Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

有什么制造业的AIGC应用吗?

Answer

在制造业领域也有一些 AIGC(AI Generated Content)的应用:

  1. 产品设计和开发:利用 AI 生成工具如 Adobe Firefly、Midjourney 等,可以根据文字描述快速生成产品的 3D 模型、渲染图、插图等设计元素,大幅提高产品设计效率。
  2. 工艺规划和优化:结合大语言模型的自然语言处理能力,可以自动生成制造工艺流程、设备选型、质量控制等方案,优化生产过程。
  3. 设备维护和故障诊断:利用 AI 模型分析设备运行数据,可以预测设备故障,并自动生成维修建议,提高设备可靠性。
  4. 供应链管理:AI 可以根据历史数据和市场变化,自动生成采购计划、库存预测、物流优化等内容,提高供应链管理效率。
  5. 客户服务:基于对话模型的 AI 客服机器人,可以自动生成个性化的客户回复,提升客户体验。

总的来说,AIGC 技术正在制造业各环节得到广泛应用,从产品设计到生产管理再到客户服务,都能发挥重要作用,提高企业的效率和竞争力。

Content generated by AI large model, please carefully verify (powered by aily)

References

Others are asking
请问还有哪些AIGC活动还未到截止日期
以下是一些尚未到截止日期的 AIGC 活动: 2024 上海国际公益广告大赛:截止 10 月 31 日。作品提交:sipsac.cn,主题为“潮起东方创益未来”,板块包括美丽世界、文化中国、科技生活,类型有平面、音视频、数字创新,金奖 3 万、银奖 1 万、铜奖 5 千,还有全场大奖 10 万。 首届“海丝之光”AI 青瓷设计大赛:截止 2024 年 11 月 10 日。报名链接:,团队参赛最多 5 人,网络投票+专家评审,一等奖 10000 元,二等奖 5000 元,三等奖 1000 元。 百万奖金池重磅赛事“2024 AIGC 营销视频生态创新大赛 '真 AI 牛奶,真 AI 创意'”:作品提交时间为 10 月 11 日 11 月 30 日,专家评审时间为 12 月 1 日 12 月 9 日,成果发布时间为 12 月 10 日。 中国神兽复兴计划 AI 创作大赛开启:9 月 1 日 9 月 24 日。利用 AI 复原《山海经》中的经典神兽,赢取 35 万元现金和实体大奖,获奖作品将获得全网流量曝光,由中央美术学院等权威高校支持。 生成式人工智能(AIGC)网络微短剧、微电影大赛征集评选活动:9 月 3 日 11 月 3 日。一等奖 2 名,奖杯、荣誉证书 10000;二等奖 2 名,奖杯、荣誉证书 8000;三等奖 6 名,奖杯、荣誉证书 3000。 ComfyUI 共学 WaytoAGI 共学计划:8 月 20 23 日每晚 8 点,会议链接:。 全球 AI 视觉创意大赛(瓦卡奖 VACAT):8 月 22 日 9 月 22 日。全球 AI 视觉创意大赛(瓦卡奖 VACAT Vision Arts Created by AI Technology),致力于构建 AI 视觉创意界的“奥斯卡”平台,推动 AI 视觉技术的应用与创新。
2025-01-30
请联网搜索近期有什么AIGC相关的比赛活动
