Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

如何用AI搭建个人和企业知识库

Answer

以下是关于如何用 AI 搭建个人和企业知识库的相关内容:

一、使用飞书搭建 可以参考通往 AGI 之路大圣:胎教级教程:万字长文带你使用 Coze 打造企业级知识库。读完相关文章,您将收获:

  1. AI 时代的知识库的概念、实现原理以及能力边界。
  2. 通往 AGI 之路大群中通过对话就能获取知识库中资料的原理。
  3. 更好地使用 Coze 等 AI Agent 平台中的知识库组件,打造更加强大的智能体。

另外,作者正在规划一个关于 AI 时代您应该具备的编程基础系列,包括数据库、知识库、变量、JSON、API、操作系统与服务器、Docker 等内容。

二、本地部署大模型以及搭建个人知识库

  1. 若要对知识库进行更灵活的掌控,需要额外的软件 AnythingLLM,其包含了所有 Open WebUI 的能力,并额外支持选择文本嵌入模型和向量数据库。
  2. 安装地址:https://useanything.com/download 。安装完成后进入配置页面,主要分为三步:
    • 第一步:选择大模型。
    • 第二步:选择文本嵌入模型。
    • 第三步:选择向量数据库。
  3. 在 AnythingLLM 中有 Workspace 的概念,可以创建自己独有的 Workspace 跟其他项目数据进行隔离。具体操作包括:
    • 首先创建一个工作空间。
    • 上传文档并且在工作空间中进行文本嵌入。
    • 选择对话模式,提供了 Chat 模式(大模型会根据自己的训练数据和上传的文档数据综合给出答案)和 Query 模式(大模型仅仅会依靠文档中的数据给出答案)。
    • 完成上述配置后,即可跟大模型进行对话。

三、AI 时代的知识管理体系构建案例

  1. 一条书摘:在读书(万维钢的新书《拐点》)时,看到一段有触动但保持批判性思考和怀疑的文本,提到如果足够强势,当前 AI 对人的作用有三个:信息杠杆、发现自己真正想要的、帮助形成自己的观点和决策。
  2. 一个笔记:将上述书摘整理归纳,标记重点,打赏标签,放入笔记系统,准备展开深度思考和实践。
  3. 对笔记的思考和实践:基于笔记中提到的 AI 对人的三种最终的赋能模式,以自己深度思考的问题为例,践行这套方法论,体会何谓“信息杠杆”可以令你的“思维换挡”,感受如何“让自己发现究竟想要什么”。
  4. 生长出的自己的观点和内容:基于上述实践,生成“自己的观点和决策”。
  5. 教授和分享:基于“自己的观点和决策”,打造成体系化的内容产品,实现价值。

总结:通过一个碎片化知识在左侧知识库中的“点、线、面、体”式的流转,从一个书摘变成一个体系化内容或课程,把“别人说的话”变成“我自己的智慧”。希望大家都能利用 AI 高效地把自己的知识管理体系搭建起来,运用起来。

Content generated by AI large model, please carefully verify (powered by aily)

References

这可能是讲 Coze 的知识库最通俗易懂的文章了

大家好,我是大圣,一个致力于使用AI技术将自己打造为超级个体的程序员。对于知识库大家并不陌生,一系列的信息和知识聚集在一起就可以构成知识库。比如我最心爱的[通往AGI之路](https://waytoagi.feishu.cn/wiki/QPe5w5g7UisbEkkow8XcDmOpn8e)就是一个使用飞书软件搭建的AI知识库。当你需要了解AI某一领域知识的时候,你只需要在AGI的飞书大群中,跟机器人对话就能获取对应的资料。而在我的[大圣:胎教级教程:万字长文带你使用Coze打造企业级知识库](https://waytoagi.feishu.cn/wiki/CT3UwDM8OiVmOOkohPbcV3JCndb)也是以AI时代的知识库作为例子进行了讲解。这篇文章的目的就是帮助非编程人士来理解AI时代的知识库,读完本文你会收获:1.AI时代的知识库的概念、实现原理以及能力边界2.通往AGI之路大群中的通过对话就能获取知识库中资料的原理3.更好的使用Coze等AI Agent平台中的知识库组件,打造更加强大的智能体请允许我自卖自夸:我这篇文章可以说是知识库文章中Coze讲的最好的,讲Coze的文章中知识库讲的最好的。另外做个预告,我正在规划一个关于AI时代你应该具备的编程基础系列,大纲如下:数据库|让Coze拥有了记忆的组件1知识库|让Coze拥有了记忆的组件2变量|让Coze拥有了记忆的组件3JSON|让你更好的使用Coze插件API|外部应用程序该如何接入Coze操作系统与服务器|那些接入了Coze的微机器人都是运行在哪里的Docker|让你用最简单的方式部署微信机器人

手把手教你本地部署大模型以及搭建个人知识库

如果想要对知识库进行更加灵活的掌控,我们需要一个额外的软件:AnythingLLM。这个软件包含了所有Open WebUI的能力,并且额外支持了以下能力选择文本嵌入模型选择向量数据库[heading2]AnythingLLM安装和配置[content]安装地址:https://useanything.com/download当我们安装完成之后,会进入到其配置页面,这里面主要分为三步1.第一步:选择大模型1.第二步:选择文本嵌入模型1.第三步:选择向量数据库[heading2]构建本地知识库[content]AnythingLLM中有一个Workspace的概念,我们可以创建自己独有的Workspace跟其他的项目数据进行隔离。1.首先创建一个工作空间1.上传文档并且在工作空间中进行文本嵌入1.选择对话模式AnythingLLM提供了两种对话模式:Chat模式:大模型会根据自己的训练数据和我们上传的文档数据综合给出答案Query模式:大模型仅仅会依靠文档中的数据给出答案1.测试对话当上述配置完成之后,我们就可以跟大模型进行对话了[heading1]六、写在最后[content]我非常推崇的一句话送给大家:看十遍不如实操一遍,实操十遍不如分享一遍如果你也对AI Agent技术感兴趣,可以联系我或者加我的免费知识星球(备注AGI知识库)

