Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

具身智能在制造业的应用场景有哪些?

Answer

具身智能在制造业的应用场景主要包括以下方面:

  1. 预测性维护:可用于预测机器故障,帮助工厂避免停机。
  2. 质量控制:能够检测产品缺陷,提升产品质量。
  3. 供应链管理:有助于优化供应链,提高效率并降低成本。
  4. 机器人自动化:用于控制工业机器人,提高生产效率。

具身智能是指智能体通过身体与环境的交互来学习和理解世界,并做出相应的决策和行动。其在机器人领域,特别是服务机器人、工业自动化和辅助技术等方面有重要应用。同时,具身智能也在虚拟现实、增强现实和游戏设计等领域广泛应用,能创造更具沉浸感和交互性的体验。

具身智能发展的核心问题并非算法和硬件,而是在现实物理世界构建数据闭环。实现闭环需要数据获取成本足够低,并能在具体化场景中持续收集数据。

在具身智能的发展历史中,之前的机器人厂商有过方向转变,如波士顿动力从液压转向电动。第一代机器人处于技术探索阶段,如早稻田大学的仿人机器人,1970 年之前的示教再现型机器人没有感知和思考能力,仅根据预设程序重复动作,目前在汽车制造业和一些工业生产线上仍常见。1960 年代,美国机床铸造公司和美国 Unimation 公司分别生产出不同类型的机器人。1970 - 1997 年,出现了有感觉的机器人,它们拥有一定的感觉系统,可获取环境和对象信息。

尽管具身智能在理论和技术上取得显著进展,但仍面临诸多挑战,如智能体身体设计、复杂环境中的有效学习以及与人类社会相关的伦理和安全问题等。未来的研究将继续探索这些问题,以推动具身智能的发展和应用。

Content generated by AI large model, please carefully verify (powered by aily)

References

问:具身智能是什么?

具身智能的一个重要应用是在机器人领域,特别是在服务机器人、工业自动化和辅助技术等方面。通过具身智能,机器人可以更好地理解和适应人类的生活环境,提供更加自然和有效的人机交互。此外,具身智能也在虚拟现实、增强现实和游戏设计等领域有着广泛的应用,通过创造更具沉浸感和交互性的体验,丰富了人们的数字生活。尽管具身智能在理论和技术上取得了显著进展,但它仍面临许多挑战。例如,如何设计智能体的身体以最大化其智能表现,如何让智能体在复杂多变的环境中有效学习,以及如何处理智能体与人类社会的伦理和安全问题等。未来的研究将继续探索这些问题,以推动具身智能的发展和应用。

问:请问 AI 有哪些应用场景?

聊天机器人:AI可以用于提供聊天机器人服务,回答客户的问题并解决他们的问题。4.制造业:预测性维护:AI可以用于预测机器故障,帮助工厂避免停机。质量控制:AI可以用于检测产品缺陷,提高产品质量。供应链管理:AI可以用于优化供应链,提高效率和降低成本。机器人自动化:AI可以用于控制工业机器人,提高生产效率。5.交通运输:自动驾驶:AI可以用于开发自动驾驶汽车,提高交通安全性和效率。交通管理:AI可以用于优化交通信号灯和交通流量,缓解交通拥堵。物流和配送:AI可以用于优化物流路线和配送计划,降低运输成本。无人机送货:AI可以用于无人机送货,将货物快速送达偏远地区。6.其他应用场景:教育:AI可以用于个性化学习,为每个学生提供定制化的学习体验。农业:AI可以用于分析农田数据,提高农作物的产量和质量。娱乐:AI可以用于开发虚拟现实和增强现实体验。能源:AI可以用于优化能源的使用,提高能源效率。人工智能的应用场景还在不断扩展,未来人工智能将对我们的生活产生更加深远的影响。内容由AI大模型生成,请仔细甄别

具身智能赛道爆发的前夕,我们应该了解些什么?(上)|Z研究第 5 期

网址:https://mp.weixin.qq.com/s/3wFjI0zwQGhosQWcPPFxMA具身智能发展的核心问题:不是算法,不是硬件;是在现实物理世界构建数据闭环的问题数据构建AI,AI构建产品,产品产生商业价值,在销售和使用的过程中会产生新的数据,从而实现数据飞轮如何实现闭环:数据获取成本足够低在具体化场景当中能够持续不断收集数据。2、历史之前做机器人的厂商转方向了,波士顿动力(液压转电动)第一代机器人:技术探索阶段(以早稻田大学仿人机器人为代表)1970年之前,示教再现型机器人,这类机器人没有感知也不会思考,它们根据事先设定好的程序重复动作。目前在汽车制造业和一些工业生产线上仍然常见。1960年代,美国机床铸造公司(AMF)生产出圆柱坐标的Versatran型机器人,可做点位和轨迹控制。美国Unimation公司研制出球坐标的Unimate型机器人,它可完成近200种示教在线动作1970-1997年,有感觉的机器人,与第一代机器人相比,它们拥有一定的感觉系统,可获取周围环境和相关对象的信息