以下是近期的 AIGC 相关比赛活动: 【线上⬆️】,时间为 9 月 1 日 9 月 24 日。利用 AI 复原《山海经》中的经典神兽,赢取 35 万元现金和实体大奖,获奖作品将获得全网流量曝光,由中央美术学院等权威高校支持。 ,时间为 9 月 3 日 11 月 3 日。一等奖 2 名,奖杯、荣誉证书及 10000 元奖励;二等奖 2 名,奖杯、荣誉证书及 8000 元奖励;三等奖 6 名,奖杯、荣誉证书及 3000 元奖励。 【线上⬆️】 。 【线上⬆️】,时间为 8 月 22 日 9 月 22 日。全球 AI 视觉创意大赛(瓦卡奖 VACAT Vision Arts Created by AI Technology),致力于构建 AI 视觉创意界的“奥斯卡”平台,推动 AI 视觉技术的应用与创新。 ,截止时间为 10 月 31 日。作品提交:sipsac.cn,主题为“潮起东方创益未来”,板块包括美丽世界、文化中国、科技生活,类型有平面、音视频、数字创新,金奖 3 万、银奖 1 万、铜奖 5 千,另外有全场大奖 10 万。 ,截止时间为 2024 年 11 月 10 日。让创意点亮传统,传承经典,一等奖 10000 元,二等奖 5000 元,三等奖 1000 元。 ,作品提交时间为 10.11 11.30,专家评审时间为 12.1 12.9,成果发布时间为 12.10 。 ,时间为 1 月 24 日 2 月 28 日。需用魔搭平台【AIGC 专区】麦橘超然模型作底模训练 LORA 模型,描绘心中理想世界,风格不限。提交 LoRA 及 6 张以上高质量作品,单张图片分辨率不低于 1024x1024 像素,每组作品展现一个世界观场景;避免鲜血、骷髅等敏感元素。一等奖 1 名,奖金 5000 元 + 证书;二等奖 3 名,奖金 3000 元 + 证书;三等奖 10 名,奖金 1000 元 + 证书。魔搭社区 AIGC 代言人奖:作品发小红书带一丹一世界话题并@魔搭 ModelScope 社区官方,浏览量满 800,前 20 名可得 300 元天猫超市卡。
2025-01-30
AIGC和AGI的区别
AIGC(人工智能生成内容)是利用人工智能技术生成各种类型内容的应用方式,包括文字、图像、视频等。它在内容创作、广告、媒体等领域广泛应用。 AGI(通用人工智能)则是一种让机器具备像人类一样的通用智能的目标,能够理解、学习和处理各种不同的任务和领域。 AIGC 侧重于内容的生成,是通过机器学习和深度学习算法,根据输入的数据和指令生成符合特定要求的内容。而 AGI 追求的是更广泛和通用的智能能力。 例如,AIGC 可以生成文章、艺术作品、短视频等具体的内容形式;AGI 则是期望机器能够像人类一样进行思考、推理、解决复杂的综合性问题等。 总的来说,AIGC 是 AGI 在内容生成方面的一种具体应用,而 AGI 是更宏观和高远的人工智能发展目标。
2025-01-19
什么是AIGC
AIGC 即 AI generated content,又称为生成式 AI,是一种利用人工智能技术生成各种类型内容的应用方式。 AIGC 能够通过机器学习和深度学习算法,根据输入的数据和指令生成符合特定要求的内容,例如 AI 文本续写、文字转图像的 AI 图、AI 主持人等。其应用领域广泛,包括内容创作、广告、媒体等。 能进行 AIGC 的产品项目和媒介众多。在语言文字类,有 OpenAI 的 GPT、Google 的 Bard、百度的文心一言等;在语音声音类,有 Google 的 WaveNet、微软的 Deep Nerual Network、百度的 DeepSpeech 等;在图片美术类,有早期的 GEN 等图片识别/生成技术,去年大热的扩散模型又带火了 Midjourney、谷歌的 Disco Diffusion、OpenAI 的 Dalle·2 以及 stability ai 和 runaway 共同推出的 Stable Diffusion 等。 AIGC、UGC 和 PGC 都是内容生成的不同方式。UGC 是由用户生成的内容,反映用户的真实想法和创意,适用于社交媒体、社区论坛等互动性强的平台。PGC 是由专业人士或机构生成的内容,内容质量高、专业性强,适用于新闻媒体、专业网站等需要高质量内容的平台。AIGC 的优势在于可以快速、大规模地生成内容,适用于需要大量内容的场景,如自动化新闻、广告创作等。
