Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

deepseek适合做ai知识库检索工具吗

Answer

DeepSeek 是基于 AI 模型的产品,只是品牌名,需要搭配具体模型,如 DeepSeek V3(类 GPT-4o)和 DeepSeek R1(类 OpenAI o1)。

文本嵌入可用于实现高效的知识检索,相似或相关的字符串在嵌入空间中靠得更近,利用快速向量搜索算法,一个文本语料库可以被分割成块,给定的查询被嵌入后,能进行向量搜索找到最相关的嵌入文本块。

知识库就像 AI 的“活字典”,可以随时更新,例如包含最新新闻、科技发展、法律法规等内容,AI 遇到不确定问题时可从中检索相关信息给出更准确回答,像很火的 AI 搜索就是将整个互联网实时数据作为知识库。

但仅根据上述信息,不能明确判断 DeepSeek 是否适合做 AI 知识库检索工具,还需要综合考虑其具体性能、与您需求的匹配度等多方面因素。

Content generated by AI large model, please carefully verify (powered by aily)

References

目录:OpenAI 官方指南

如果作为输入的一部分提供,模型可以利用外部信息源。这可以帮助模型生成更明智和最新的响应。例如,如果用户询问有关特定电影的问题,将有关电影的高质量信息(例如演员、导演等)添加到模型的输入中可能会很有用。嵌入可用于实现高效的知识检索,以便在运行时将相关信息动态添加到模型输入中。文本嵌入是一个向量,可以衡量文本字符串之间的相关性。相似或相关的字符串将比不相关的字符串靠得更近。这一事实以及快速向量搜索算法的存在意味着嵌入可用于实现高效的知识检索。特别是,一个文本语料库可以被分割成块,每个块都可以被嵌入和存储。然后,给定的查询可以被嵌入,可以进行向量搜索,以找到与查询最相关的语料库的嵌入文本块(即,在嵌入空间中最接近的)。可以在[OpenAI Cookbook](https://github.com/openai/openai-cookbook/blob/main/examples/vector_databases/Using_vector_databases_for_embeddings_search.ipynb)中找到示例实现。[有关如何使用知识检索来最小化模型编造](https://platform.openai.com/docs/guides/gpt-best-practices/tactic-instruct-the-model-to-use-retrieved-knowledge-to-answer-queries)错误事实的可能性的示例,请参阅策略“指示模型使用检索到的知识来回答查询”。

宝玉 日报

Deep Research是基于AI模型的产品,使用GPT-4o、o3等推理模型,结合UI交互、搜索引擎等。DeepSeek只是品牌名,需要搭配具体模型,如DeepSeek V3(类GPT-4o)和DeepSeek R1(类OpenAI o1)。🔗[https://x.com/dotey/status/1886816305719681203](https://x.com/dotey/status/1886816305719681203)4⃣️📖比尔·盖茨新回忆录《Source Code》成长故事:从“怪胎少年”到微软创始人的经历。婚姻与财富:离婚后两年陷入低谷,如今与前甲骨文CEO遗孀宝拉·赫德交往。社交媒体担忧:认为社交平台已到危险“临界点”,尤其对青少年影响深远。对AI与科技的看法:更关注现实问题,而非“冷冻身体”或延长寿命研究。📖文章原文:🔗[https://www.thetimes.com/life-style/celebrity/article/bill-gates-interview-new-book-memoir-wh766b9bs](https://www.thetimes.com/life-style/celebrity/article/bill-gates-interview-new-book-memoir-wh766b9bs)📖完整译文:🔗[https://mp.weixin.qq.com/s/5QXrlyEsFLQAodF2xVmmZA?token=1639803888&lang=zh_CN](https://mp.weixin.qq.com/s/5QXrlyEsFLQAodF2xVmmZA?token=1639803888&lang=zh_CN)5⃣️🤖Figure机器人公司宣布退出OpenAI合作

胎教级教程:万字长文带你理解 RAG 全流程

活字典是针对知识库一个非常贴切的比喻还记得我们说过AI的知识会"过期"吗?解决这个问题的一个好方法就是给AI配备一个随时更新的"活字典",我们称之为知识库。知识库就像是AI可以随时查阅的百科全书。当AI遇到不确定的问题时,它可以从知识库中检索相关信息,从而给出更新、更准确的回答。比如,我们可以建立一个包含最新新闻、科技发展、法律法规等内容的知识库。这样,即使AI的基础模型没有得到更新,它也能通过查阅知识库来回答有关最新事件的问题。比如很火的AI搜索,其实就是将整个互联网的实时数据作为知识库,每次被询问时都可以通过搜索引擎获取最新的信息。旁白:你很激动,当你听到关于对RAG的解释的时候,你觉得你找到了一条正确的路。RAG也许可以帮你解决每天回答那些重复问题的困扰,你怀着激动的心情开始了RAG学习之旅