Others are asking
最新具身智能新闻
以下是关于具身智能的最新新闻: 具身智能是将机器学习算法适配至物理实体,从而与物理世界交互的人工智能范式。以 ChatGPT 为代表的“软件智能体”通过网页端、手机 APP 与用户交互,而具身智能体则将大模型嵌入到物理实体上,通过机器配备的传感器与人类交流。人形机器人是具身智能的代表产品。 具身智能的三要素包括本体(硬件载体)、智能(大模型、语音、图像、控制、导航等算法)、环境(本体所交互的物理世界),三者高度耦合是高级智能的基础。不同环境下会有不同形态的硬件本体适应,如室内平地适用轮式机器人,崎岖地面适用四足机器人。 具身智能体的行动分为“感知决策行动反馈”四个步骤,感知模块负责收集和处理信息,通过多种传感器感知和理解环境。常见的传感器有可见光相机、红外相机、深度相机、激光雷达、超声波传感器、压力传感器、麦克风等。 最近,具身智能的概念很火。例如稚晖君开源人形机器人全套图纸+代码引发圈内热议,各类具身智能产品如李飞飞的 Voxposer、谷歌的 RT1 和 RT2、RTX、字节跳动的 Robot Flamingo、斯坦福的 ACT 和卡耐基梅隆的 3D_diffuser_act 等,在不同任务和场景中展示了强大能力,并有潜力带来革命性变革。本文拆分为上下两篇,明天会更新下篇,聚焦人机交互、发展讨论。本文部分参考中国信息通信研究院和北京人形机器人创新有限公司的《具身智能发展报告》。
2025-01-27
具身智能
具身智能是人工智能领域的一个子领域。 它强调智能体(如机器人、虚拟代理等)通过与物理世界或虚拟环境的直接交互来发展和展现智能。智能不仅仅是处理信息的能力,还包括感知环境、自主导航、操作物体、学习和适应环境等能力。 具身智能的核心在于智能体的“身体”或“形态”,其可以是物理形态(如机器人的机械结构)或虚拟形态(如模拟环境中的虚拟角色)。这些身体为智能体提供了与环境互动的手段,并影响其学习和发展。 具身智能的研究涉及多个学科,如机器人学、认知科学、神经科学和计算机视觉等。在机器人学中,关注设计能自主行动和适应环境的机器人;在认知科学和神经科学中,探索大脑处理与身体相关信息的机制及应用于人造智能系统;在计算机视觉中,致力于开发使智能体理解和解释视觉信息的算法。 具身智能在机器人领域(如服务机器人、工业自动化和辅助技术等)、虚拟现实、增强现实和游戏设计等领域有广泛应用。 具身智能的三要素包括“本体”(硬件载体)、“智能”(大模型、语音、图像、控制、导航等算法)、“环境”(本体所交互的物理世界),三者高度耦合是高级智能的基础。其行动分为“感知决策行动反馈”四个步骤,并形成闭环。 尽管具身智能取得了显著进展,但仍面临诸多挑战,如智能体身体的设计、在复杂多变环境中的有效学习以及与人类社会相关的伦理和安全问题等。
2024-12-31
具身智能
具身智能是人工智能领域的一个子领域。 它强调智能体(如机器人、虚拟代理等)通过与物理世界或虚拟环境的直接交互来发展和展现智能。智能不仅仅是处理信息的能力,还包括感知环境、自主导航、操作物体、学习和适应环境等能力。 具身智能的核心在于智能体的“身体”或“形态”,其可以是物理形态(如机器人的机械结构)或虚拟形态(如模拟环境中的虚拟角色)。这些身体为智能体提供了与环境互动的手段,并影响其学习和发展。 具身智能的研究涉及多个学科,如机器人学、认知科学、神经科学和计算机视觉等。在机器人学中,关注设计能自主行动和适应环境的机器人;在认知科学和神经科学中,探索大脑处理与身体相关信息的机制及应用于人造智能系统;在计算机视觉中,致力于开发使智能体理解和解释视觉信息的算法。 具身智能在机器人领域(服务机器人、工业自动化和辅助技术等)、虚拟现实、增强现实和游戏设计等领域有广泛应用。通过具身智能,机器人能更好地理解和适应人类生活环境,提供更自然有效的人机交互,也能创造更具沉浸感和交互性的体验。 具身智能的三要素包括“本体”(硬件载体)、“智能”(大模型、语音、图像、控制、导航等算法)、“环境”(本体所交互的物理世界),三者高度耦合是高级智能的基础。不同环境下有不同形态的硬件本体适应环境。 具身智能的行动可分为“感知决策行动反馈”四个步骤,形成一个闭环。 在追求人工通用智能(AGI)的过程中,具身 Agent 正成为核心研究范式,它强调智能系统与物理世界的紧密结合。与传统深度学习模型相比,LLMbased Agent 能主动感知和理解所在物理环境并互动,进行“具身行动”。 尽管具身智能取得显著进展,但仍面临诸多挑战,如设计智能体身体以最大化智能表现、让智能体在复杂环境中有效学习、处理智能体与人类社会的伦理和安全问题等。未来研究将继续探索这些问题以推动其发展和应用。
2024-12-31
基于多模态大模型的具身智能 技术原理是什么