2025-01-19
什么是AIGC
AIGC 即 AI generated content,又称为生成式 AI,是一种利用人工智能技术生成各种类型内容的应用方式。 AIGC 能够通过机器学习和深度学习算法,根据输入的数据和指令生成符合特定要求的内容,其应用领域广泛,包括但不限于内容创作、广告、媒体等。 例如,在文字生成方面,可使用大型语言模型(如 GPT 系列模型)生成文章、故事、对话等内容;在图像生成方面,可使用 Stable Diffusion、DALLE 等模型生成艺术作品、照片等;在视频生成方面,可使用 Runway、KLING 等模型生成动画、短视频等。 AIGC 与 UGC(普通用户生产)、PGC(专业用户生产)都是内容生成的不同方式。UGC 是由用户生成的内容,优势在于内容丰富多样,能反映用户真实想法和创意,适用于社交媒体、社区论坛等互动性强的平台。PGC 是由专业人士或机构生成的内容,优势在于内容质量高、专业性强,适用于新闻媒体、专业网站等需要高质量内容的平台。 能进行 AIGC 的产品项目众多,媒介也多样。语言文字类有 OpenAI 的 GPT、Google 的 Bard、百度的文心一言等;语音声音类有 Google 的 WaveNet、微软的 Deep Nerual Network、百度的 DeepSpeech 等,还有合成 AI 孙燕姿大火的开源模型 Sovits;图片美术类有早期的 GEN 等图片识别/生成技术,去年大热的扩散模型带火了生成质量很高的 Midjourney、先驱者谷歌的 Disco Diffusion、一直在排队测试的 OpenAI 的 Dalle·2,以及 stability ai 和 runaway 共同推出的 Stable Diffusion。Stable Diffusion 是由初创公司 StabilityAI、CompVis 与 Runway 合作开发,2022 年发布的深度学习文本到图像生成模型,代码模型权重已公开发布,当前版本为 2.1 稳定版(2022.12.7),源代码库为 github.com/StabilityAI/stablediffusion。
2025-01-10
AIGC是什么
AIGC 即 AI generated content,又称为生成式 AI,是一种利用人工智能技术生成各种类型内容的应用方式。 这种技术能够通过机器学习和深度学习算法,根据输入的数据和指令生成符合特定要求的内容。AIGC 的应用非常广泛,例如 AI 文本续写、文字转图像的 AI 图、AI 主持人等。 在内容生成方面,AIGC 包括文字生成(如使用大型语言模型 GPT 系列模型生成文章、故事、对话等)、图像生成(如使用 Stable Diffusion、DALLE 等模型生成艺术作品、照片等)、视频生成(如使用 Runway、KLING 等模型生成动画、短视频等)。 AIGC 与 UGC(普通用户生产)、PGC(专业用户生产)都是内容生成的不同方式。UGC 由用户生成内容,优势在于内容丰富多样,能反映用户真实想法和创意,适用于社交媒体、社区论坛等互动性强的平台。PGC 由专业人士或机构生成内容,优势在于内容质量高、专业性强,适用于新闻媒体、专业网站等需要高质量内容的平台。 能进行 AIGC 的产品项目众多,能进行 AIGC 的媒介也很多,包括且不限于: 语言文字类:OpenAI 的 GPT,Google 的 Bard,百度的文心一言,还有一种国内大佬下场要做的的 LLM 都是语言类的。 语音声音类:Google 的 WaveNet,微软的 Deep Nerual Network,百度的 DeepSpeech 等,还有合成 AI 孙燕姿大火的开源模型 Sovits。 图片美术类:早期有 GEN 等图片识别/生成技术,去年大热的扩散模型又带火了我们比较熟悉的、生成质量无敌的 Midjourney,先驱者谷歌的 Disco Diffusion,一直在排队测试的 OpenAI 的 Dalle·2,以及 stability ai 和 runaway 共同推出的 Stable Diffusion。