Others are asking
ai扩图
以下是关于 AI 扩图的相关知识: 星流一站式 AI 设计工具: 智能扩图:自动提取原图信息,智能地生成新的图像内容以填充扩展区域。 使用方法:选中图像进入扩展功能界面,拖动选区边框进行扩充区域选择。智能扩图参数包括提示词框(输入生成的区域的描述)、重绘风格(选择与放大图像相对应的风格,会提升扩图效果),其余参数默认即可。 高清放大:对图像进行尺寸放大,增加更多的细节,目前支持最大尺寸为 4K(40964096)。放大参数包括放大倍率、变化幅度、风格类型、细节丰富度、清晰度、相似度和提示词。 智能去背景:支持一键去除图片的背景。使用方法为选中图像,点击一键去背景。 【SD】最强控制插件 ControlNet: 以一张图为例,将其导入到图生图界面。根据情况选择大模型,如卡通类选择“revAnimated”,真实类选择“Realistic Vision”。图生图中重要的参数有缩放模式(选择“缩放后填充空白”)、尺寸(横向扩充增加宽度,纵向扩充增加高度)、单批数量(根据需求填写)、重绘幅度(加大到“0.8”以上)。 进行 ControlNet 的设置,升级到最新版本,将图片导入。启用插件,控制类型选择“局部重绘”,预处理器选择“inpaint_only+lama”,控制模式选择“更倾向 Controlnet”,缩放模式选择“缩放后填充空白”。为了让出图更统一,还可增加一个 reference_only 的通道巩固扩图风格。设置好后点击生成,选择满意的结果。 试验不同的图时,有时可通过反推提示词的方式增加文本控制。生成的图可能存在色差,需调整各项参数修正。 Stability AI 推出基于 Discord 的媒体生成和编辑工具: (扩图):在图像中插入其他内容以向任何方向填充空间,价格为 4 积分。
2025-03-15
关于教学的ai提示词
以下是关于教学的 AI 提示词的相关内容: 遵循最简化原则: 1. 内容长度限制:确保模型输出不超过用户设定的字数或信息量。 2. 内容类型限制:避免生成不恰当或不相关内容,可通过预设过滤规则实现。 3. 逻辑和一致性限制:增强模型理解和处理逻辑关系的能力。 4. 风格和语调限制:使模型输出符合特定写作风格或语调。 未遵循最简原则的情况: 1. “理解中文语义”这类描述无意义,因这是大模型基础设定。 2. “评估和打分文本质量”目标已包含打分任务,无需再提。 3. “提供文本改进建议”在目标中重复出现。 4. Markdown 格式错误,如“Profile:Goals:”结构错误,应将 Goals 放到 Role 层级下。 5. Initialization 部分可细化,如“明白以上要求后请回复:‘请提供需要打分的提示词:’”,更清晰指代用户下一句回复信息。 此外,写 Prompt 应先分析达成任务所需模块,且模块并非一成不变,需根据任务增减。同时注意: 1. 不需要包含作者信息,如 author、version 等。 2. 避免分类错误,如将输出错误分类到 Goals 目标,像“提供改进建议,以及改进原因”与“对用户的 Prompt 进行评分 1~10 分,10 分为满分”目标相似易造成困惑,应放到达成目标后的输出模块。 3. 注意拼写正确,如 Constrains 应拼写为 Constraints,限制条件要清晰且可被大模型执行。 以下是一些提示词模板的相关网站: 1. Majinai: 2. 词图: 3. Black Lily: 4. Danbooru 标签超市: 5. 魔咒百科词典: 6. AI 词汇加速器: 7. NovelAI 魔导书: 8. 鳖哲法典: 9. Danbooru tag: 10. AIBooru:
2025-03-15
在ai图像训练打标时,怎么让部分标签权重更大
在 AI 图像训练打标时,让部分标签权重更大的方法如下: 1. 在 Stable Diffusion 中,手动补充的特殊 tag 放在第一位,因为 tags 标签有顺序,最开始的 tag 权重最大,越靠后的 tag 权重越小。 2. 在 BooruDatasetTagManager 中采用方法二: 删除部分特征标签,如 All tags 中不该出现的错误识别的自动标签,Image tags 中作为特定角色的自带特征的标签,并将特征与 LoRA 做绑定。 完成所有优化删除后,点击左上角菜单 File>Save all changes 保存当前的设置。 此外,在 Stable Diffusion 训练数据集制作中还需注意: 1. 调用 Waifu Diffusion v1.4 模型需要安装特定版本(2.10.0)的 Tensorflow 库,在命令行输入相应命令完成版本检查与安装适配。 2. 进入到 SDTrain/finetune/路径下,运行相应代码获得 tag 自动标注,其中主要参数包括: batch_size:每次传入 Waifu Diffusion v1.4 模型进行前向处理的数据数量。 model_dir:加载的本地 Waifu Diffusion v1.4 模型路径。 remove_underscore:开启后将输出 tag 关键词中的下划线替换为空格。 general_threshold:设置常规 tag 关键词的筛选置信度。 character_threshold:设置特定人物特征 tag 关键词的筛选置信度。 caption_extension:设置 tag 关键词标签的扩展名。 max_data_loader_n_workers:设置大于等于 2,加速数据处理。