基于多模态大模型的具身智能技术原理主要包括以下方面: 决策模块是具身智能系统的核心,负责接收感知模块的环境信息,进行任务规划和推理分析,以指导行动模块生成动作。早期决策模块主要依赖人工编程规则和专用任务算法,而基于近端策略优化算法和 Qlearning 算法的强化学习方法在具身智能自主导航等任务中展现出更好的决策灵活性,但在复杂环境适应能力等方面存在局限。 大模型的出现极大增强了具身智能体的智能程度,提高了环境感知、语音交互和任务决策能力。具身智能体的大模型是 AIGA,调用机械臂、相机等身体部件,其发展方向是视觉语言动作模型(VLA)和视觉语言导航模型(VLN)。 VLA 输入语言、图像或视频流,输出语言和动作,在统一框架内融合互联网、物理世界和运动信息,实现从自然语言指令到可执行动作指令的直接转换。 VLN 输入语言、图像或视频流,输出语言和移动轨迹,用于统一指令输入框架,使大模型直接生成运动方向、目标物体位置等操作信息。 Google Deepmind 从大模型入手打造具身智能,率先提出 Robotics Transformer 系列模型,如 RT1 等,并不断升级。RT1 基于模仿学习中的行为克隆学习范式,输入短的图像序列和指令,输出每个时间步的动作。随着数据量增加,有从分层模型过渡到端到端模型的趋势。 北大 HMI Lab 团队构建了全新的 RoboMamba 多模态大模型,使其具备视觉常识任务和机器人相关任务的推理能力。 在具身智能应用中,更强调“动态”学习方式,如强化学习、模拟学习等,让机器人与环境不断交互学习,通过奖励机制优化行为,获得最优决策策略,摒弃传统控制论算法物理建模的弊端。
2024-12-27
基于世界模型的具身智能 技术原理是什么
基于世界模型的具身智能技术原理主要包括以下方面: 谷歌发布的世界模型 Genie: 能够学习一致的动作空间,可能适合训练机器人,打造通用化的具身智能。 其架构中的多个组件基于 Vision Transformer构建而成,为平衡模型容量与计算约束,在所有模型组件中采用内存高效的 STtransformer 架构。 Genie 包含三个关键组件:潜在动作模型(Latent Action Model,LAM)用于推理每对帧之间的潜在动作;视频分词器(Tokenizer)用于将原始视频帧转换为离散 token;动态模型给定潜在动作和过去帧的 token,用来预测视频的下一帧。潜在动作模型以完全无监督的方式学习潜在动作。 相关论文《Genie:Generative Interactive Environments》已公布,论文地址为 https://arxiv.org/pdf/2402.15391.pdf,项目主页为 https://sites.google.com/view/genie2024/home?pli=1 ,论文的共同一作多达 6 人,包括华人学者石宇歌。 具身智能算法层: 机器人创业公司 Covariant 推出的首个机器人基础模型 RFM1 是基于真实任务数据训练的机器人大模型,共有 80 亿参数,是基于文本、图片、视频、机器人动作、传感器信息等多模态数据进行训练的 any to any 序列模型。 RFM1 将机器人的实际动作也视作 Token,其 token 包括多种模态,每个模块都有专门的 tokenizer 进行处理。操作只有一个——预测下一个 token。 RFM1 对物理世界的理解源自于其学习生成视频的过程,通过接受初始图像和机器人动作的输入,预测接下来视频帧的变化,掌握了模拟世界每个瞬间变化的低层次世界模型。 行业进展: 李飞飞在 AI 3D 生成领域的工作极大地加速了进展,通过对 3D 物体的生成所构建出的世界,再进行降维的视频生成,生成的视频自然符合物理世界的规律,生成的世界也可交互。 世界模型开启了在虚拟世界中预训练机器人的可能,这个虚拟世界完全符合物理规律,可以快速生成无限场景,支持并行训练多个任务,大幅降低试错成本,加速机器人的学习过程,为实现更复杂的机器人行为打开可能。这种进步正在催生新的应用可能,如更自然的人机交互界面、更安全的机器人控制系统、更高效的虚拟训练平台等。世界模型也在改变 AI 理解和交互世界的基本方式。
2024-12-27
具身智能