2025-01-08
我是一名传统制造业的产品经理,一名ai小白,想在ai方面进行创业,有哪些方向建议
以下是为您提供的在 AI 方面创业的方向建议: 对于技术爱好者: 1. 从小项目开始,如搭建简单博客或自动化脚本,熟悉 AI 能力和局限性。 2. 探索 AI 编程工具,如 GitHub Copilot 或 Cursor,从生成注释或简单函数逐步过渡到复杂任务。 3. 参与 AI 社区,如 Stack Overflow 的 AI 板块或 Reddit 的 r/artificial 子版块,与开发者交流,了解最新趋势。 4. 构建 AI 驱动的项目,如开发简单的聊天机器人或图像识别应用,深入理解实际应用过程。 对于内容创作者: 1. 利用 AI 辅助头脑风暴,针对主题生成创意方向。 2. 建立 AI 写作流程,从生成大纲开始,逐步扩展到段落生成和数据支持。 3. 探索多语言内容,借助 AI 辅助翻译和本地化内容以拓展国际市场。 4. 利用 AI 工具优化 SEO,根据建议调整标题、元描述和关键词使用。 从行业观点来看: 1. 可能成功的 AI 公司应打造自身的数据飞轮,尤其在 ToC 场景中寻求突破,因为 C 端的数据飞轮效应可能是早期决胜关键。 2. 有专业壁垒的垂直模型可能是机会所在,如高价值、特定领域依赖丰富的专有数据集。 3. 大模型产品可朝个性化(装上“记忆”成为工作助理或陪伴者)和场景化(装上“手”和“眼睛”)方向发展。 从 AI 创业者的情况来看: 1. 如天涯,具备软件开发经验和连续创业经历,可在 AI 领域发挥优势。 2. 像 Eureka 这样的 Fintech 产品经理,可在 AI 金融领域应用方面探索。 3. Zima 在编程和 AI 教育探索方面有基础,可关注 AI+教育和 AI4Science 方向。 4. Mr.water🐳 可凭借与高校教授的联系,考虑科研方向转化。 总之,AI 创业要注重技术驱动和产品定义,用好市面上的 AI 工具,从效率和变革角度组织公司架构。同时,把握好融资节奏,在实践中有效迭代。
2024-12-06
AI在制造业的应用
在制造业领域,AI 有以下应用: 1. 产品设计和开发:利用 AI 生成工具如 Adobe Firefly、Midjourney 等,可根据文字描述快速生成产品的 3D 模型、渲染图、插图等设计元素,大幅提高产品设计效率。 2. 工艺规划和优化:结合大语言模型的自然语言处理能力,能自动生成制造工艺流程、设备选型、质量控制等方案,优化生产过程。 3. 设备维护和故障诊断:利用 AI 模型分析设备运行数据,可预测设备故障,并自动生成维修建议,提高设备可靠性。 4. 供应链管理:AI 可根据历史数据和市场变化,自动生成采购计划、库存预测、物流优化等内容,提高供应链管理效率。 5. 客户服务:基于对话模型的 AI 客服机器人,能自动生成个性化的客户回复,提升客户体验。 此外,AI 在制造业还包括以下方面的应用: 1. 预测性维护:可预测机器故障,帮助工厂避免停机。 2. 质量控制:能够检测产品缺陷,提高产品质量。 3. 供应链管理:优化供应链,提高效率和降低成本。 4. 机器人自动化:用于控制工业机器人,提高生产效率。
2024-11-22
AI目前在制造业和零售领域有什么案例吗?
