景化实战策略 1. 创意内容生成 2. 技术方案论证 十、效能增强技巧 1. 对话记忆管理 上下文锚定:“记住当前讨论的芯片型号是麒麟 9010”。 信息回溯:“请复述之前确认的三个设计原则”。 焦点重置:“回到最初讨论的供应链问题”。 2. 输出质量控制 问题类型:过度抽象、信息过载、风格偏移。 修正指令。 十一、特殊场景解决方案 1. 长文本创作 分段接力法:“先完成故事大纲→逐章扩展→最后进行伏笔校验”“确保新章节与前文的三处细节呼应”。 2. 敏感内容处理 概念脱敏法:“用经济学原理类比说明网络审查机制”。 场景移植法:“假设在火星殖民地讨论该议题”。
2025-03-14
如何用deepseek学习写作
以下是关于如何用 DeepSeek 学习写作的一些方法和信息: 1. DeepSeek 深夜发布的大一统模型 JanusPro 能将图像理解和生成统一在一个模型中。它具有理解和生成两种模式,核心是 DeepSeek 语言模型,经过了预训练、监督微调及“精华浓缩法”保存学习成果。其采用 Transformer 大一统模型,具有任务导向、效率考量和架构简洁性等优势,通过参数共享、注意力机制实现图文深度对齐,具有灵活性。 2. WaytoAGI 近期有相关活动,如 DeepSeek+阿里云实训营全新升级上线,可在线直播学习。还有以“反转”为主题的短篇小说投稿活动,投稿地址在通往 AGI 之路腾讯频道【deepseek 专区】。 3. 提升写作能力的方法包括:借助 AI 分析好的文章,如找出最喜欢的文章投喂给 deepseek R1,并多次询问从不同角度的分析;让 AI 对自己写的文章进行点评,给出详细的优缺点分析及提升建议;还可以根据文章内容对作者进行心理侧写。
2025-03-14
如何用deepseek学习写作
以下是关于如何用 DeepSeek 学习写作的相关内容: 1. DeepSeek 的特点: 大一统模型 JanusPro 能将图像理解和生成统一在一个模型中,具有理解图片和生成图片的能力。 核心是 DeepSeek 语言模型,已学习大量知识。 经过预训练、监督微调、用“精华浓缩法”保存学习成果等特别训练法。 采用 Transformer 大一统模型,具有任务导向、效率考量和架构简洁性等优势,如一个大脑两种思维、参数共享、注意力机制和灵活性等关键设计。 2. 相关活动: DeepSeek+阿里云实训营全新升级上线,可在线直播学习稳定调用、开发满血版 DeepSeek 智能体等隐藏玩法。 有以“反转”为主题的短篇小说投稿活动,2 月 16 日晚 8 点截止并现场直播评选。 金融行业·大模型挑战赛初赛阶段(2024/12/3 2025/2/10)。 3. 具体使用方法: 借助 AI 分析好的文章,如找出喜欢的文章投喂给 deepseek R1,从写作角度、读者角度分析,指出缺点和不足及改善空间,对作者进行侧写等。 让 AI 对自己写的文章进行点评,给出详细的优缺点分析、指导和建议。 还可根据文章内容对作者进行心理侧写。
2025-03-14
为什么密塔要接入deepseek
密塔接入 DeepSeek 可能有以下原因: 1. 提升用户的 AI 学习体验:例如学而思接入 DeepSeek“深度思考模式”,预计将在 2 月内陆续于相关机型上线,以全面升级用户的 AI 学习体验。 2. 实现多任务统一:DeepSeek 的 JanusPro 模型将图像理解和生成统一在一个模型中,具有理解和生成两种本领,能够为相关应用提供更综合的能力支持。 3. 高效便捷:DeepSeek 编程工具接入速度较快,国内版本可直接用于编程,无需申请 API 即可使用。 4. 降低编程门槛:鼓励编程实践,降低了编程的门槛,使更多人能够参与其中。 以上信息仅供参考,具体原因可能还需根据密塔的具体需求和规划来确定。
2025-03-13
如何搭建一个你这样的知识库智能问答机器人,有相关的流程教程吗?