具身智能是人工智能领域的一个子领域,以下是关于具身智能的详细介绍: 1. 定义:强调智能体(如机器人、虚拟代理等)通过与物理世界或虚拟环境的直接交互来发展和展现智能。 2. 核心要素: 智能体的“身体”或“形态”,包括物理形态(如机器人的机械结构)和虚拟形态(如模拟环境中的虚拟角色)。 身体不仅是互动手段,也影响智能体的学习和发展。 3. 涉及学科:包括机器人学、认知科学、神经科学和计算机视觉等。 机器人学关注设计能自主行动和适应环境的机器人。 认知科学和神经科学探索大脑处理与身体相关信息的机制及应用于人造智能系统。 计算机视觉致力于开发算法,使智能体能够理解和解释视觉信息。 4. 应用领域: 机器人领域,如服务机器人、工业自动化和辅助技术等,能更好地理解和适应人类生活环境,提供更自然有效的人机交互。 虚拟现实、增强现实和游戏设计等领域,创造更具沉浸感和交互性的体验。 5. 特点: 即“具身+智能”,是将机器学习算法适配至物理实体,与物理世界交互的人工智能范式。 三要素包括“本体”(硬件载体)、“智能”(大模型、语音、图像、控制、导航等算法)、“环境”(本体所交互的物理世界),三者高度耦合是高级智能的基础。 四个模块为“感知决策行动反馈”,形成一个闭环。 6. 面临挑战: 如何设计智能体的身体以最大化其智能表现。 如何让智能体在复杂多变的环境中有效学习。 如何处理智能体与人类社会的伦理和安全问题。 人形机器人是具身智能的代表产品,不同环境下会有不同形态的硬件本体适应环境。在追求人工通用智能(AGI)的征途中,具身 Agent 正成为核心的研究范式,它强调将智能系统与物理世界紧密结合,能够主动感知和理解所在的物理环境并互动,产生具身行动。
2024-12-26
房地产策划可以通过AI实现有哪些使用场景
以下是房地产策划中可以通过 AI 实现的一些使用场景: 1. 房地产装修设计:像酷家乐装修设计软件,利用图像生成和机器学习技术为用户提供装修设计方案,用户可根据喜好选择和调整。 2. 虚拟布置房产:例如 Interior AI 使代理商能够虚拟布置房产。 3. 潜在客户转化:Zuma 帮助物业经理将潜在客户转化为预定的参观。 此外,AI 在活动策划中的应用也能为房地产策划提供参考,比如: 1. 活动主题及内容生成:根据房地产活动目标、参与者背景等信息,生成合适的活动主题和内容框架建议。 2. 邀请函和宣传文案生成:基于活动信息生成吸引人的邀请函和宣传文案,增强宣传效果。 3. 现场活动管理:利用计算机视觉、语音识别等辅助管理活动现场的人流、秩序等。 4. 虚拟助手:AI 对话系统作为虚拟活动助手,为参与者提供信息查询、问题咨询等服务。 5. 活动反馈分析:自动分析活动反馈(文字、语音等),总结关键观点和改进建议。 6. 活动营销优化:基于参与者行为数据,优化营销策略,实现个性化营销。
2025-02-06
AI 翻译有什么应用场景?发展前景如何
AI 翻译的应用场景广泛,包括但不限于以下方面: 1. 企业在多语言市场中的运营,便于与不同国家和地区的客户、合作伙伴进行有效的沟通和业务拓展。 2. 个人获取全球信息,打破语言障碍,更便捷地了解世界各地的知识和资讯。 3. 教育领域,国内外院校的合作教育分享更加便捷,促进知识的共享和共同学习。 4. 旅行中,帮助游客更好地理解当地的语言和文化。 5. 娱乐方面,为观众提供多语言的影视作品和娱乐内容。 AI 翻译的发展前景十分广阔: 1. 语言翻译技术经历了从传统规则翻译到深度学习翻译的逐步发展,每一次革新都显著提高了翻译的准确性和自然度。 2. 神经机器翻译(NMT)通过大规模语料库学习,能够更好地理解上下文和语境,提供更加流畅、准确的翻译。 3. 大模型技术的引入使得翻译进入一个新的阶段,超大规模预训练模型通过海量数据学习,能够精准捕捉语言的深层语义和文化背景,提供更符合语境的翻译,显著提升了翻译的准确性与流畅度。 例如,Meta AI 发布的实时人工智能语言翻译模型 Seamless,统一了之前的三个 Seamless 系列模型,可以实时翻译 100 多种语言,延迟不到 2 秒钟,还能保持说话者的情感和语气、语调等,使得翻译后的语音更加自然和真实。 此外,还有一些具体的开发案例,如用 whisper 生成原视频的英文字幕,让 GPT 结合字幕全文翻译并进行行数拆分,形成新的双语字幕文件;ChatGPT 助力数据分析等。
2025-02-06
我需要你给我生成一些提示词,我会给你我想的想法。《》以内的是想法。《我想写一篇影视解说的文案,写作的视角以我,第一人称的视角来写。想要风格偏幽默风趣一点,就像跟朋友在讲述一样,可以模仿鲁迅先生的手法。而且还想把影片的剧情内容写出来,从开篇到电影的结尾,如果有需要保留原片的地方,请把原片的画面场景以及时间段描述出来。要求这篇文案要附上我自己的内心独白,以此引人深思!请你深度思考后,在做答复!要求字数不少于5000字。》请问我该如何写提示词?请你整理好提示词后发给我