在制造业领域,AI 的应用案例包括: 预测性维护:可用于预测机器故障,避免工厂停机。 质量控制:能够检测产品缺陷,提升产品质量。 供应链管理:有助于优化供应链,提高效率并降低成本。 机器人自动化:用于控制工业机器人,提高生产效率。 生产计划、供应链计划状态查询。 产线预测性维保辅助。 产品质量分析与溯源。 自动驾驶全场景模拟训练及虚拟汽车助手。 在零售领域,AI 的应用案例包括: 舆情、投诉、突发事件监测及分析。 品牌营销内容撰写及投放。 自动化库存管理。 自动生成或完成 SKU 类别选择、数量和价格分配。 客户购物趋势分析及洞察。
2024-08-29
具身智能在制造业的应用场景
具身智能在制造业的应用场景包括: 1. 机器人自动化:通过具身智能控制工业机器人,提高生产效率。 2. 预测性维护:利用具身智能预测机器故障,帮助工厂避免停机。 3. 质量控制:借助具身智能检测产品缺陷,提升产品质量。 4. 供应链管理:运用具身智能优化供应链,提高效率并降低成本。 此外,在制造业领域,AIGC(AI Generated Content)也有广泛应用: 1. 产品设计和开发:使用 AI 生成工具如 Adobe Firefly、Midjourney 等,根据文字描述快速生成产品的 3D 模型、渲染图、插图等设计元素,提高产品设计效率。 2. 工艺规划和优化:结合大语言模型的自然语言处理能力,自动生成制造工艺流程、设备选型、质量控制等方案,优化生产过程。 3. 设备维护和故障诊断:利用 AI 模型分析设备运行数据,预测设备故障,并自动生成维修建议,增强设备可靠性。 4. 供应链管理:AI 可依据历史数据和市场变化,自动生成采购计划、库存预测、物流优化等内容,提升供应链管理效率。 5. 客户服务:基于对话模型的 AI 客服机器人,能够自动生成个性化的客户回复,改善客户体验。 尽管具身智能在理论和技术上取得了显著进展,但仍面临诸多挑战,如如何设计智能体的身体以最大化其智能表现,如何让智能体在复杂多变的环境中有效学习,以及如何处理智能体与人类社会的伦理和安全问题等。未来的研究将继续探索这些问题,以推动具身智能的发展和应用。
2024-08-17
具身智能在制造业的应用场景有哪些?
具身智能在制造业的应用场景主要包括以下方面: 1. 预测性维护:可用于预测机器故障,帮助工厂避免停机。 2. 质量控制:能够检测产品缺陷,提升产品质量。 3. 供应链管理:有助于优化供应链,提高效率并降低成本。 4. 机器人自动化:用于控制工业机器人,提高生产效率。 具身智能是指智能体通过身体与环境的交互来学习和理解世界,并做出相应的决策和行动。其在机器人领域,特别是服务机器人、工业自动化和辅助技术等方面有重要应用。同时,具身智能也在虚拟现实、增强现实和游戏设计等领域广泛应用,能创造更具沉浸感和交互性的体验。 具身智能发展的核心问题并非算法和硬件,而是在现实物理世界构建数据闭环。实现闭环需要数据获取成本足够低,并能在具体化场景中持续收集数据。 在具身智能的发展历史中,之前的机器人厂商有过方向转变,如波士顿动力从液压转向电动。第一代机器人处于技术探索阶段,如早稻田大学的仿人机器人,1970 年之前的示教再现型机器人没有感知和思考能力,仅根据预设程序重复动作,目前在汽车制造业和一些工业生产线上仍常见。1960 年代,美国机床铸造公司和美国 Unimation 公司分别生产出不同类型的机器人。1970 1997 年,出现了有感觉的机器人,它们拥有一定的感觉系统,可获取环境和对象信息。 尽管具身智能在理论和技术上取得显著进展,但仍面临诸多挑战,如智能体身体设计、复杂环境中的有效学习以及与人类社会相关的伦理和安全问题等。未来的研究将继续探索这些问题,以推动具身智能的发展和应用。
2024-08-09
AI在制造业的应用