小七姐:AI 时代的知识管理体系构建

[heading3]一条书摘[content]在读书(万维钢的新书《拐点》)的时候,看到一段有触动但保持批判性思考和怀疑的文本:如果你足够强势,当前AI对你的作用有三个:第一:信息杠杆第二:发现自己真正想要的第三:帮助形成自己的观点和决策[heading3]一个笔记[content]将上述书摘整理归纳,标记重点,打赏标签,放入笔记系统,准备展开深度思考和实践[heading3]对笔记的思考和实践[content]基于笔记中提到的AI对人的三种最终的赋能模式,以自己深度思考的问题为例,践行这套方法论,体会何谓“信息杠杆”可以令你的“思维换挡”,感受如何“让自己发现究竟想要什么”在这一步,对于每一步,展开自己的深度实践,例如:通过AI信息杠杆,利用AI搜索引擎和大模型,迅速掌握“如何用好飞书文档”“markdown语法基础”并结合两者完成“永飞书创建提示词库、飞书+markdown打造个人知识库”等思考。[heading3][heading3]生长出的自己的观点和内容[content]基于上述实践,生成“自己的观点和决策”(这部分只是示例)[heading3]教授和分享[content]基于“自己的观点和决策”,打造成体系化的内容产品,实现价值。(这部分只是示例)[heading3]总结一下:[content]通过一个碎片化知识再左侧知识库中的“点、线、面、体”式的流转,从一个书摘变成一个体系化内容或课程。把“别人说的话”变成“我自己的智慧”。最后:希望大家都能利用AI高效的把自己的知识管理体系搭建起来,运用起来