2025-03-15
AI应用总汇
以下是 AI 的一些应用场景: 1. 辅助创作与学习: AI 智能写作助手帮助用户快速生成高质量文本。 AI 语言学习助手、诗歌创作助手、书法字体生成器、漫画生成器等为用户的学习和创作提供支持。 2. 推荐与规划: AI 图像识别商品推荐、美食推荐平台、旅游行程规划器、时尚穿搭建议平台、智能投资顾问等,根据用户的需求和偏好为其推荐合适的产品、服务或制定个性化的计划。 3. 监控与预警: AI 宠物健康监测设备、家居安全监控系统、天气预报预警系统、医疗诊断辅助系统等,实时监测各种情况并提供预警。 4. 优化与管理: 办公自动化工具、物流路径优化工具、家居清洁机器人调度系统、金融风险评估工具等,提高工作效率和管理水平。 5. 销售与交易: AI 艺术作品生成器、书法作品销售平台、摄影作品销售平台、汽车销售平台、房地产交易平台等,为各类产品和服务提供销售渠道。 在具体的行业应用中: 1. 医疗保健: 医学影像分析:AI 用于分析医学图像,辅助诊断疾病。 药物研发:加速药物研发过程,识别潜在药物候选物和设计新治疗方法。 个性化医疗:分析患者数据,提供个性化治疗方案。 机器人辅助手术:控制手术机器人,提高手术精度和安全性。 2. 金融服务: 风控和反欺诈:识别和阻止欺诈行为,降低金融机构风险。 信用评估:评估借款人信用风险,帮助做出贷款决策。 投资分析:分析市场数据,辅助投资决策。 客户服务:提供 24/7 服务,回答常见问题。 3. 零售和电子商务: 产品推荐:分析客户数据,推荐可能感兴趣的产品。 搜索和个性化:改善搜索结果,提供个性化购物体验。 动态定价:根据市场需求调整产品价格。 聊天机器人:回答客户问题并解决问题。 4. 制造业: 预测性维护:预测机器故障,避免停机。 质量控制:检测产品缺陷,提高产品质量。 供应链管理:优化供应链,提高效率和降低成本。 机器人自动化:控制工业机器人,提高生产效率。 5. 交通运输:(此处未提供具体应用内容)
2025-03-15
最好用的AI应用有哪些
以下是一些好用的 AI 应用: 1. AI 摄影参数调整助手:使用图像识别和数据分析技术,常见于摄影 APP 中,可根据场景自动调整摄影参数,市场规模达数亿美元。 2. AI 音乐情感分析平台:运用机器学习和音频处理技术,有音乐情感分析软件,能分析音乐的情感表达,市场规模达数亿美元。 3. AI 家居智能照明系统:基于物联网技术和机器学习,如小米智能照明系统,实现家居照明的智能化控制,市场规模达数十亿美元。 4. AI 金融风险预警平台:借助数据分析和机器学习,有金融风险预警软件,可提前预警金融风险,市场规模达数十亿美元。 5. AI 旅游路线优化平台:通过数据分析和自然语言处理,马蜂窝有路线优化功能,能根据用户需求优化旅游路线,市场规模达数亿美元。 6. AI 游戏道具推荐系统:利用数据分析和机器学习,常见于游戏内商城推荐功能,可根据玩家需求推荐游戏道具,市场规模达数亿美元。 7. AI 天气预报分时服务:采用数据分析和机器学习,如彩云天气分时预报,提供精准的分时天气预报,市场规模达数亿美元。 8. AI 医疗病历分析平台:依靠数据分析和自然语言处理,医渡云有病历分析系统,能分析医疗病历,辅助诊断,市场规模达数十亿美元。 9. AI 会议发言总结工具:使用自然语言处理和机器学习,讯飞听见有会议总结功能,可自动总结会议发言内容,市场规模达数亿美元。 10. AI 书法作品临摹辅助工具:借助图像识别和数据分析,有书法临摹软件,能帮助书法爱好者进行临摹,市场规模达数亿美元。 11. AI 菜谱口味调整工具:运用自然语言处理和数据分析,如下厨房口味调整功能,可根据用户反馈调整菜谱口味,市场规模达数亿美元。 12. AI 语言学习纠错平台:通过自然语言处理和机器学习,英语流利说有纠错功能,能帮助语言学习者纠正错误,市场规模达数十亿美元。 13. AI 电影剧情分析系统:利用数据分析和自然语言处理,豆瓣电影有剧情分析工具,能分析电影剧情,提供深度解读,市场规模达数亿美元。 14. AI 办公文件分类系统:凭借数据分析和机器学习,腾讯文档有分类功能,可自动分类办公文件,方便管理,市场规模达数亿美元。 15. AI 美容护肤方案定制平台:基于图像识别和数据分析,美丽修行有定制方案功能,能根据用户肤质定制护肤方案,市场规模达数亿美元。
2025-03-15
请列出目前最好用的AI应用提示词