AI 在制造业的应用包括以下几个方面: 1. 产品设计和开发:利用 AI 生成工具如 Adobe Firefly、Midjourney 等,可以根据文字描述快速生成产品的 3D 模型、渲染图、插图等设计元素,大幅提高产品设计效率。 2. 工艺规划和优化:结合大语言模型的自然语言处理能力,可以自动生成制造工艺流程、设备选型、质量控制等方案,优化生产过程。 3. 设备维护和故障诊断:利用 AI 模型分析设备运行数据,可以预测设备故障,并自动生成维修建议,提高设备可靠性。 4. 供应链管理:AI 可以根据历史数据和市场变化,自动生成采购计划、库存预测、物流优化等内容,提高供应链管理效率。 5. 客户服务:基于对话模型的 AI 客服机器人,可以自动生成个性化的客户回复,提升客户体验。 总的来说,AI 技术正在制造业各环节得到广泛应用,从产品设计到生产管理再到客户服务,都能发挥重要作用,提高企业的效率和竞争力。
2024-05-30
大模型在数据分析上的应用
大模型在数据分析上有广泛的应用。 首先,了解一下大模型的基本概念。数字化便于计算机处理,为让计算机理解 Token 之间的联系,需将 Token 表示成稠密矩阵向量,即 embedding,常见算法有基于统计的 Word2Vec、GloVe,基于深度网络的 CNN、RNN/LSTM,基于神经网络的 BERT、Doc2Vec 等。以 Transform 为代表的大模型采用自注意力机制来学习不同 token 之间的依赖关系,生成高质量 embedding。大模型的“大”在于用于表达 token 之间关系的参数多,如 GPT3 拥有 1750 亿参数。 大模型因其强大能力,在多个领域有热门应用场景: 1. 文本生成和内容创作:撰写文章、生成新闻报道、创作诗歌和故事等。 2. 聊天机器人和虚拟助手:进行自然对话,提供客户服务、日常任务提醒和信息咨询等。 3. 编程和代码辅助:自动补全、修复 bug 和解释代码,提高编程效率。 4. 翻译和跨语言通信:理解和翻译多种语言,促进不同语言背景用户的沟通和信息共享。 5. 情感分析和意见挖掘:分析社交媒体等中的文本,为市场研究和产品改进提供支持。 6. 教育和学习辅助:创建个性化学习材料、回答学生问题和提供语言学习支持。 7. 图像和视频生成:如 DALLE 等模型可根据文本描述生成相应图像,未来可能扩展到视频。 8. 游戏开发和互动体验:创建游戏角色对话、生成故事情节和增强玩家沉浸式体验。 9. 医疗和健康咨询:回答医疗相关问题,提供初步健康建议和医疗信息查询服务。 10. 法律和合规咨询:解读法律文件,提供合规建议,降低法律服务门槛。 大型模型主要分为两类:大型语言模型专注于处理和生成文本信息;大型多模态模型能处理包括文本、图片、音频等多种类型信息。二者在处理信息类型、应用场景和数据需求方面有所不同。大型语言模型主要用于自然语言处理任务,依赖大量文本数据训练;大型多模态模型能处理多种信息类型,应用更广泛,需要多种类型数据训练。 相对大模型,也有所谓的“小模型”,它们通常是为完成特定任务而设计。
2025-02-05
coze的主要应用
Coze 是由字节跳动推出的 AI 聊天机器人和应用程序编辑开发平台,主要应用包括: 1. 简化 AI 机器人的开发过程,使开发者和非技术用户都能快速搭建基于 AI 模型的各类问答 Bot,处理从简单问答到复杂逻辑对话的任务。 2. 支持多语言模型,如 GPT48K 和 GPT4128K,并提供云雀语言模型等,以支持不同场景下的对话和交互。 3. 集成超过 60 款插件,涵盖资讯阅读、旅游出行、效率办公、图片理解等功能,同时支持用户创建自定义插件,扩展 Bot 的能力。 4. 允许用户上传和管理数据,支持 Bot 与用户数据交互,可上传多种格式的文档,或基于 URL 获取在线内容和 API JSON 数据。 5. 