Others are asking
有哪些可以实现批量切片生成短视频的AI剪辑工具
以下是一些可以实现批量切片生成短视频的 AI 剪辑工具: 1. Opus Clip:专注长视频转短视频场景,能自动识别长视频中的精彩片段并提取重排。创始人 Young Z 在 22 年疫情期间创业,尝试多个方向后形成产品形态。23 年底推出 7 个月后便获取了 500 万注册用户和 1000 万 ARR。支持手动切片和 AI 剪辑切片,还支持创作者通过 Prompt 输入剪辑需求,提供作品发布日历、视频数据分析后台全套创作者工具等。网页版访问:https://www.opus.pro/ ;官方推特:https://x.com/OpusClip 。 2. 剪映:有很多人性化设计和简单音效库/小特效,但无法协同工作和导出工程文件,应用于商业化效果有限。剪辑流程包括视频粗剪、定剪、音效/音乐、特效、包装(如字幕)等。 3. 以下是另外几个视频 AIGC 工具: Raskai:可将短视频素材直接翻译至多语种。 Invideo AI:输入想法后自动生成脚本和分镜描述,生成视频后人工二编再合成长视频。 Descript:屏幕/播客录制后以 PPT 方式做视频。 Veed.io:自动翻译自动字幕。 Clipchamp:微软的 AI 版剪映。 Typeframes:类似 Invideo AI,内容呈现文本主体比重更多。 Google Vids 。
2025-02-06
初中物理教师如何将AI辅助教学
初中物理教师可以通过以下方式将 AI 辅助教学: 1. 学情分析与作业测评:利用基于平台数据的学情智能分析工具,实现精准教育。例如,让 AI 生成作业题目并优化题目质量与难度,对主观题进行辅助批改。 2. 课程规划:借助像沃顿商学院提供的提示词库,将自己视为教学助理,明确学习目标,细化希望学生思考和练习的内容,预判常见难点并帮助克服,详细说明教学任务,描述优秀学习表现,运用提问和检查理解的方式评估学习效果,合理安排讲解、示范、练习、复习等环节。 3. 创新教学方法:可以像初中数学老师朱力老师那样,将生活中的实际案例,如巴以冲突、泰坦尼克号的史料等,借助 AI 转化为与物理相关的教学内容,让学生从生活中学习物理。 4. 提示词工程:注重提示词的逻辑,将复杂任务拆分成科学合理的步骤,让前一步的结果成为后一步的基础,且要确保步骤能打印出来,以便影响后续预测结果。例如,让智谱清言出 20 道物理选择题,配上参考答案和解析,从中挑选可用的题目。
2025-02-06
我需要仿写 AI工具的教程文章,应该怎么写提示词
以下是关于如何仿写 AI 工具教程文章中提示词的相关内容: 样例驱动的渐进式引导法就像让 AI 主动读懂您的想法。它以 1 2 个正向样例为起点,通过与 AI 的多轮对话,引导其从样例中提炼隐含的生成要求,逐步完善提示词。 例如,教 AI 仿写爆文时,只需提供优秀样例,AI 会自动分析理解精髓并生成符合自身运作的指令。这种方法无需用户具备专业的 Prompt 工程知识,也不用费力提炼“Know How”,利用 AI 就能自动生成精彩的 Prompt。 其核心步骤包括: 1. 构建初始样例:创建符合期望输出的具体例子。 2. 评估样例,尝试提炼模板:让 AI 分析理解样例结构和关键元素,并以专家视角优化。 3. 固定模板,强化要求说明:基于对初始样例的理解,让 AI 提出通用模板,通过测试 Prompt 验证可靠性。 4. 生成结构化提示词:将优化后的模板转化为结构化提示词,用户适当调整确认后即可使用。 在这个过程中,用户的角色主要是: 1. 提供尽可能与自己预期一致的初始样例。 2. 判断 AI 的输出质量。 3. 反馈改进建议,提供行动引导。 这种方法的优势在于简化了提示词设计过程,让非专业用户也能创建高质量的 Prompt。用户可专注于判断输出质量和提供反馈,无需深入理解复杂的 Prompt 工程技巧。 此外,编写提示词(prompt)还有一些通用建议: 1. 明确任务:清晰定义任务,如写故事时包含背景、角色和主要情节。 2. 提供上下文:任务需要背景知识时,在 prompt 中提供足够信息。 3. 使用清晰语言:尽量用简单、清晰的语言描述任务,避免模糊或歧义词汇。 4. 给出具体要求:如有特定格式或风格要求,在 prompt 中明确指出。 5. 使用示例:有特定期望结果时,在 prompt 中提供示例。 6. 保持简洁:尽量简洁明了,过多信息可能使 AI 模型困惑。 7. 使用关键词和标签:帮助 AI 模型更好理解任务主题和类型。 8. 测试和调整:生成文本后仔细检查结果,根据需要调整 prompt,可能需要多次迭代达到满意结果。
2025-02-06
AI在金融领域的应用
AI 在金融领域有以下应用: 1. 风控和反欺诈:用于识别和阻止欺诈行为,降低金融机构风险。 2. 信用评估:评估借款人的信用风险,辅助金融机构做出贷款决策。 3. 投资分析:分析市场数据,帮助投资者做出更明智的投资选择。 4. 客户服务:提供 24/7 服务,回答常见问题。 5. 个性化的消费者体验:根据客户需求提供定制服务。 6. 成本效益高的运营:优化运营流程,降低成本。 7. 更好的合规性:确保金融活动符合法规要求。 8. 改进的风险管理:有效识别和应对风险。 9. 动态的预测和报告:及时准确地进行预测和报告。 金融服务公司利用大量历史金融数据微调大型语言模型,能够迅速回答各类金融问题。例如,经过特定数据训练的模型可回答公司产品相关问题,识别洗钱计划的交易等。在现有企业与初创公司的竞争中,现有企业因专有金融数据访问权限在使用 AI 时有初始优势,但受准确性和隐私高标准限制;新进入者初期使用公开金融数据训练模型,后续会生成自己的数据,并以 AI 作为新产品分销突破口。
2025-02-06
从零开始学习ai