以下是为您生成的一些提示词,希望对您有所帮助: 影视解说文案提示词 1. 以第一人称幽默风趣的口吻,像与朋友讲述般,描绘影片从开篇到结尾的精彩剧情,融入自己的内心独白,模仿鲁迅先生的手法,展现独特的视角和深刻的思考。 2. 用轻松幽默的语言,以我的视角详述影片情节,穿插搞笑的评论和内心想法,借鉴鲁迅先生的讽刺技巧,使解说引人入胜。 3. 以亲切自然的叙述方式,如同与好友聊天,讲述影片故事,从开头至结束,结合鲁迅先生的文风,加入个人的情感起伏和独特见解。 DALL·E 相关提示词 1. 绘画:提及颜料种类、画布纹理和笔触形状/纹理(列表)。 2. 数字:注明使用的软件、阴影技术和多媒体方法(列表)。 3. 基于详细提示使用 DALL·E 3 生成图像,让创意鲜活起来,为提示的每个元素做出大胆有趣的选择。 4. 遵循提示指南,提出四个全新的简单概念,而非完整提示,从上次给出的建议中获取灵感。 请注意,默认方面比率为正方形(1:1),默认风格为摄影,包括相机设置、摄影类型和设备。同时,避免违反服务条款的词汇或概念,不侵犯版权,不使用暗示性或露骨的图像,强调符合 G 级评级的元素。
2025-02-06
大模型在软件开发公司(主java+vue)的应用场景有哪些
大模型在以 Java 和 Vue 技术为主的软件开发公司中,具有以下一些应用场景: 1. 代码自动生成:大模型可以根据需求描述生成 Java 或 Vue 的代码片段,提高开发效率。 2. 代码优化建议:分析现有代码,提供优化的建议和策略,提升代码质量。 3. 智能错误检测与修复:快速识别代码中的错误,并提供可能的修复方案。 4. 需求分析与理解:帮助更好地理解和梳理复杂的业务需求,转化为技术实现的思路。 5. 自动化测试用例生成:根据代码和需求生成有效的测试用例,提高测试效率和覆盖度。 6. 技术选型辅助:在面临新的项目或技术难题时,提供相关技术选型的参考和建议。
2025-02-06
deepseek的背景、能力范围和应用场景
DeepSeek 具有以下背景、能力范围和应用场景: 背景: DeepSeek 以小成本实现了媲美领先 AI 产品的性能,并在全球主要市场 App Store 登顶。 其创始人梁文锋强调团队文化与长远智能探索,引发全球 AI 热潮。 能力范围: 多模态理解:支持文本/代码/数学公式混合输入。 动态上下文:对话式连续记忆(约 4K tokens 上下文窗口)。 任务适应性:可切换创意生成/逻辑推理/数据分析模式。 系统响应机制:采用意图识别+内容生成双通道处理,自动检测 prompt 中的任务类型、输出格式、知识范围,对位置权重(开头/结尾)、符号强调敏感。 基础指令框架:包括四要素模板、格式控制语法等。 进阶控制技巧:如思维链引导、知识库调用、多模态输出等。 中文场景表现优秀,数学能力不错,编程能力逊于 GPT。 采用 GRPO 算法替代传统 PPO,提升语言评价灵活性与训练速度。 应用场景: 日常写作和表达。 数学和编程相关任务。 可基于特定领域如 2023 版中国药典进行知识调用。 能够进行图像理解和生成,如开源的多模态模型 JanusPro 具备图像识别、地标识别等多种能力。
2025-02-05
企业落地AI的怎么开展,有哪些团队,场景一般是哪些
企业落地 AI 可以按照以下步骤开展: 1. 启动试点项目来获得动能:选择几个小项目,在 6 12 个月内展示成效,项目可以内部进行或外包。尽量选择能够成功而非最有价值的项目。 2. 建立公司内部的人工智能团队:搭建集中统一的 AI 团队,再从中挑选人员协助不同业务部门,便于统一管理。同时建立全公司范围内的平台,如软件平台、工具或数据基础设施。 3. 提供广泛的人工智能培训:高层了解 AI 能为企业做什么,进行策略制定和资源分配;部门领导了解如何设置项目方向、资源分配与监控进度;培养内部工程师,开展相关项目。 4. 制定人工智能策略:深度了解 AI 并结合自身业务制定策略,设置与 AI 良性循环相一致的公司策略,如网络搜索或农业公司的案例。同时考虑创建数据策略,如战略数据采集,建造统一的数据仓库。 企业落地 AI 常见的场景包括: 1. 智能扬声器:包括探测触发词或唤醒词、语音识别、意图识别、执行相关程序等环节。 2. 自动驾驶汽车:涉及汽车检测、行人检测、运动规划等方面,需要多种传感器和技术。 人工智能团队的角色通常有: 1. 软件工程师:负责软件编程工作,在团队中占比 50%以上。 2. 机器学习工程师:创建映射或算法,搜集和处理数据。 3. 机器学习研究员:开发机器学习前沿技术,可能需要发表论文或专注研究。 4. 应用机器学习科学家:从学术文献中寻找技术解决问题。 5. 数据科学家:检测和分析数据。 6. 数据工程师:整理数据,确保其安全、易保存和读取。 7. AI 产品经理:决定用 AI 做什么,判断其可行性和价值。
2025-01-27
大学老师可以使用哪些人工智能软件帮助提升教学效率