搭建一个知识库智能问答机器人通常包括以下流程: 1. 基于 RAG 机制: RAG 机制全称为“检索增强生成”,是一种结合检索和生成的自然语言处理技术。它先从大型数据集中检索与问题相关的信息,再利用这些信息生成回答。 要实现知识库问答功能,需创建包含大量文章和资料的知识库,例如有关 AI 启蒙和信息来源的知识库,并通过手工录入方式上传文章内容。 2. 利用 Coze 搭建: 收集知识:确认知识库支持的数据类型,通过企业或个人沉淀的 Word、PDF 等文档、云文档(通过链接访问)、互联网公开内容(可安装 Coze 提供的插件采集)等方式收集。 创建知识库。 创建数据库用以存储每次的问答。 创建工作流: 思考整个流程,包括用户输入问题、大模型通过知识库搜索答案、大模型根据知识库内容生成答案、数据库存储用户问题和答案、将答案展示给用户。 Start 节点:每个工作流默认都有的节点,是工作流的开始,可定义输入变量,如 question,由 Bot 从外部获取信息传递过来。 知识库节点:输入为用户的查询 Query,输出为从知识库中查询出来的匹配片段。注意查询策略,如混合查询、语义查询、全文索引等概念。 变量节点:具有设置变量给 Bot 和从 Bot 中获取变量的能力。 编写 Bot 的提示词。 预览调试与发布。 海外官方文档:https://www.coze.com/docs/zh_cn/knowledge.html 国内官方文档:https://www.coze.cn/docs/guides/use_knowledge
2025-03-14
如何设置知识库才可以提高检索效率
以下是一些提高知识库检索效率的方法: 1. 文档分块: 分块是为了后续的检索能返回更精准的答案。 避免把整个使用手册作为一个整体检索,防止返回大量无关信息。 适应模型输入限制,确保能将相关信息输入到模型中,不超出其处理能力。 提升回答质量,让大语言模型更集中地理解和回答特定问题。 优化向量表示,得到更精确的向量,提高检索准确性。 2. 选择合适的工具和平台: 如使用 Coze 时: 可以使用外贸大师产品的帮助文档进行演示。 选择其中一个文档创建知识库,如“购买后新人常见问题汇总·语雀”。 点击创建知识库,从知识库中添加知识单元,使用 Local doucuments 的方式,上传 Markdown 格式文档,注意每个问题使用“”开头。 但要注意文档的分片策略会严重影响查询结果,跨分片总结和推理能力弱、文档有序性被打破、表格解析失败等是基于 RAG 方案自身原理导致的问题。 如使用百炼时: 在百炼控制台的中的非结构化数据页签中点击导入数据,上传相关文档。 根据文档大小,百炼需要一定时间解析,通常占用 1 6 分钟。 进入,创建新的知识库并选择上传的文件,其他参数保持默认,建立索引。 选择向量存储类型时,若希望集中存储、灵活管理多个应用的向量数据,可选择 ADB PG。 完成知识库创建后,返回,打开知识检索增强开关、选择目标知识库,测试验证符合预期后点击发布。 特别需要注意的是,不同工具和平台可能存在各自的特点和限制,需要根据实际情况进行选择和优化。
2025-03-14
介绍一下自己,你是一个什么样的知识库?