以下是从零开始学习 AI 的建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出自己的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 通过与这些 AI 产品的对话,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2025-02-06
我想从普通的功能型产品经理转变为AI应用产品经理,应该怎么进阶,需要掌握什么能力?
要从普通的功能型产品经理转变为 AI 应用产品经理,可以从以下几个方面进阶并掌握相应能力: 一、不同阶段的能力要求 1. 入门级 能通过 WaytoAGI 等开源网站或一些课程了解 AI 的概念。 使用 AI 产品并尝试动手实践应用搭建。 2. 研究级 技术研究路径或商业化研究路径。 对某一领域有认知,能根据需求场景选择解决方案。 利用 Hugging face 等工具手搓出一些 AI 应用来验证想法。 3. 落地应用级 有一些成功落地应用的案例,产生商业化价值。 二、AI 产品经理与传统互联网产品经理层级对应 传统互联网产品经理层级: 1. 负责功能模块与执行细节。 2. 负责整体系统与产品架构。 3. 熟悉行业竞争格局与商业运营策略。 三、AI 产品经理需掌握的能力 1. 懂得技术框架,对技术边界有认知,最好能知道一些优化手段和新技术的发展。 2. 理解产品核心技术,了解基本的机器学习算法原理,做出更合理的产品决策。 3. 与技术团队有效沟通,掌握一定的算法知识,减少信息不对称带来的误解。 4. 评估技术可行性,在产品规划阶段做出更准确的判断。 5. 把握产品发展方向,了解算法前沿。 6. 提升产品竞争力,发现产品的独特优势,提出创新的产品特性。 7. 具备数据分析能力,很多 AI 算法都涉及到数据处理和分析。 四、其他能力 1. 语言学能力,锻炼语言表述能力,更精准地用语言描述问题。 2. 业务理解和 AI 嵌入能力,找到业务中需要应用大模型的场景,将业务和大模型算法结合,理解模型在业务中的边界。 3. 维度转换能力,将各种问题、业务数据转化为语言描述,将通用模块问题转化为通用问题模块。 总之,AI 产品经理要关注场景、痛点、价值,不断提升自身能力,以适应市场需求。
2025-02-06
我是科研人员,有什么方法能构建自己专业领域的知识库吗?请给出详细的操作步骤,并说明需要什么样的软硬件设备?预算多少?
构建自己专业领域的知识库可以按照以下步骤进行: 步骤一:明确知识库的目标和范围 首先,确定您想要涵盖的专业领域的具体范围和知识库的主要目标,例如是为了内部研究使用、对外分享知识还是其他特定用途。 步骤二:收集和整理资料 收集相关的文献、研究报告、实验数据、案例等各种资料,并对其进行分类和整理。 步骤三:选择合适的技术架构 1. 考虑使用数据库管理系统,如 MySQL、Oracle 等。 2. 或者采用知识图谱技术来构建更直观的知识关系。 步骤四:确定软硬件设备 1. 硬件方面,需要一台性能较好的计算机,具备足够的内存和存储空间。预算大约在 5000 10000 元,具体取决于配置要求。 2. 软件方面,需要操作系统(如 Windows 或 Linux)、数据库管理软件、文本编辑工具等。 步骤五:设计知识库的结构 规划好知识的分类体系、标签系统和索引方式,以便于快速检索和查找。 步骤六:数据录入和维护 将整理好的资料录入到知识库中,并定期更新和维护,确保知识的准确性和时效性。 步骤七:测试和优化 在初步构建完成后,进行测试,检查检索功能是否正常,知识的展示是否清晰,并根据测试结果进行优化。 需要注意的是,实际的预算和设备需求可能会因具体情况而有所不同,您可以根据自己的需求和资源进行调整。
2025-02-06
支持图文检索的知识库应用是哪些
以下是一些支持图文检索的知识库应用: FastGPT:这是一个基于大语言模型(LLM)的知识库问答系统,具有以下特点: 采用先进的 LLM 技术,能理解自然语言并生成高质量答案。 可以连接到外部知识库获取更全面信息。 提供可视化工作流编排工具,方便创建复杂问答场景。 提供开箱即用的数据处理和模型调用功能。 应用场景包括客服问答、知识库搜索、文档生成、数据分析等。 阿里云百炼: 多模态支持,可处理图像、音频和视频等多模态数据。 对话性增强,能处理更复杂的多轮问答。 具有自适应检索策略,能根据上下文和任务需求自动决定检索操作。 能够融合外部知识与内部知识生成更精准回答。 模块化 RAG 形式提供更高定制性和灵活性。 当智能体应用关联结构化知识库时,支持在提问时上传图片,若存在图片索引,系统会将输入图片转为向量并检索相关记录。构建图片索引需新建结构化数据表时将图片索引所在列的字段类型设置为 link,创建结构化知识库时对需要建立图片索引的 link 类型字段在下拉列表中选择图片。
2025-02-06
如何构建与飞书知识库对话
构建与飞书知识库对话的方法如下: 1. 本地部署大模型及搭建个人知识库 可以使用额外的软件 AnythingLLM,其包含所有 Open WebUI 的能力,并额外支持选择文本嵌入模型和向量数据库。 安装地址:https://useanything.com/download 。安装完成后进入配置页面,主要分为三步:选择大模型、选择文本嵌入模型、选择向量数据库。 在 AnythingLLM 中创建自己独有的 Workspace 与其他项目数据隔离,然后进行以下操作:首先创建一个工作空间,上传文档并在工作空间中进行文本嵌入,选择对话模式(包括 Chat 模式和 Query 模式),最后测试对话。 2. 商用级问答场景 问答机器人的配置包括 AI 模型、提示词和知识库。大语言模型如同拥有无穷智慧的人,提示词是设定其角色和专注技能,知识库则是工作手册。 例如设定 AI 模型为阿里千问模型,提示词角色为“美嘉”,知识库为《爱情公寓》全季剧情。 3. 通过 Open WebUI 使用大模型 首先访问相关网址,使用邮箱注册账号。 Open WebUI 一般有聊天对话和 RAG 能力(让模型根据文档内容回答问题)两种使用方式。若要求不高,已搭建本地大模型并通过 Web UI 实现对话功能。ChatGPT 访问速度快且回答效果好的原因在于服务器配置高、训练参数多、数据更优及训练算法更好。