以下是一些大学老师可以使用来提升教学效率的人工智能软件和相关应用: 1. 个性化学习计划方面:能够分析学生表现,根据知识差距和个人学习风格创建定制的学习路径。 2. 课程开发/学习沉浸方面:包括生成模型生成图像、文本和视频,转化为补充教育材料、作业和练习题。例如可以想象与牛顿本人讨论牛顿第三定律,或者在亚利桑那州立大学的 VR 实验室中学习生物学。 3. 社会互动/沟通方面:与新的 AI 工具(如口语形式的 GPT4o)结合学习,可以为学生提供更好的准备工具,以应对依赖口语/展示沟通的高等教育和职场环境。 4. 备课助手方面:如星火教师助手、知网备课助手。 5. 作文批改评分方面:BigModel 智谱 AI 大模型开放平台可以凭借其卓越的数据处理能力以及广泛的应用潜力,为教师提供帮助。 6. 语言学习方面:像 Speak、Quazel 和 Lingostar 这样的应用可以作为 AI 驱动的语言老师,能够实时交流,并对发音或措辞给予反馈。 7. 数学学习方面:Photomath 和 Mathly 这样的应用可以指导学生解决数学问题。 8. 历史学习方面:PeopleAI 和 Historical Figures 可以通过模拟与杰出人物的聊天来教授历史。 9. 写作方面:Grammarly、Orchard 和 Lex 等工具可以帮助学生克服写作难题,并提升写作水平。 10. 演示文稿制作方面:Tome 和 Beautiful.ai 可以协助创建演示文稿。
2025-02-06
请用思维导图描述AI智能体大语言模型平台汇总图(带图标LOGO)
以下是为您生成的关于 AI 智能体大语言模型平台的汇总思维导图: 1. 基础层 为大模型提供硬件支撑,数据支持等,例如 A100、数据服务器等等。 2. 数据层 静态的知识库 动态的三方数据集 3. 模型层 LLm(largelanguagemodel,大语言模型),例如 GPT,一般使用 transformer 算法来实现。 多模态模型,即市面上的文生图、图生图等的模型,训练所用的数据与 llm 不同,用的是图文或声音等多模态的数据集。 4. 平台层 模型与应用间的平台部分,比如大模型的评测体系,或者 langchain 平台等,提供模型与应用间的组成部分。 5. 表现层(应用层) 用户实际看到的地方。 此外,在翻译场景中: 语言翻译技术经历了从传统规则翻译到深度学习翻译的逐步发展,每一次革新都显著提高了翻译的准确性和自然度。 传统机器翻译存在局限性,基于规则和统计模型,常常出现死板和字面化的结果,尤其在遇到多义词、习语或文化差异时,翻译往往不自然,且容易误导。 深度学习翻译技术通过大规模语料库学习,能够更好地理解上下文和语境,提供更加流畅、准确的翻译。 大模型翻译技术引入后,通过海量数据学习,能够精准捕捉语言的深层语义和文化背景,提供更符合语境的翻译,显著提升了翻译的准确性与流畅度。 在学术场景中: 大模型技术能够快速总结论文内容、进行精准翻译,节省研究者阅读和整理文献的时间。 文献预处理时,需将海量文献的格式转换为可供模型解析的文本格式,可借助平台工具完成文件内容的提取。 可将文件内容自动化提取并结合大语言模型进行批量分析或任务处理,适用于文档总结、信息提取等场景。
2025-02-06
coze智能体 接入微信
要将 Coze 智能体接入微信,可参考以下步骤: 1. 技术实现原理: 登录宝塔面板,在其中可视化控制云服务器,部署 docker 容器,启动 COW 项目与微信取得关联。 点击“Docker”中的“项目模板”中的“添加”按钮。 项目模板代码示例如下:将编译好的内容复制进来。 在容器中创建容器,选择容器编排,填入模板和名称,确定。 现实运行成功。 点击容器后,可以看到运行的是两个服务,因为接口文档中启动了两个服务。 然后点击“wcandyaibot”后面的日志按钮,在弹出层中用提前预备好的微信进行扫码。 这个界面不会实时更新显示,需要手动刷新一下。点击“刷新日志”,如果看到 WeChat login success,就成功将 Bot 接入微信中了。 2. 创建扣子的令牌: 在扣子官网左下角选择扣子 API。 在 API 令牌中选择“添加新令牌”。 名称:给令牌起一个名字。 过期时间:为了方便选择永久有效。 选择制定团队空间:可以是个人空间、也可以选择团队空间。 权限:勾选所有权限。 要保存好令牌的 Token,切勿向他人泄露。 3. Coze 设置: 获取机器人 ID:在个人空间中找到自己要接入到微信中的机器人,比如计划将画小二智能小助手接入到微信群中。点击对应的机器人进入机器人编辑界面。在浏览器地址栏的 bot/之后的数据就是该机器人的 Bot ID。 API 授权:然后再点击右上角发布。这里会发现多了一个 Bot as API,意思就是自己定义的 API 发布取到了。勾选 Bot as API,确定应用已经成功授权 Bot as API。 4. 绑定微信: 需要提前准备一个闲置的微信,因为这种方法是非官方接口,有可能微信号会受到官方限制,用一个闲置微信。 点击容器,可以看到运行的是两个服务,这是因为接口文档中启动了两个服务。 点击“wcandyaibot”后面的日志按钮,在弹出层中用提前预备好的微信进行扫码。 这个界面不会实时数显,为了验证是否成功,需要手动刷新一下。点击“刷新日志”,就能看到 WeChat login success,就是提示微信登录成功的意思。 为了确保微信是否实时在线,点击“日志管理”的“wcandyaibot”的“刷新日志”。如果显示“wechat login seccess"则表示微信正常登录中。 5. 效果测试:把绑定的微信号拉到群里或者单独对话,如视频所示就可以激活对话了,训练的数据越好,对话效果越好。个人微信对话和微信群对话效果演示:
2025-02-06
使用O1来控制智能硬件
O1 是一个完全开源的可以控制家里电脑的 AI 语音智能助手。它能够看到您的屏幕内容,学习使用您常用的应用,无论您身在何处,都能通过按下按钮、讲话让它帮您操作电脑完成任务。其 CAD 文件、电路设计、代码完全开源,有能力的开发者可以直接制作该设备。灵感来自 Andrej Karpathy 的 LLM 操作系统,10 月份他的 LLM 科普视频含金量仍在上升。O1 运行一个代码解释语言模型,并在计算机内核发生特定事件时调用它。项目地址:https://github.com/OpenInterpreter/01
2025-02-05
扣子智能体搭建工作流
扣子智能体的搭建工作流主要包括以下内容: 1. 插件:扣子平台上有多种类型的插件,如看新闻、规划旅行、提高办公效率、理解图片内容的 API 等,还可自定义插件添加所需 API,使智能体更强大。 2. 工作流: 工作流如同可视化拼图游戏,可将插件、大语言模型、代码块等功能组合,创建复杂稳定的业务流程。 工作流由多个小块块(节点)组成,包括开始和结束的小块块,不同小块块可能需要引用前面小块块的信息或自行设定的信息。 例如“竖起耳朵听”的智能体中用到 5 个小块块,能回答带有图片口语的结果。 生物医药小助手智能体由 1 个工作流和 6 个数据库实现,工作流设计简单,包括 input、对接知识库、搭载豆包 function call 大模型和 output,相对有难度的是收集和校对知识库资料。 在落地应用方面,如通过扣子工作流用代码模块进行 HTTP 访问实现 0 token 脱离扣子模型使用 Groq 作为 LLM,还可适配到 APP 产品填 APIKEY 调用的场景,或接入手机类 APP 如 Siri 等。但扣子工作流的搭建细节需自行移步 WaytoAGI 自学。
2025-02-05
企业微信客服号能对接dify知识库,实现智能客服功能吗?
企业微信客服号能对接 Dify 知识库实现智能客服功能。以下是相关步骤: 1. 在 Dify 平台创建基础编排聊天助手应用,获取 API 密钥和 API 服务器地址。 2. 下载 Dify on WeChat 项目并安装依赖。 3. 在项目根目录创建 config.json 文件,填写 API 密钥和服务器地址。 4. 把基础编排聊天助手接入微信,可选择源码部署或 Docker 部署,进行快速启动测试,扫码登录并对话测试。 5. 把工作流编排聊天助手接入微信,创建知识库,导入知识库文件,创建工作流编排聊天助手应用,设置知识检索节点和 LLM 节点,发布更新并访问 API。 6. 把 Agent 应用接入微信,创建 Agent 应用,设置对话模型和添加工具,生成 API 密钥,填写配置文件,启动程序并进行测试。 更多内容请访问原文:https://docs.dify.ai/v/zhhans/learnmore/usecases/difyonwechat 另外,通过云服务器、Dify、智能微秘书免费搭建微信机器人的部署 Dify 步骤如下: https://docs.dify.ai/v/zhhans/gettingstarted/installselfhosted/dockercompose ,这些命令在宝塔面板的终端安装。 零成本、零代码搭建一个智能微信客服的步骤如下: 1. 访问微信客服 https://kf.weixin.qq.com/,点击开通。 2. 勾选同意,点击下一步。 3. 按步骤填写,勾选同意,注册企业微信。 4. 点击配置>到微信客服的企业信息,复制企业 ID>到 coze 页面进行粘贴填写企业 ID,并点击下一步。 5. 到微信客服的开发配置,找到到回调配置,复制 Token、EncodingAESKey(如果还是空的,点击“随机获取”即可),到 coze 页面进行粘贴,点击下一步。 6. 到微信客服的开发配置,配置回调地址 URL、复制 Secret 到 coze 的页面粘贴。 7. 到微信客服的客服账号,创建一个客服账号,复制客服账号名称,到 coze 的页面粘贴,点击保存。 第一次设置回调地址时,注意目前需要企业认证,才可以进行接入微信客服。如果企业没有进行认证,则会在配置回调 URL 时报错:回调域名校验失败。另外,之前未进行企业认证就发布过微信客服的不受影响。第一次设置成功后,后面再修改是特定页面。保存后,在 coze 发布页面的发布平台的微信客服这里,显示“已配置”,剩下的就是勾选,点击发布。