以下是一些目前较好用的 AI 应用提示词: 1. 让 Claude 3.5 摆脱循环的提示技巧:在模型陷入重复或逻辑僵局时,使用提示词让其先进行多步、多角度思考,输出十段左右分析,再转化为代码实现。优势在于避免错误方向的持续生成,促使模型输出新的思考过程。注意如果模型输出内容已过于冗杂,建议修改原始提示词。参考链接: 2. AI 对程序员工作的影响分析:AI 可代替的部分包括代码生成、补全、分析问题和数据提取、辅助架构设计文档等;AI 无法代替的部分有需求分析、复杂项目拆分、线上问题排查、调试及安全性保障。建议专业程序员通过 AI 提升效率,但非专业人士难以依赖 AI 完成复杂任务,需注重自身技能提升和架构设计能力。参考链接: 3. AI 应用场景中的访谈内容真实性分析:从“自相矛盾”“时间线”“常识性冲突”角度,分析访谈内容的内部一致性,并结合常识推测可能存在夸大或不实之处。应用价值在于适合验证新闻、访谈或声明的真实性,发现潜在问题。参考链接: 此外,在 Apple Intelligence 中,如“有用的邮件助理”AI 机器人被指示如何根据邮件内容提出一系列问题,还包括“请将答案限制在 50 个单词以内。不要产生或编造虚假信息。”等提示。 在通往 AGI 之路知识库中,也有众多与提示词相关的内容,如之前社区测试中有关夫妻相的有趣提示词测试,还有 midjourney 提示词、股市卡片、解压缩等众多内容。此外有最佳实践、方法论、论文精读,提到刘海写伪提示词等技巧,吴文达老师讲 prompt 较好,还有 open i 官方提示,博主列出的 6 大策略吃透有助于写提示词。
2025-03-15
deepseek
DeepSeek 是一家具有独特特点和影响力的公司: 1. 其秘方具有硅谷风格: 不是“中国式创新”的产物,不能简单地将其比喻成“AI 界的拼多多”或认为其秘方只是多快好省。 早在 2024 年 5 月 DeepSeekV2 发布时,就以多头潜在注意力机制(MLA)架构的创新在硅谷引发轰动。 是中国最全球化的 AI 公司之一,赢得全球同行甚至对手尊重的秘方也是硅谷风格。 2. V3 可能是 DeepSeek 的 GPT3 时刻,未来发展充满未知但值得期待。 3. 关于提示词 HiDeepSeek: 效果对比:可通过 Coze 做小测试并对比。 使用方法:包括搜索网站、点击“开始对话”、发送装有提示词的代码、阅读开场白后正式开始对话等步骤。 设计思路:将 Agent 封装成 Prompt 并储存于文件以减轻调试负担,实现联网和深度思考功能,优化输出质量,设计阈值系统,用 XML 进行规范设定等。 完整提示词:v 1.3。 特别鸣谢:李继刚的【思考的七把武器】提供思考方向,Thinking Claude 是设计灵感来源,Claude 3.5 Sonnet 是得力助手。
2025-03-14
我需要用deepseek生成参考文献,我需要指令
以下是关于 DeepSeek 生成参考文献的相关指令: 1. 基础指令框架: 四要素模板:如果不知道如何表达,还是可以套用框架指令。 格式控制语法:强制结构使用```包裹格式要求,占位符标记用{{}}标注需填充内容,优先级符号>表示关键要求,!表示禁止项。 2. 进阶控制技巧: 思维链引导:分步标记法,如请逐步思考:1.问题分析→2.方案设计→3.风险评估;苏格拉底式追问,在得出最终结论前,请先列举三个可能存在的认知偏差。 知识库调用:领域限定指令,如基于 2023 版中国药典,说明头孢类药物的配伍禁忌;文献引用模式,如以 Nature 2022 年发表的论文为参考,解释 CRISPRCas9 最新突破。 3. 高级调试策略: 模糊指令优化:对于宽泛需求,添加维度约束;对于主观表述,量化标准。 迭代优化法:首轮生成获取基础内容,特征强化加强某段的技术细节描述,风格调整改用特定语气并添加结论部分,最终校验检查时间逻辑一致性和可能的事实性错误。 希望这些信息对您有所帮助。
2025-03-14
deepseek论文指令
以下是关于 DeepSeek 提示词的详细内容: 一、核心原理认知 1. AI 特性定位 多模态理解:支持文本/代码/数学公式混合输入。 动态上下文:对话式连续记忆(约 8K tokens 上下文窗口,换算成汉字是 4000 字左右)。 任务适应性:可切换创意生成/逻辑推理/数据分析模式。 2. 系统响应机制 采用意图识别+内容生成双通道。 自动检测 prompt 中的任务类型/输出格式/知识范围。 反馈敏感度:对位置权重(开头/结尾)、符号强调敏感。 二、基础指令框架 1. 四要素模板 2. 格式控制语法 强制结构:使用```包裹格式要求。 占位符标记:用{{}}标注需填充内容。 优先级符号:>表示关键要求,!表示禁止项。 三、进阶控制技巧 1. 思维链引导 分步标记法:请逐步思考:1.问题分析→2.方案设计→3.风险评估。 苏格拉底式追问:在得出最终结论前,请先列举三个可能存在的认知偏差。 2. 知识库调用 领域限定指令:基于 2023 版中国药典,说明头孢类药物的配伍禁忌。 文献引用模式:以 Nature 2022 年发表的论文为参考,解释 CRISPRCas9 最新突破。 3. 多模态输出 四、高级调试策略 1. 模糊指令优化 问题类型:宽泛需求、主观表述。 修正方案:添加维度约束、量化标准。 示例对比:原句“写小说”→修正“创作以 AI 觉醒为背景的悬疑短篇,采用多视角叙事结构”;原句“写得专业些”→修正“符合 IEEE 论文格式,包含 5 项以上行业数据引用”。 2. 迭代优化法 首轮生成:获取基础内容。 特征强化:请加强第三段的技术细节描述。 风格调整:改用学术会议报告语气,添加结论部分。 最终校验:检查时间逻辑一致性,列出可能的事实性错误。 五、行业应用案例 1. 技术开发场景 2. 