2025-02-06
faiss 知识库搭建和维护
以下是关于 Faiss 知识库搭建和维护的相关内容: 搭建步骤: 1. 准备数据:收集需要纳入知识库的文本数据,包括文档、表格等格式,并对数据进行清洗、分段等预处理,确保数据质量。 2. 创建数据集:在相关工具(如 Dify )中创建一个新的数据集,并将准备好的文档上传至该数据集。为数据集编写良好的描述,描述清楚数据集包含的内容和特点。 3. 配置索引方式:提供了多种索引方式供选择,如高质量模式、经济模式和 Q&A 分段模式等。根据实际需求选择合适的索引方式,如需要更高准确度可选高质量模式。 4. 集成至应用:将创建好的数据集集成到对话型应用中,作为应用的上下文知识库使用。在应用设置中,可以配置数据集的使用方式,如是否允许跨数据集搜索等。 维护方面: 1. 维护知识库内容:为了提升召回的准确率,可以删除、新增或修改知识库内容。 2. 管理知识库:在知识库页面,可以看到已创建的知识库和每个知识库内的单元数量和创建时间等信息。单击知识库或编辑图标,进入知识库详情页面。在知识库详情页,可以进行新增内容、删除内容、更新单元内的分段、开启引用等操作。如果不开启引用,即便 Bot 中使用了所属的知识库,该单元内容也不会被召回。 此外,还需了解知识库由大到小可分为:知识库(一整套领域知识,是 Bot 加载的最小单位)、单元(知识库的一部分,可上传的最小内容单位可以是一个.txt、.pdf、.csv 文件或一个网页)、分段(一个单元切分成多个分段,模型查询的最小单位。分段内容的完整度和准确性度会影响模型回答问题的准确性)。
2025-02-06
怎么快速建立本地知识库
以下是快速建立本地知识库的方法: 1. 了解 RAG 技术: 利用大模型的能力搭建知识库是 RAG 技术的应用。 大模型训练数据有截止日期,RAG 可通过检索外部数据并在生成步骤中传递给 LLM 来解决。 RAG 应用包括文档加载、文本分割、存储、检索和输出 5 个过程。 文档加载可从多种来源加载,包括非结构化、结构化和代码等。 文本分割将文档切分为指定大小的块。 存储包括将文档块嵌入转换为向量形式并存储到向量数据库。 检索通过算法找到与输入问题相似的嵌入片。 输出是将问题和检索出的嵌入片提交给 LLM 生成答案。 文本加载器将用户提供的文本加载到内存中。 2. 使用 AnythingLLM 软件: 安装地址:https://useanything.com/download 。 安装完成后进入配置页面,主要分为三步:选择大模型、选择文本嵌入模型、选择向量数据库。 在 AnythingLLM 中创建 Workspace 与其他项目数据隔离。 操作步骤:首先创建工作空间,上传文档并进行文本嵌入,选择对话模式(包括 Chat 模式和 Query 模式),最后测试对话。 3. 本地文档上传: 在文本格式页签选择本地文档,单击下一步。 将文档拖拽到上传区或选择上传,支持.txt、.pdf、.docx 格式,每个文件不大于 20M,一次最多上传 10 个文件。 上传完成后选择内容分段方式,包括自动分段与清洗(系统自动处理)和自定义(手动设置分段规则和预处理规则)。 自定义分段时可设置分段标识符、分段最大长度和文本预处理规则,如替换连续空格、换行符和制表符,删除所有 URL 和电子邮箱地址。 单击下一步完成内容上传和分片。 总之,看十遍不如实操一遍,实操十遍不如分享一遍,如果您对 AI Agent 技术感兴趣,可以联系相关人员或加入免费知识星球(备注 AGI 知识库)。
2025-02-05
企业微信客服号能对接dify知识库,实现智能客服功能吗?
企业微信客服号能对接 Dify 知识库实现智能客服功能。以下是相关步骤: 1. 在 Dify 平台创建基础编排聊天助手应用,获取 API 密钥和 API 服务器地址。 2. 下载 Dify on WeChat 项目并安装依赖。 3. 在项目根目录创建 config.json 文件,填写 API 密钥和服务器地址。 4. 把基础编排聊天助手接入微信,可选择源码部署或 Docker 部署,进行快速启动测试,扫码登录并对话测试。 5. 把工作流编排聊天助手接入微信,创建知识库,导入知识库文件,创建工作流编排聊天助手应用,设置知识检索节点和 LLM 节点,发布更新并访问 API。 6. 把 Agent 应用接入微信,创建 Agent 应用,设置对话模型和添加工具,生成 API 密钥,填写配置文件,启动程序并进行测试。 更多内容请访问原文:https://docs.dify.ai/v/zhhans/learnmore/usecases/difyonwechat 另外,通过云服务器、Dify、智能微秘书免费搭建微信机器人的部署 Dify 步骤如下: https://docs.dify.ai/v/zhhans/gettingstarted/installselfhosted/dockercompose ,这些命令在宝塔面板的终端安装。 零成本、零代码搭建一个智能微信客服的步骤如下: 1. 访问微信客服 https://kf.weixin.qq.com/,点击开通。 2. 勾选同意,点击下一步。 3. 按步骤填写,勾选同意,注册企业微信。 4. 点击配置>到微信客服的企业信息,复制企业 ID>到 coze 页面进行粘贴填写企业 ID,并点击下一步。 5. 到微信客服的开发配置,找到到回调配置,复制 Token、EncodingAESKey(如果还是空的,点击“随机获取”即可),到 coze 页面进行粘贴,点击下一步。 6. 到微信客服的开发配置,配置回调地址 URL、复制 Secret 到 coze 的页面粘贴。 7. 到微信客服的客服账号,创建一个客服账号,复制客服账号名称,到 coze 的页面粘贴,点击保存。 第一次设置回调地址时,注意目前需要企业认证,才可以进行接入微信客服。如果企业没有进行认证,则会在配置回调 URL 时报错:回调域名校验失败。另外,之前未进行企业认证就发布过微信客服的不受影响。第一次设置成功后,后面再修改是特定页面。保存后,在 coze 发布页面的发布平台的微信客服这里,显示“已配置”,剩下的就是勾选,点击发布。