提供数据库功能,允许 Bot 访问会话内存和上下文,持久记住用户对话中的重要参数或内容。 6. 用户可以通过拖拉拽的方式快速搭建工作流,处理逻辑复杂的任务流,提供大量灵活可组合的节点。 7. 支持多代理模式,在一个机器人中运行多个任务,允许添加多个代理,每个代理都能独立执行特定任务。 8. 对用户完全免费。 9. 易于发布和分享,用户可将搭建的 Bot 发布到各类社交平台和通讯软件上。 此外,Coze 在移动端的排名表现出色,如在 TikTok 母公司字节跳动的相关产品中,Coze 首次出现在榜单上,排名第 45 位。
2025-02-04
智能体编排应用 定义
智能体编排应用是一种将多个应用整合,分工协作完成复杂任务的流程式 AI 应用。它把复杂任务分成多个子任务,通过以下方式实现: 1. 操作方面:点击新应用创建智能体编排,可放入现有应用或创建新智能体,通过不同模型设置智能体组分工协作。 2. 应用组件能力:包含插件管理能力,遵循 open API 3.0.1 规范,可接入阿里云上众多 API 场景,即将上线大批官方插件,也可编辑自定义插件。 3. 应用测评与观测能力:可创建测评任务,观测应用运行情况,有众多值得探索的场景。 4. 智能体群组功能:内置对多个智能体的调度决策,可根据任务规划智能体执行顺序和依赖关系,结果全局共享。 5. 应用引用功能:1 月份将发布已发布应用可被智能体群组或工作流引用的功能,未来还将开放调用外部应用接口。 与单个智能体应用相比,智能体编排具有以下优势: 1. 协作与灵活性:由多个具有自治能力的智能体组成,可相互通信、信息共享和协作,完成复杂任务,在多方协作和多路径并行处理任务的环境中表现出色。 2. 可扩展性与健壮性:可以调整智能体的数量和角色,适应不同任务需求,提高灵活性和适应性。 3. 任务分解与并行处理:能将复杂任务分解为多个子任务,由不同智能体并行处理,提高任务执行效率和速度。 4. 自动规划能力:可根据任务需求自动规划任务执行流程,灵活调度子智能体。 5. 完整的智能体功能:智能体节点依然支持 RAG、插件和流程编排等功能,与单个智能体的功能保持一致。 简单来说,就是把之前创建好的不同角色的智能体应用进行流程化的编排,分好工各司其职。配置完后每个智能体按部就班执行自己的任务,会有前后衔接关系。也可以通过 API 的方式快速调用应用。
2025-02-04
智能体应用(Assistant) 定义
智能体应用(Assistant)是一种基于上下文对话,自主决策并调用工具来完成复杂任务的对话式 AI 应用。通过简单配置即可快速上手并实现基本功能。 其具有以下特点和应用场景: 特点:能够弥补大模型的局限性,如无法回答私有领域问题、无法及时获取最新信息、无法准确回答专业问题等。通过集成特定的外部能力,如实时信息获取、回答私有领域问题等,提升用户体验和增强业务竞争力。 应用场景: 客户服务:了解客户诉求,解决客户问题,如查询订单状态、处理退款等。 个人助理:管理日程安排、提醒事项、发送邮件等。 技术支持:了解技术问题,提供解决方案,帮助用户排除故障。 私有领域知识问答:准备好相关知识库文件,可在百炼控制台快速创建应用,应用场景包括公司制度、人员信息等。 个性化聊天机器人:百炼提供长期记忆功能,保存关键历史对话信息,集成夸克搜索和图像生成等插件,扩展功能。 智能助手:引入 RAG(检索增强生成)能力、长期记忆和自定义插件等功能,帮助提升工作效率,如处理邮件、撰写周报等。 详情参见 。
2025-02-04
AI在营销上的应用