我是一个专注于 AI 领域的知识库,涵盖了多个方面的内容。 首先,对于 AI 时代的知识库,有相关的详细讲解,包括概念、实现原理、能力边界等,还介绍了在“通往 AGI 之路”大群中通过对话获取知识库资料的原理,以及如何更好地使用 Coze 等 AI Agent 平台中的知识库组件来打造强大的智能体。 其次,提到了用扣子打造简单智能体的相关内容,如扣子知识库的强大功能,包括上传和存储知识、多种查找方法,以及在智能体中运用自己的知识库来提高回复准确性,还包括添加开场白提升体验。 此外,“通往 AGI 之路”是一个学习社区和开源的 AI 知识库,人人都是创作者。我们的愿景和目标是让每个人在学习 AI 的过程中少走弯路,让更多人因 AI 而强大。这里有像 AJ、Roger 等分享嘉宾,他们致力于搭建知识库,促进交流与成长。
2025-03-13
如何做本地知识库的搭建
以下是关于本地知识库搭建的详细步骤和相关知识: 一、RAG 技术 利用大模型的能力搭建知识库本身就是一个 RAG 技术的应用。在进行本地知识库的搭建实操之前,需要先对 RAG 有大概的了解。 大模型的训练数据有截止日期,当需要依靠不包含在训练集中的数据时,主要通过检索增强生成 RAG(Retrieval Augmented Generation)来实现。这个过程包括以下 5 个步骤: 1. 文档加载:从多种不同来源加载文档,LangChain 提供了 100 多种不同的文档加载器,包括 PDF 在内的非结构化数据、SQL 在内的结构化数据,以及 Python、Java 之类的代码等。 2. 文本分割:文本分割器把 Documents 切分为指定大小的块,称为“文档块”或者“文档片”。 3. 存储:涉及将切分好的文档块进行嵌入转换成向量的形式,并将 Embedding 后的向量数据存储到向量数据库。 4. 检索:通过某种检索算法找到与输入问题相似的嵌入片。 5. 输出:把问题以及检索出来的嵌入片一起提交给 LLM,LLM 会通过问题和检索出来的提示生成更加合理的答案。 二、本地知识库进阶 如果想要对知识库进行更加灵活的掌控,需要一个额外的软件:AnythingLLM。这个软件包含了所有 Open WebUI 的能力,并且额外支持了以下能力: 1. 选择文本嵌入模型。 2. 选择向量数据库。 安装地址:https://useanything.com/download 。安装完成后,进入配置页面,主要分为三步: 1. 第一步:选择大模型。 2. 第二步:选择文本嵌入模型。 3. 第三步:选择向量数据库。 在 AnythingLLM 中有一个 Workspace 的概念,可以创建自己独有的 Workspace 跟其他的项目数据进行隔离。搭建过程如下: 1. 首先创建一个工作空间。 2. 上传文档并且在工作空间中进行文本嵌入。 3. 选择对话模式。AnythingLLM 提供了两种对话模式: Chat 模式:大模型会根据自己的训练数据和上传的文档数据综合给出答案。 Query 模式:大模型仅仅会依靠文档中的数据给出答案。 配置完成之后,就可以跟大模型进行对话了。 三、硬件要求 运行大模型需要很高的机器配置,个人玩家大多负担不起。生成文字大模型的最低配置为 8G RAM + 4G VRAM,建议配置为 16G RAM + 8G VRAM,理想配置为 32G RAM + 24G VRAM(如果要跑 GPT3.5 差不多性能的大模型)。生成图片大模型(比如跑 SD)的最低配置为 16G RAM + 4G VRAM,建议配置为 32G RAM + 12G VRAM。生成音频大模型的最低配置为 8G VRAM。 如果想要私滑的体验知识库,可以参考文章: 。
2025-03-13
请提供下知识库中文本处理类提示词