2025-02-05
Agent搭建平台都有哪些
以下是一些常见的 Agent 搭建平台: 1. Coze:新一代一站式 AI Bot 开发平台,适用于构建各类问答 Bot,集成丰富插件工具,拓展 Bot 能力边界。 2. Microsoft 的 Copilot Studio:主要功能包括外挂数据、定义流程、调用 API 和操作,以及将 Copilot 部署到各种渠道。 3. 文心智能体:百度推出的基于文心大模型的智能体平台,支持开发者打造产品能力。 4. MindOS 的 Agent 平台:允许用户定义 Agent 的个性、动机、知识,以及访问第三方数据和服务或执行工作流。 5. 斑头雁:2B 基于企业知识库构建专属 AI Agent 的平台,适用于多种场景,提供多种成熟模板。 6. 钉钉 AI 超级助理:依托钉钉优势,在处理高频工作场景表现出色。 此外,国内外还有多个平台可以在几分钟内完成 Agent 创建,比如国内版扣子 coze.cn、海外版 Coze coze.com、百度 AppBuilder、阿里通义千问、智谱 AI 等。使用扣子 coze.cn 等平台创建智能体 Agent 的过程被创作者形象地比喻为“捏 Bot”,最简单的 Bot 往往可以在 1 分钟内捏完。 随着 AI 的发展,大家对 AI 的诉求变得具体,简单的 ChatBot 弊端凸显,基于 LLWeng 对于 Agent 的结构设计,Coze、Dify 等平台在应用探索上有进展。年初吴恩达基于 Agent 应用、场景、需求等做了 4 个分类,但这些平台都有固有局限,对于专业 IT 人士不够自由,对普通用户在复杂业务场景有诸多限制。
2025-02-06
假设你是经验丰富的AI工程师,现在需要搭建能够自行识别电商直播平台中客户提出的问题并给出不死板且AI痕迹弱的回答,同时直播的主播是我们虚拟的数字人,请问需要怎么做,请给出具体步骤
以下是搭建能够自行识别电商直播平台中客户提出的问题并给出自然回答,且直播主播为虚拟数字人的具体步骤: 1. 选择数字人工具软件: 考虑实时驱动和非实时驱动两类。实时驱动能在直播时更改音频话术,真人可接管,标准零售价一年 4 6 万往上;非实时驱动一个月 600 元,但效果差,类似放视频的伪直播,市场价格混乱。 2. 确定数字人运营服务模式: 按直播间成交额抽佣。 3. 明确适用品类和场景: 适用于不需要强展示的商品,如品牌食品饮料;适用于虚拟商品,如门票、优惠券等;店播效果较好,数据能保持跟真人一样;不适用于促销场景和服装品类。 4. 了解 AI 直播的壁垒和未来市场格局: 目前有技术门槛,如更真实的对口型、更低的响应延迟等,但长期看技术上无壁垒。 市场不会一家独大,可能 4 5 家一线效果公司,大多为二三线效果公司。 能把客户服务好、规模化扩张的公司更有价值,疯狂扩代理割韭菜的公司售后问题多。 有资源、有业务的大平台下场可能带来降维打击,如剪映若不仅提供数字人,还提供货品供应链、数据复盘分析等全环节服务,会对其他公司形成竞争压力。
2025-02-06
扣子智能体搭建工作流
扣子智能体的搭建工作流主要包括以下内容: 1. 插件:扣子平台上有多种类型的插件,如看新闻、规划旅行、提高办公效率、理解图片内容的 API 等,还可自定义插件添加所需 API,使智能体更强大。 2. 工作流: 工作流如同可视化拼图游戏,可将插件、大语言模型、代码块等功能组合,创建复杂稳定的业务流程。 工作流由多个小块块(节点)组成,包括开始和结束的小块块,不同小块块可能需要引用前面小块块的信息或自行设定的信息。 例如“竖起耳朵听”的智能体中用到 5 个小块块,能回答带有图片口语的结果。 生物医药小助手智能体由 1 个工作流和 6 个数据库实现,工作流设计简单,包括 input、对接知识库、搭载豆包 function call 大模型和 output,相对有难度的是收集和校对知识库资料。 在落地应用方面,如通过扣子工作流用代码模块进行 HTTP 访问实现 0 token 脱离扣子模型使用 Groq 作为 LLM,还可适配到 APP 产品填 APIKEY 调用的场景,或接入手机类 APP 如 Siri 等。但扣子工作流的搭建细节需自行移步 WaytoAGI 自学。
2025-02-05
coze工作流搭建
以下是在 Coze 上搭建工作流的步骤: 1. 进入 Coze ,点击「个人空间 工作流 创建工作流」,打开创建工作流的弹窗。 2. 根据弹窗要求,自定义工作流信息,点击确认完成工作流的新建。 3. 新建完成后,可以看到整个编辑视图与功能。在左侧「选择节点」模块中,根据子任务需要,实际用到的有: 插件:提供一系列能力工具,拓展 Agent 的能力边界。例如本案例中涉及的思维导图、英文音频,因无法通过 LLM 生成,需依赖插件实现。 大模型:调用 LLM ,实现各项文本内容的生成。如本案例中的中文翻译、英文大纲、单词注释等都依赖大模型节点。 代码:支持编写简单的 Python、JS 脚本,对数据进行处理。 4. 编辑面板中的开始节点、结束节点,分别对应分解子任务流程图中的原文输入和结果输出环节。 5. 按照流程图,在编辑面板中拖入对应的 LLM 大模型、插件、代码节点,即可完成工作流框架的搭建。 此外,在“用 Coze 搭建一个神奇宠物诞生器”的工作流中,“定制召唤”工作流是“随机召唤”工作流的变种。对于“定制召唤”工作流,需要修改的节点包括: 开始节点:新增一个输入变量,定义为 keywords ,用于接收用户输入的宠物种类(动物或者植物)。 代码节点:要将特定的宠物种类关键词嵌入到描述 prompt 里。例如,如果召唤师输入“熊猫”,R 属性的宠物描述就要修改为“一个朴素小熊猫宠物,可爱,圆滚滚的,大眼睛,毛茸茸的。画风参考著名动画片《神奇宝贝》”,SR 和 SSR 依次类推。描述 prompt 变成三段字符串相加的情况,即原描述第一段+宠物种类+原描述第二段。其余节点均与“随机召唤工作流一致”。