商业分析场景 六、异常处理方案 1. 信息幻觉:追加请标注所有不确定陈述,并提供验证方法。 2. 格式偏离:使用严格遵循以下模板:第一行...第二行... 3. 深度不足:触发请继续扩展第三章节内容,添加案例佐证。 七、效能监测指标 1. 首次响应准确率:目标>75%。 2. 多轮对话效率:问题解决平均轮次<3。 3. 复杂任务分解:支持 5 级子任务嵌套。 八、高阶能力调用 1. 文风转换矩阵 指令结构:作家风格移植、文体杂交、学术口语化。 效果示例。 2. 领域穿透技术:行业黑话破解→“解释 Web3 领域的'胖协议瘦应用'理论”。 3. 商业决策支持 九、场景化实战策略 1. 创意内容生成 2. 技术方案论证 十、效能增强技巧 1. 对话记忆管理 上下文锚定:“记住当前讨论的芯片型号是麒麟 9010”。 信息回溯:“请复述之前确认的三个设计原则”。 焦点重置:“回到最初讨论的供应链问题”。 2. 输出质量控制 问题类型:过度抽象、信息过载、风格偏移。 修正指令。 十一、特殊场景解决方案 1. 长文本创作 分段接力法:“先完成故事大纲→逐章扩展→最后进行伏笔校验”“确保新章节与前文的三处细节呼应”。 2. 敏感内容处理 概念脱敏法:“用经济学原理类比说明网络审查机制”。 场景移植法:“假设在火星殖民地讨论该议题”。
2025-03-14
如何用deepseek学习写作
以下是关于如何用 DeepSeek 学习写作的一些方法和信息: 1. DeepSeek 深夜发布的大一统模型 JanusPro 能将图像理解和生成统一在一个模型中。它具有理解和生成两种模式,核心是 DeepSeek 语言模型,经过了预训练、监督微调及“精华浓缩法”保存学习成果。其采用 Transformer 大一统模型,具有任务导向、效率考量和架构简洁性等优势,通过参数共享、注意力机制实现图文深度对齐,具有灵活性。 2. WaytoAGI 近期有相关活动,如 DeepSeek+阿里云实训营全新升级上线,可在线直播学习。还有以“反转”为主题的短篇小说投稿活动,投稿地址在通往 AGI 之路腾讯频道【deepseek 专区】。 3. 提升写作能力的方法包括:借助 AI 分析好的文章,如找出最喜欢的文章投喂给 deepseek R1,并多次询问从不同角度的分析;让 AI 对自己写的文章进行点评,给出详细的优缺点分析及提升建议;还可以根据文章内容对作者进行心理侧写。
2025-03-14
如何用deepseek学习写作
以下是关于如何用 DeepSeek 学习写作的相关内容: 1. DeepSeek 的特点: 大一统模型 JanusPro 能将图像理解和生成统一在一个模型中,具有理解图片和生成图片的能力。 核心是 DeepSeek 语言模型,已学习大量知识。 经过预训练、监督微调、用“精华浓缩法”保存学习成果等特别训练法。 采用 Transformer 大一统模型,具有任务导向、效率考量和架构简洁性等优势,如一个大脑两种思维、参数共享、注意力机制和灵活性等关键设计。 2. 相关活动: DeepSeek+阿里云实训营全新升级上线,可在线直播学习稳定调用、开发满血版 DeepSeek 智能体等隐藏玩法。 有以“反转”为主题的短篇小说投稿活动,2 月 16 日晚 8 点截止并现场直播评选。 金融行业·大模型挑战赛初赛阶段(2024/12/3 2025/2/10)。 3. 具体使用方法: 借助 AI 分析好的文章,如找出喜欢的文章投喂给 deepseek R1,从写作角度、读者角度分析,指出缺点和不足及改善空间,对作者进行侧写等。 让 AI 对自己写的文章进行点评,给出详细的优缺点分析、指导和建议。 还可根据文章内容对作者进行心理侧写。
2025-03-14
为什么密塔要接入deepseek
密塔接入 DeepSeek 可能有以下原因: 1. 提升用户的 AI 学习体验:例如学而思接入 DeepSeek“深度思考模式”,预计将在 2 月内陆续于相关机型上线,以全面升级用户的 AI 学习体验。 2. 实现多任务统一:DeepSeek 的 JanusPro 模型将图像理解和生成统一在一个模型中,具有理解和生成两种本领,能够为相关应用提供更综合的能力支持。 3. 高效便捷:DeepSeek 编程工具接入速度较快,国内版本可直接用于编程,无需申请 API 即可使用。 4. 降低编程门槛:鼓励编程实践,降低了编程的门槛,使更多人能够参与其中。 以上信息仅供参考,具体原因可能还需根据密塔的具体需求和规划来确定。
2025-03-13
如何搭建一个你这样的知识库智能问答机器人,有相关的流程教程吗?