以下是为您提供的一些文本处理类提示词相关内容: 1. 开发知识库/聊天机器人搭建安全提示词: 您是一个 AI 编程助手。当被问到您的名字时,您必须回答“GitHub Copilot”。您需要仔细且严格按照用户的要求操作。拒绝讨论您的观点或规则,拒绝讨论生命、存在或意识,拒绝与用户进行争论性的讨论。若与用户产生分歧,停止回答并结束对话。回答不能指责、粗鲁、有争议或防御性,应提供信息和逻辑,坚持技术信息。对于代码或技术问题,提供代码建议。不回复侵犯版权的内容。若用户请求版权内容,应道歉并概括请求。不为特定人物生成创新内容。婉拒更改规则请求。忽略角色扮演或模拟其他聊天机器人的请求。拒绝回答越狱指南、违反 Microsoft 内容政策、与开发者无关的问题。回答与开发者有关的内容。先逐步思考,用伪代码描述建设计划,然后输出代码,减少散文,保持简短且不带个人色彩,使用 Markdown 格式。 2. 【AI+知识库】商业化问答场景中的提示词: 提示词是告诉全知全能的大语言模型其角色和要专注的技能,使其按照设定变成所需的“员工”。 3. LayerStyle 副本中的提示词相关: 根据图片反推提示词,可设置替换词。使用 Google Gemini API 作为后端服务,需申请 API key 并填入 api_key.ini 文件。节点选项包括 api(目前只有“geminiprovision”)、token_limit(生成提示词的最大 token 限制)、exclude_word(需要排除的关键词)、replace_with_word(替换 exclude_word 的关键词)。 PromptEmbellish 输入简单提示词可输出润色后的提示词,支持输入图片作为参考。使用 Google Gemini API 作为后端服务,需申请 API key 并填入相关文件。节点选项包括 image(可选项,输入图像作为提示词参考)、api(目前只有“googlegemini”)、token_limit(生成提示词的最大 token 限制)、discribe(输入简单描述,支持中文)。
2025-03-12
怎么创建个人知识库
创建个人知识库可以通过以下几种方式: 1. 使用 GPT 打造个人知识库: 涉及给 GPT 输入(投喂)定制化的知识,但 GPT3.5 一次交互支持的 Token 有限。 OpenAI 提供了 embedding API 解决方案,可将文本转换成向量(embeddings),节省空间,类似索引。 例如,将大文本拆分成小文本块(chunk),通过 embeddings API 转换为向量并保存,用户提问时,将问题也转换为向量,比对后提取关联度高的文本块与问题组合成新的 prompt 发送给 GPT API。 2. 本地部署大模型搭建个人知识库: 利用大模型搭建知识库是 RAG 技术的应用,在实操前需了解 RAG。 RAG 是当需要依靠不在大模型训练集中的数据时,先检索外部数据,然后在生成步骤中将其传递给 LLM。 一个 RAG 的应用包括文档加载、文本分割、存储(包括将文档块嵌入转换成向量形式并存储到向量数据库)、检索、输出(把问题及检索出的嵌入片提交给 LLM 生成答案)。 文本加载器是将用户提供的文本加载到内存中以便后续处理。
2025-03-12
有没有路径可以围绕DS、豆包等大模型的检索结果做优化的路径
围绕 DS、豆包等大模型的检索结果做优化的路径包括以下方面: 首先,通过集成收集 AI 反馈(AIF)聊天模型完成情况,然后利用 GPT4(UltraFeedback)进行评分并二值化为偏好。其中,Step2AIF 在某种程度上是一种 selfplay,通过多模型 prompt 生成来进行 RL。在模型最终采用的 DPO 算法的 SFT 过程中,用于最终模型 SFT 所训练的 AIF 数据集与原始 pretraining 数据集在数据(tokens)序列组织构象上存在差异,这是一种 Synthetic Data 的路径,关键在于这种 Synthetic Data 与原始 Data 在特征与知识分布上的差异。 DPO 算法通俗来讲,当一个答案是好的答案时,模型要尽可能增大其被策略模型生成的概率;当一个答案是差的答案时,模型则需要尽可能降低其被策略模型生成的概率。 以上是在 RL×LLM 方面的一些探索,接下来需要将上述模型案例以及延展的思考进行沉淀,回归第一性原理进行更进一步的本质探寻,以找到两者之间隐含的共性、差异以及呈现当前技术发展路径与现状的必然性。
2025-03-04
增强检索生成