2025-02-03
大模型搭建知识库的逻辑是什么
大模型搭建知识库的逻辑主要包括以下几个方面: 1. 理解 RAG 技术:利用大模型搭建知识库本质上是 RAG 技术的应用。在大模型训练数据有截止日期或不包含所需数据时,通过检索增强生成(RAG)来解决。RAG 可抽象为 5 个过程: 文档加载:从多种来源加载包括非结构化、结构化和代码等不同类型的文档。 文本分割:把文档切分为指定大小的块。 存储:包括将切分好的文档块嵌入转换成向量形式,并将向量数据存储到向量数据库。 检索:通过检索算法找到与输入问题相似的嵌入片。 输出:把问题及检索出来的嵌入片一起提交给大模型,生成更合理的答案。 2. 构建知识库各个流程: 从用户提出问题开始,经历用户问题的理解、路由、初步检索、重排序等环节,最终将重排序后的结果和用户的查询意图组合成上下文输入给大模型生成输出结果。需要注意重排序结果的使用限制,如设置阈值进行截断或筛选相关性分数等。 后置处理包括敏感内容检测和移除、格式化输出等。 3. 知识库的需求:大模型并非 100%准确,存在数据日期限制和无法感知公司内部私有数据等问题,知识库的出现就是为解决大模型的数据准确性问题。例如在客服系统中,公司将用户问题及答案记录在文档中以知识库形式投喂给大模型,使其能更准确回答用户自然语言询问的问题。
2025-02-03
介绍一下有没有适合一个5个人软件开发公使用的AI服务器,包含软硬件
目前市面上有多种适合 5 人软件开发公司使用的 AI 服务器,软硬件的选择需要综合考虑多方面因素。 在硬件方面,服务器的处理器性能至关重要,例如英特尔至强系列处理器具有较强的计算能力。内存容量应足够大,以满足数据处理和模型训练的需求,建议至少 32GB 或更高。存储方面,高速的固态硬盘(SSD)可以提供快速的数据读写速度。 在软件方面,常见的操作系统如 Linux(如 Ubuntu、CentOS 等)具有较好的稳定性和兼容性。深度学习框架如 TensorFlow、PyTorch 等是进行 AI 开发的重要工具。同时,还需要配备相关的数据库管理软件、开发工具和监控软件等。 然而,具体的选择还需根据公司的业务需求、预算以及技术团队的熟悉程度来决定。
2025-02-05
个人如何通过AI获取收入
个人通过 AI 获取收入的方式主要有以下几种: 1. 学习 AI 技术,从事相关高薪工作,如成为数据科学家、机器学习工程师等,在金融、医疗、制造业等行业找到工作机会,获得不错的收入。但能否赚钱取决于个人的学习能力、实际应用能力、对市场和商业的理解等,需要持续学习和实践。 2. 在公司给自己贴“AI 大神”标签,提升个人影响力。 3. 在社交网络分享相关成果,扩大影响力。 4. 承接项目开发,例如通过增加画板节点,结合公司 Logo 生成一系列公司主题的产品邮票,或者承接类似需求,扩充工作流以适应更复杂的业务。 5. 对于内容创作,利用生成式 AI 进行艺术创作,从消费者“仅为了娱乐”地创造内容,到创作者或个体创业者通过内容实现盈利。
2025-02-05
如何用AI工具做一个个人工作知识库
以下是使用 AI 工具创建个人工作知识库的方法: 1. 使用 AnythingLLM 软件: 安装地址:https://useanything.com/download 。 安装完成后进入配置页面,主要分为三步: 第一步:选择大模型。 第二步:选择文本嵌入模型。 第三步:选择向量数据库。 在 AnythingLLM 中创建自己独有的 Workspace 与其他项目数据隔离。 首先创建一个工作空间,上传文档并在工作空间中进行文本嵌入,选择对话模式。 AnythingLLM 提供了两种对话模式:Chat 模式(大模型会根据自己的训练数据和上传的文档数据综合给出答案)和 Query 模式(大模型仅仅会依靠文档中的数据给出答案)。 完成配置后即可与大模型进行对话。 2. 基于 Coze 免费打造: 确定功能范围,编写 prompt 提示词,设定 Bot 的身份和目标。 创建知识库,整理“关键字”与“AI 相关资料链接”的对应关系,并将信息存储起来。创建知识库路径:个人空间 知识库 创建知识库。知识库文档类型支持本地文档、在线数据、飞书文档、Notion 等,本次使用【本地文档】。按照操作指引上传文档、分段设置、确认数据处理。小技巧:在内容中加上一些特殊分割符,比如“”,以便于自动切分数据。分段标识符号要选择“自定义”,内容填“”。 创建工作流,告诉 AI 机器人应该按什么流程处理信息。创建工作流路径:个人空间 工作流 创建工作流。工作流设计好后,先点击右上角“试运行”,测试工作流无误后,就可以点击发布。如果任务和逻辑复杂,可以结合左边“节点”工具来实现。 私人知识库中的内容一般有两种:日常从互联网收集的优质信息和个人日常的思考以及分享。如果想基于这套知识库打造个人专属的 ChatGPT,常见的有两种技术方案:训练专有大模型和利用 RAG(检索增强生成)技术。训练专有大模型效果虽好,但存在高成本、更新难度大等缺陷,并非当下主流方案。
2025-02-04
如何建立个人领域的个人知识库