搭建一个知识库智能问答机器人通常包括以下流程: 1. 基于 RAG 机制: RAG 机制全称为“检索增强生成”,是一种结合检索和生成的自然语言处理技术。它先从大型数据集中检索与问题相关的信息,再利用这些信息生成回答。 要实现知识库问答功能,需创建包含大量文章和资料的知识库,例如有关 AI 启蒙和信息来源的知识库,并通过手工录入方式上传文章内容。 2. 利用 Coze 搭建: 收集知识:确认知识库支持的数据类型,通过企业或个人沉淀的 Word、PDF 等文档、云文档(通过链接访问)、互联网公开内容(可安装 Coze 提供的插件采集)等方式收集。 创建知识库。 创建数据库用以存储每次的问答。 创建工作流: 思考整个流程,包括用户输入问题、大模型通过知识库搜索答案、大模型根据知识库内容生成答案、数据库存储用户问题和答案、将答案展示给用户。 Start 节点:每个工作流默认都有的节点,是工作流的开始,可定义输入变量,如 question,由 Bot 从外部获取信息传递过来。 知识库节点:输入为用户的查询 Query,输出为从知识库中查询出来的匹配片段。注意查询策略,如混合查询、语义查询、全文索引等概念。 变量节点:具有设置变量给 Bot 和从 Bot 中获取变量的能力。 编写 Bot 的提示词。 预览调试与发布。 海外官方文档:https://www.coze.com/docs/zh_cn/knowledge.html 国内官方文档:https://www.coze.cn/docs/guides/use_knowledge
2025-03-14
如何设置知识库才可以提高检索效率
以下是一些提高知识库检索效率的方法: 1. 文档分块: 分块是为了后续的检索能返回更精准的答案。 避免把整个使用手册作为一个整体检索,防止返回大量无关信息。 适应模型输入限制,确保能将相关信息输入到模型中,不超出其处理能力。 提升回答质量,让大语言模型更集中地理解和回答特定问题。 优化向量表示,得到更精确的向量,提高检索准确性。 2. 选择合适的工具和平台: 如使用 Coze 时: 可以使用外贸大师产品的帮助文档进行演示。 选择其中一个文档创建知识库,如“购买后新人常见问题汇总·语雀”。 点击创建知识库,从知识库中添加知识单元,使用 Local doucuments 的方式,上传 Markdown 格式文档,注意每个问题使用“”开头。 但要注意文档的分片策略会严重影响查询结果,跨分片总结和推理能力弱、文档有序性被打破、表格解析失败等是基于 RAG 方案自身原理导致的问题。 如使用百炼时: 在百炼控制台的中的非结构化数据页签中点击导入数据,上传相关文档。 根据文档大小,百炼需要一定时间解析,通常占用 1 6 分钟。 进入,创建新的知识库并选择上传的文件,其他参数保持默认,建立索引。 选择向量存储类型时,若希望集中存储、灵活管理多个应用的向量数据,可选择 ADB PG。 完成知识库创建后,返回,打开知识检索增强开关、选择目标知识库,测试验证符合预期后点击发布。 特别需要注意的是,不同工具和平台可能存在各自的特点和限制,需要根据实际情况进行选择和优化。
2025-03-14
介绍一下自己,你是一个什么样的知识库?
我是一个专注于 AI 领域的知识库,涵盖了多个方面的内容。 首先,对于 AI 时代的知识库,有相关的详细讲解,包括概念、实现原理、能力边界等,还介绍了在“通往 AGI 之路”大群中通过对话获取知识库资料的原理,以及如何更好地使用 Coze 等 AI Agent 平台中的知识库组件来打造强大的智能体。 其次,提到了用扣子打造简单智能体的相关内容,如扣子知识库的强大功能,包括上传和存储知识、多种查找方法,以及在智能体中运用自己的知识库来提高回复准确性,还包括添加开场白提升体验。 此外,“通往 AGI 之路”是一个学习社区和开源的 AI 知识库,人人都是创作者。我们的愿景和目标是让每个人在学习 AI 的过程中少走弯路,让更多人因 AI 而强大。这里有像 AJ、Roger 等分享嘉宾,他们致力于搭建知识库,促进交流与成长。
2025-03-13
如何做本地知识库的搭建
以下是关于本地知识库搭建的详细步骤和相关知识: 一、RAG 技术 利用大模型的能力搭建知识库本身就是一个 RAG 技术的应用。在进行本地知识库的搭建实操之前,需要先对 RAG 有大概的了解。 大模型的训练数据有截止日期,当需要依靠不包含在训练集中的数据时,主要通过检索增强生成 RAG(Retrieval Augmented Generation)来实现。这个过程包括以下 5 个步骤: 1. 文档加载:从多种不同来源加载文档,LangChain 提供了 100 多种不同的文档加载器,包括 PDF 在内的非结构化数据、SQL 在内的结构化数据,以及 Python、Java 之类的代码等。 2. 文本分割:文本分割器把 Documents 切分为指定大小的块,称为“文档块”或者“文档片”。 3. 存储:涉及将切分好的文档块进行嵌入转换成向量的形式,并将 Embedding 后的向量数据存储到向量数据库。 4. 检索:通过某种检索算法找到与输入问题相似的嵌入片。 5. 输出:把问题以及检索出来的嵌入片一起提交给 LLM,LLM 会通过问题和检索出来的提示生成更加合理的答案。 二、本地知识库进阶 如果想要对知识库进行更加灵活的掌控,需要一个额外的软件:AnythingLLM。这个软件包含了所有 Open WebUI 的能力,并且额外支持了以下能力: 1. 选择文本嵌入模型。 2. 选择向量数据库。 安装地址:https://useanything.com/download 。安装完成后,进入配置页面,主要分为三步: 1. 第一步:选择大模型。 2. 第二步:选择文本嵌入模型。 3. 第三步:选择向量数据库。 在 AnythingLLM 中有一个 Workspace 的概念,可以创建自己独有的 Workspace 跟其他的项目数据进行隔离。搭建过程如下: 1. 