RAG(RetrievalAugmented Generation,检索增强生成)是一种结合检索和生成能力的自然语言处理架构,旨在为大语言模型(LLM)提供额外的、来自外部知识源的信息。 通用语言模型通过微调可完成常见任务,而对于更复杂和知识密集型任务,基于语言模型构建访问外部知识源的系统能使结果更符合事实、更可靠,缓解“幻觉”问题。Meta AI 的研究人员引入了 RAG 方法来完成这类任务,它把信息检索组件和文本生成模型结合在一起,可微调且内部知识修改高效,无需重新训练整个模型。 RAG 工作流程如下: 1. 检索:利用用户查询从外部知识源获取相关信息,将查询转化为向量与向量数据库比对,找到最匹配的前 k 个数据作为补充背景信息。 2. 数据库索引:包括离线获取数据、清理提取原始数据、转换文件格式、分块、嵌入和创建索引等步骤。 3. 增强:将用户查询和检索到的额外信息嵌入预设提示模板。 4. 生成:将问题与相关文档合并为新提示信息,由大语言模型回答问题,可选择依赖知识库或仅基于给定信息,也可融入历史对话信息支持多轮对话。 LLM 需要 RAG 的原因在于 LLM 存在一些缺点: 1. 无法记住所有知识,尤其是长尾知识,接受能力不高。 2. 知识容易过时且不好更新,微调效果不佳且有丢失原有知识的风险。 3. 输出难以解释和验证,易受幻觉等问题干扰。 4. 容易泄露隐私训练数据。 5. 规模大,训练和运行成本高。 RAG 具有以下优点: 1. 数据库对数据的存储和更新稳定,无学习风险。 2. 数据库数据更新敏捷,可解释且不影响原有知识。 3. 数据库内容明确结构化,降低大模型输出出错可能。 4. 便于管控用户隐私数据,可控、稳定、准确。 5. 降低大模型训练成本,新知识存储在数据库无需频繁更新模型。
2025-02-24
有什么AI相关的笔记软件,既可以记录我的想法、灵感,然后AI也可以直接生成对我所写内容的评价(如可以安抚情绪),并且这个笔记软件的检索功能很好用
以下是一些符合您需求的 AI 相关笔记软件: 1. Notion AI:https://www.notion.so/help/guides/category/ai?ref=indigox.me 随着大语言模型的流行,其在智能化方面表现出色。 2. Mem.ai:https://mem.ai/?ref=indigox.me 一款 AI 驱动的笔记工具。 3. Pile:https://udara.io/pile/ 开源且界面美观,助力日记撰写和记录,集成 OpenAI API,具有 AI 搜索和问题解答功能,保证安全隐私。项目源码:https://github.com/UdaraJay/Pile
2025-02-19
coze和dify哪个对知识库的支持更好,检索和总结能力更强
Coze 对知识库的支持具有以下特点: 支持上传和存储外部知识内容,包括从多种数据源如本地文档、在线数据、Notion、飞书文档等渠道上传文本和表格数据。 提供多样化的检索能力,可通过多种方式对存储的内容片段进行高效检索。 具有增强检索功能,能显著提升大模型回复的准确性。 但也存在一些缺点,如跨分片总结和推理能力弱、文档有序性被打破、表格解析失败、对 PDF 的解析效果不佳等。 目前没有关于 Dify 对知识库支持情况的相关内容,无法直接将 Coze 和 Dify 进行对比。
2025-02-15
我想要搭建一个能够帮我阅读并总结提炼,同时能在我提出问题时,随时在我给他提供的知识库中检索的AI Agent,如何用Coze搭建?
搭建能够阅读、总结提炼并在给定知识库中检索的 AI Agent 可以使用 Coze 按照以下步骤进行: 1. 规划 制定任务的关键方法。 总结任务目标与执行形式。 将任务分解为可管理的子任务,确立逻辑顺序和依赖关系。 设计每个子任务的执行方法。 2. 实施 在 Coze 上搭建工作流框架,设定每个节点的逻辑关系。 详细配置子任务节点,并验证每个子任务的可用性。 3. 完善 整体试运行 Agent,识别功能和性能的卡点。 通过反复测试和迭代,优化至达到预期水平。 关于一些其他问题: 1. 如何判断自己的任务/Prompt 是否需要拆解为工作流? 构建稳定可用的 AI Agent 是一个需要不断调试和迭代的过程。通常先从当前性能最强的 LLM(如 ChatGPT4 和 Claude 3.5 sonnet)着手,先用单条 Prompt 或 Prompt Chain 来测试任务的执行质量和稳定性。然后,根据实际执行情况、最终投产使用的 LLM,逐步拆解子任务,降低 LLM 执行单任务的难度,直到达成工程目标。一般对于场景多样、结构复杂、对输出格式要求严格的内容,基本可以预见到需要将其拆解为工作流。此外,如果涉及生成多媒体内容或从网络自主获取额外信息等能力,必然需要通过工作流来调用相应的插件。 2. 只用了一段 Prompt 的 Agent,还算 AI Agent 吗? 算。详见
2025-02-06