以下是关于 AI 在营销上的应用的相关内容: 营销 AI 产品: 1. Synthesia:允许用户创建由 AI 生成的高质量视频,包括数字人视频,提供多种定价计划,可用于制作营销视频、产品演示等。 2. HeyGen:基于云的 AI 视频制作平台,用户可从 100 多个 AI 头像库中选择,并通过输入文本生成数字人视频,适合制作营销视频和虚拟主持人等。 3. Jasper AI:人工智能写作助手,可用于生成营销文案、博客内容、电子邮件等,提供多种语气和风格选择,写作质量较高。 4. Copy.ai:AI 营销文案生成工具,可快速生成广告文案、社交媒体帖子、电子邮件等营销内容,有免费和付费两种计划。 5. Writesonic:AI 写作助手,专注于营销内容创作,如博客文章、产品描述、视频脚本等,提供多种语气和行业定制选项。 更多的营销产品可以查看 WaytoAGI 网站:https://www.waytoagi.com/sites?tag=8 。总的来说,这些 AI 工具能够帮助营销人员高效创作各种营销内容,提高工作效率。用户可根据实际需求选择合适的工具。 2025 年数字营销十大趋势: 预计在 2025 年,数字营销的核心会围绕 AI 技术,用户习惯,效率提升,聚焦在五大模块,每一模块下延展出不同趋势,推动品牌在未来市场中建立深厚的竞争力。AI 将继续成为未来数字营销的基石,但它的使用需要具备战略性和明确的目的,以确保品牌的真实性不受影响,避免出现“贬值”效果。品牌在 AI 技术的应用上应追求提升用户体验,而非简单地追逐技术潮流。预计到 2025 年,全球 AI 在数字营销领域的市场规模将达到 1260 亿美元,采用 AI 技术的公司在广告点击率上提高了 35%,广告成本减少了 20%,显示出 AI 在提升效率和成本优化方面的作用。 生成式人工智能在营销中的应用案例: 1. 亨氏使用番茄酱瓶的图像和与亨氏类似的标签来论证“这就是人工智能眼中‘番茄酱’的样子。 2. 雀巢使用维米尔画作的人工智能增强版来帮助销售其酸奶品牌之一。 3. Stitch Fix 是一家服装公司,正在使用 AI 向客户推荐特定服装,并尝试使用 DALLE 2 根据客户对颜色、面料和款式的偏好创建服装可视化。 4. 美泰正在使用该技术生成用于玩具设计和营销的图像。
2025-02-03
一个人如何开发ai应用
以下是关于一个人如何开发 AI 应用的指导: 首先,进行规划 POC 和开发路径。设计 POC 的小项目,比如“我是技术小白。我想要开发的项目功能如下。这里有哪些技术点?能否为我一一列举。请尽可能细化,帮我选择合适的技术方案,并为我设计 POC 项目。每个 POC 都应该是一个独立的项目,我好先通过完成 POC 来学会相关技术。”POC 即实验性小项目,其优点是足够小,AI 能直接生成。通过研究小项目、搞明白特定技术点的工作方式,便于后续在大项目中添加功能。这一步中,AI 可能会选取不合适的技术栈、拆分粒度不够细、开发路径设计不合理、没有循序渐进。如有可能,请老师傅把关。 接下来就是真正的实践。按照项目规划,学习一个 POC,并将其应用到大项目中;再学一个 POC,再运用。当遇到错误时,复制错误信息、相关代码,扔给 AI 让其找错误并修复。若使用可以识图的 claude 或 GPT4o,截图+错误信息+代码三件套会很好用。但可能会遇到一些问题,如开发 chrome 插件时,即便强调要用 manifest v3 的版本,AI 仍可能给出 v2 的代码及错误修复方案。此时,更有效的方式是找文档(可让 GPT 提供文档链接,或问 perplexity),或去 stackoverflow 上找答案(注意回答和评论的日期),然后把文档或找到的答案提供给 AI,让其基于这些信息修复,此时它给的指引会更正确且详细。当然,这一步如有老师傅支援更好。 另外,以证件照为例的 90 分钟从 0 开始打造第一个 Coze 应用的教学中,提到了 Code AI 应用的背景、现状以及学习过程,包括创建 AI 应用,学习操作界面、业务逻辑和用户界面,重点熟悉桌面网页版的用户界面等。
2025-02-03