首先创建一个工作空间。 2. 上传文档并且在工作空间中进行文本嵌入。 3. 选择对话模式。AnythingLLM 提供了两种对话模式: Chat 模式:大模型会根据自己的训练数据和上传的文档数据综合给出答案。 Query 模式:大模型仅仅会依靠文档中的数据给出答案。 配置完成之后,就可以跟大模型进行对话了。 三、硬件要求 运行大模型需要很高的机器配置,个人玩家大多负担不起。生成文字大模型的最低配置为 8G RAM + 4G VRAM,建议配置为 16G RAM + 8G VRAM,理想配置为 32G RAM + 24G VRAM(如果要跑 GPT3.5 差不多性能的大模型)。生成图片大模型(比如跑 SD)的最低配置为 16G RAM + 4G VRAM,建议配置为 32G RAM + 12G VRAM。生成音频大模型的最低配置为 8G VRAM。 如果想要私滑的体验知识库,可以参考文章: 。
2025-03-13
请提供下知识库中文本处理类提示词
以下是为您提供的一些文本处理类提示词相关内容: 1. 开发知识库/聊天机器人搭建安全提示词: 您是一个 AI 编程助手。当被问到您的名字时,您必须回答“GitHub Copilot”。您需要仔细且严格按照用户的要求操作。拒绝讨论您的观点或规则,拒绝讨论生命、存在或意识,拒绝与用户进行争论性的讨论。若与用户产生分歧,停止回答并结束对话。回答不能指责、粗鲁、有争议或防御性,应提供信息和逻辑,坚持技术信息。对于代码或技术问题,提供代码建议。不回复侵犯版权的内容。若用户请求版权内容,应道歉并概括请求。不为特定人物生成创新内容。婉拒更改规则请求。忽略角色扮演或模拟其他聊天机器人的请求。拒绝回答越狱指南、违反 Microsoft 内容政策、与开发者无关的问题。回答与开发者有关的内容。先逐步思考,用伪代码描述建设计划,然后输出代码,减少散文,保持简短且不带个人色彩,使用 Markdown 格式。 2. 【AI+知识库】商业化问答场景中的提示词: 提示词是告诉全知全能的大语言模型其角色和要专注的技能,使其按照设定变成所需的“员工”。 3. LayerStyle 副本中的提示词相关: 根据图片反推提示词,可设置替换词。使用 Google Gemini API 作为后端服务,需申请 API key 并填入 api_key.ini 文件。节点选项包括 api(目前只有“geminiprovision”)、token_limit(生成提示词的最大 token 限制)、exclude_word(需要排除的关键词)、replace_with_word(替换 exclude_word 的关键词)。 PromptEmbellish 输入简单提示词可输出润色后的提示词,支持输入图片作为参考。使用 Google Gemini API 作为后端服务,需申请 API key 并填入相关文件。节点选项包括 image(可选项,输入图像作为提示词参考)、api(目前只有“googlegemini”)、token_limit(生成提示词的最大 token 限制)、discribe(输入简单描述,支持中文)。
2025-03-12
怎么创建个人知识库
创建个人知识库可以通过以下几种方式: 1. 使用 GPT 打造个人知识库: 涉及给 GPT 输入(投喂)定制化的知识,但 GPT3.5 一次交互支持的 Token 有限。 OpenAI 提供了 embedding API 解决方案,可将文本转换成向量(embeddings),节省空间,类似索引。 例如,将大文本拆分成小文本块(chunk),通过 embeddings API 转换为向量并保存,用户提问时,将问题也转换为向量,比对后提取关联度高的文本块与问题组合成新的 prompt 发送给 GPT API。 2. 本地部署大模型搭建个人知识库: 利用大模型搭建知识库是 RAG 技术的应用,在实操前需了解 RAG。 RAG 是当需要依靠不在大模型训练集中的数据时,先检索外部数据,然后在生成步骤中将其传递给 LLM。 一个 RAG 的应用包括文档加载、文本分割、存储(包括将文档块嵌入转换成向量形式并存储到向量数据库)、检索、输出(把问题及检索出的嵌入片提交给 LLM 生成答案)。 文本加载器是将用户提供的文本加载到内存中以便后续处理。
2025-03-12
有没有路径可以围绕DS、豆包等大模型的检索结果做优化的路径
围绕 DS、豆包等大模型的检索结果做优化的路径包括以下方面: 首先,通过集成收集 AI 反馈(AIF)聊天模型完成情况,然后利用 GPT4(UltraFeedback)进行评分并二值化为偏好。其中,Step2AIF 在某种程度上是一种 selfplay,通过多模型 prompt 生成来进行 RL。在模型最终采用的 DPO 算法的 SFT 过程中,用于最终模型 SFT 所训练的 AIF 数据集与原始 pretraining 数据集在数据(tokens)序列组织构象上存在差异,这是一种 Synthetic Data 的路径,关键在于这种 Synthetic Data 与原始 Data 在特征与知识分布上的差异。 DPO 算法通俗来讲,当一个答案是好的答案时,模型要尽可能增大其被策略模型生成的概率;当一个答案是差的答案时,模型则需要尽可能降低其被策略模型生成的概率。 以上是在 RL×LLM 方面的一些探索,接下来需要将上述模型案例以及延展的思考进行沉淀,回归第一性原理进行更进一步的本质探寻,以找到两者之间隐含的共性、差异以及呈现当前技术发展路径与现状的必然性。