以下是建立个人领域个人知识库的方法: 1. 使用 embeddings: 将文本转换成向量(一串数字),可理解为索引,能节省空间。 把大文本拆分成若干小文本块(chunk),通过 embeddings API 将其转换成 embeddings 向量,与文本块语义相关。 在向量储存库保存 embeddings 向量和文本块,作为问答的知识库。 当用户提问时,将问题转换成向量,与向量储存库的向量比对,提取关联度高的文本块,与问题组合成新的 prompt 发送给 GPT API。 例如,对于“此文作者是谁?”的问题,可提取关联度高的文本块,如“本文作者:越山。xxxx。”“《反脆弱》作者塔勒布xxxx。” 2. 理解 embeddings: embeddings 是浮点数字的向量(列表),向量之间的距离衡量关联性,小距离表示高关联度,大距离表示低关联度。 向量是用一串数字表示大小和方向的量,在计算机科学中常用列表表示。 常见的计算向量距离的方法是欧几里得距离。 在 OpenAI 词嵌入中,靠近的向量词语在语义上相似。 3. GPT 模型索引库 LlamaIndex: LlamaIndex 是更高一层 LangChain 的抽象,之前叫 GPT Index。 它简化了 LangChain 对文本分割和查询的接口,提供了更丰富的 Data Connector。 LlamaIndex 只针对 GPT Model 做 Index,而 LangChain 可对接多个 LLMs,可扩展性更强。 需要注意的是,GPT3.5 一次交互支持的 Token 有限,OpenAI 提供了 embedding API 解决方案。随着技术发展,AI 的开发和使用门槛会降低,垂直领域知识库的搭建和优化更多是业务问题。
2025-02-03
一个人如何开发ai应用
以下是关于一个人如何开发 AI 应用的指导: 首先,进行规划 POC 和开发路径。设计 POC 的小项目,比如“我是技术小白。我想要开发的项目功能如下。这里有哪些技术点?能否为我一一列举。请尽可能细化,帮我选择合适的技术方案,并为我设计 POC 项目。每个 POC 都应该是一个独立的项目,我好先通过完成 POC 来学会相关技术。”POC 即实验性小项目,其优点是足够小,AI 能直接生成。通过研究小项目、搞明白特定技术点的工作方式,便于后续在大项目中添加功能。这一步中,AI 可能会选取不合适的技术栈、拆分粒度不够细、开发路径设计不合理、没有循序渐进。如有可能,请老师傅把关。 接下来就是真正的实践。按照项目规划,学习一个 POC,并将其应用到大项目中;再学一个 POC,再运用。当遇到错误时,复制错误信息、相关代码,扔给 AI 让其找错误并修复。若使用可以识图的 claude 或 GPT4o,截图+错误信息+代码三件套会很好用。但可能会遇到一些问题,如开发 chrome 插件时,即便强调要用 manifest v3 的版本,AI 仍可能给出 v2 的代码及错误修复方案。此时,更有效的方式是找文档(可让 GPT 提供文档链接,或问 perplexity),或去 stackoverflow 上找答案(注意回答和评论的日期),然后把文档或找到的答案提供给 AI,让其基于这些信息修复,此时它给的指引会更正确且详细。当然,这一步如有老师傅支援更好。 另外,以证件照为例的 90 分钟从 0 开始打造第一个 Coze 应用的教学中,提到了 Code AI 应用的背景、现状以及学习过程,包括创建 AI 应用,学习操作界面、业务逻辑和用户界面,重点熟悉桌面网页版的用户界面等。
2025-02-03
面向新手个人的AI应用培训课程
以下是为新手个人推荐的一些 AI 应用培训课程: 1. 微软的 AI 初学者课程: 作者/来源:微软 推荐阅读《Introduction and History of AI》从这里起步 链接: 发布日期:2023/02/10 必看星标:👍🏻 2. AI for every one(吴恩达教程): 作者/来源:吴恩达 前 ChatGPT 时代的 AI 综述 链接: 发布日期:2023/03/15 必看星标:👍🏻 3. 大语言模型原理介绍视频(李宏毅): 作者/来源:李宏毅 可以说在众多中文深度学习教程中,李宏毅老师讲的应该是最好的,最通俗易懂 链接: 发布日期:2023/05/01 4. 谷歌生成式 AI 课程: 作者/来源:谷歌 注:前 4 节课为入门课 目录: 5. ChatGPT 入门: 作者/来源:OpenAI 注册、登录、简单使用方法等 目录: 新手学习 AI 的建议: 1. 了解 AI 基本概念: 建议阅读「」部分,熟悉 AI 的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,这些文章通常会介绍 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,你将找到一系列为初学者设计的课程。这些课程将引导你了解生成式 AI 等基础知识,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,你可以按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),你可以根据自己的兴趣选择特定的模块进行深入学习。 建议一定要掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出你的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎你实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动是学习 AI 的另一种有效方式。尝试使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 通过与这些 AI 产品的对话,你可以获得对 AI 在实际应用中表现的第一手体验,并激发你对 AI 潜力的认识。 此外,还有“90 分钟从 0 开始打造你的第一个 Coze 应用:证件照 2025 年 1 月 18 日副本”,其中包括: 1. Code AI 应用背景:智能体开发从最初的 chatbot 只有对话框,到有了更多交互方式,因用户需求扣子推出了 AI 应用,其低代码或零代码的工作流等场景做得较好。 2. AI CODING 现状:AI CODING 虽强,但目前适用于小场景和产品的第一个版本,复杂应用可能导致需求理解错误从而使产品出错。 3. 证件照应用案例:以证件照为例,说明以前实现成本高,现在有客户端需求并做了相关智能体和交互。 4. AI 应用学习过程:创建 AI 应用,学习操作界面、业务逻辑和用户界面,包括布局、搭建工作流、用户界面及调试发布,重点熟悉桌面网页版的用户界面。
2025-01-23