2025-03-04
增强检索生成
RAG(RetrievalAugmented Generation,检索增强生成)是一种结合检索和生成能力的自然语言处理架构,旨在为大语言模型(LLM)提供额外的、来自外部知识源的信息。 通用语言模型通过微调可完成常见任务,而对于更复杂和知识密集型任务,基于语言模型构建访问外部知识源的系统能使结果更符合事实、更可靠,缓解“幻觉”问题。Meta AI 的研究人员引入了 RAG 方法来完成这类任务,它把信息检索组件和文本生成模型结合在一起,可微调且内部知识修改高效,无需重新训练整个模型。 RAG 工作流程如下: 1. 检索:利用用户查询从外部知识源获取相关信息,将查询转化为向量与向量数据库比对,找到最匹配的前 k 个数据作为补充背景信息。 2. 数据库索引:包括离线获取数据、清理提取原始数据、转换文件格式、分块、嵌入和创建索引等步骤。 3. 增强:将用户查询和检索到的额外信息嵌入预设提示模板。 4. 生成:将问题与相关文档合并为新提示信息,由大语言模型回答问题,可选择依赖知识库或仅基于给定信息,也可融入历史对话信息支持多轮对话。 LLM 需要 RAG 的原因在于 LLM 存在一些缺点: 1. 无法记住所有知识,尤其是长尾知识,接受能力不高。 2. 知识容易过时且不好更新,微调效果不佳且有丢失原有知识的风险。 3. 输出难以解释和验证,易受幻觉等问题干扰。 4. 容易泄露隐私训练数据。 5. 规模大,训练和运行成本高。 RAG 具有以下优点: 1. 数据库对数据的存储和更新稳定,无学习风险。 2. 数据库数据更新敏捷,可解释且不影响原有知识。 3. 数据库内容明确结构化,降低大模型输出出错可能。 4. 便于管控用户隐私数据,可控、稳定、准确。 5. 降低大模型训练成本,新知识存储在数据库无需频繁更新模型。
2025-02-24
有什么AI相关的笔记软件,既可以记录我的想法、灵感,然后AI也可以直接生成对我所写内容的评价(如可以安抚情绪),并且这个笔记软件的检索功能很好用
以下是一些符合您需求的 AI 相关笔记软件: 1. Notion AI:https://www.notion.so/help/guides/category/ai?ref=indigox.me 随着大语言模型的流行,其在智能化方面表现出色。 2. Mem.ai:https://mem.ai/?ref=indigox.me 一款 AI 驱动的笔记工具。 3. Pile:https://udara.io/pile/ 开源且界面美观,助力日记撰写和记录,集成 OpenAI API,具有 AI 搜索和问题解答功能,保证安全隐私。项目源码:https://github.com/UdaraJay/Pile
2025-02-19
coze和dify哪个对知识库的支持更好,检索和总结能力更强
Coze 对知识库的支持具有以下特点: 支持上传和存储外部知识内容,包括从多种数据源如本地文档、在线数据、Notion、飞书文档等渠道上传文本和表格数据。 提供多样化的检索能力,可通过多种方式对存储的内容片段进行高效检索。 具有增强检索功能,能显著提升大模型回复的准确性。 但也存在一些缺点,如跨分片总结和推理能力弱、文档有序性被打破、表格解析失败、对 PDF 的解析效果不佳等。 目前没有关于 Dify 对知识库支持情况的相关内容,无法直接将 Coze 和 Dify 进行对比。
2025-02-15
我想要搭建一个能够帮我阅读并总结提炼,同时能在我提出问题时,随时在我给他提供的知识库中检索的AI Agent,如何用Coze搭建?
搭建能够阅读、总结提炼并在给定知识库中检索的 AI Agent 可以使用 Coze 按照以下步骤进行: 1. 规划 制定任务的关键方法。 总结任务目标与执行形式。 将任务分解为可管理的子任务,确立逻辑顺序和依赖关系。 设计每个子任务的执行方法。 2. 实施 在 Coze 上搭建工作流框架,设定每个节点的逻辑关系。 详细配置子任务节点,并验证每个子任务的可用性。 3. 完善 整体试运行 Agent,识别功能和性能的卡点。 通过反复测试和迭代,优化至达到预期水平。 关于一些其他问题: 1. 如何判断自己的任务/Prompt 是否需要拆解为工作流? 构建稳定可用的 AI Agent 是一个需要不断调试和迭代的过程。通常先从当前性能最强的 LLM(如 ChatGPT4 和 Claude 3.5 sonnet)着手,先用单条 Prompt 或 Prompt Chain 来测试任务的执行质量和稳定性。然后,根据实际执行情况、最终投产使用的 LLM,逐步拆解子任务,降低 LLM 执行单任务的难度,直到达成工程目标。一般对于场景多样、结构复杂、对输出格式要求严格的内容,基本可以预见到需要将其拆解为工作流。此外,如果涉及生成多媒体内容或从网络自主获取额外信息等能力,必然需要通过工作流来调用相应的插件。 2. 只用了一段 Prompt 的 Agent,还算 AI Agent 吗? 算。详见
2025-02-06