2025-02-05
制造业质量管理可以应用ai做些什么
在制造业质量管理方面,AI 有以下应用: 1. 质量控制:AI 可以用于检测产品缺陷,提高产品质量。 2. 预测性维护:能够预测机器故障,帮助工厂避免因设备问题影响产品质量。 3. 工艺规划和优化:结合大语言模型的自然语言处理能力,自动生成制造工艺流程、设备选型、质量控制等方案,优化生产过程,从而间接保障产品质量。 4. 工业质检:作为基于视觉的检测方式,虽然相对成熟但未深入 B 端核心应用场景,如今可通过多模态和大模型解决上一代无法解决的问题,提升质检性能。
2025-02-06
我是一名传统制造业的产品经理,一名ai小白,想在ai方面进行创业,有哪些方向建议
以下是为您提供的在 AI 方面创业的方向建议: 对于技术爱好者: 1. 从小项目开始,如搭建简单博客或自动化脚本,熟悉 AI 能力和局限性。 2. 探索 AI 编程工具,如 GitHub Copilot 或 Cursor,从生成注释或简单函数逐步过渡到复杂任务。 3. 参与 AI 社区,如 Stack Overflow 的 AI 板块或 Reddit 的 r/artificial 子版块,与开发者交流,了解最新趋势。 4. 构建 AI 驱动的项目,如开发简单的聊天机器人或图像识别应用,深入理解实际应用过程。 对于内容创作者: 1. 利用 AI 辅助头脑风暴,针对主题生成创意方向。 2. 建立 AI 写作流程,从生成大纲开始,逐步扩展到段落生成和数据支持。 3. 探索多语言内容,借助 AI 辅助翻译和本地化内容以拓展国际市场。 4. 利用 AI 工具优化 SEO,根据建议调整标题、元描述和关键词使用。 从行业观点来看: 1. 可能成功的 AI 公司应打造自身的数据飞轮,尤其在 ToC 场景中寻求突破,因为 C 端的数据飞轮效应可能是早期决胜关键。 2. 有专业壁垒的垂直模型可能是机会所在,如高价值、特定领域依赖丰富的专有数据集。 3. 大模型产品可朝个性化(装上“记忆”成为工作助理或陪伴者)和场景化(装上“手”和“眼睛”)方向发展。 从 AI 创业者的情况来看: 1. 如天涯,具备软件开发经验和连续创业经历,可在 AI 领域发挥优势。 2. 像 Eureka 这样的 Fintech 产品经理,可在 AI 金融领域应用方面探索。 3. Zima 在编程和 AI 教育探索方面有基础,可关注 AI+教育和 AI4Science 方向。 4. Mr.water🐳 可凭借与高校教授的联系,考虑科研方向转化。 总之,AI 创业要注重技术驱动和产品定义,用好市面上的 AI 工具,从效率和变革角度组织公司架构。同时,把握好融资节奏,在实践中有效迭代。
2024-12-06
AI在制造业的应用
在制造业领域,AI 有以下应用: 1. 产品设计和开发:利用 AI 生成工具如 Adobe Firefly、Midjourney 等,可根据文字描述快速生成产品的 3D 模型、渲染图、插图等设计元素,大幅提高产品设计效率。 2. 工艺规划和优化:结合大语言模型的自然语言处理能力,能自动生成制造工艺流程、设备选型、质量控制等方案,优化生产过程。 3. 设备维护和故障诊断:利用 AI 模型分析设备运行数据,可预测设备故障,并自动生成维修建议,提高设备可靠性。 4. 供应链管理:AI 可根据历史数据和市场变化,自动生成采购计划、库存预测、物流优化等内容,提高供应链管理效率。 5. 客户服务:基于对话模型的 AI 客服机器人,能自动生成个性化的客户回复,提升客户体验。 此外,AI 在制造业还包括以下方面的应用: 1. 预测性维护:可预测机器故障,帮助工厂避免停机。 2. 质量控制:能够检测产品缺陷,提高产品质量。 3. 供应链管理:优化供应链,提高效率和降低成本。 4. 机器人自动化:用于控制工业机器人,提高生产效率。
2024-11-22
AI目前在制造业和零售领域有什么案例吗?
在制造业领域,AI 的应用案例包括: 预测性维护:可用于预测机器故障,避免工厂停机。 质量控制:能够检测产品缺陷,提升产品质量。 供应链管理:有助于优化供应链,提高效率并降低成本。 机器人自动化:用于控制工业机器人,提高生产效率。 生产计划、供应链计划状态查询。 产线预测性维保辅助。 产品质量分析与溯源。 自动驾驶全场景模拟训练及虚拟汽车助手。 在零售领域,AI 的应用案例包括: 舆情、投诉、突发事件监测及分析。 品牌营销内容撰写及投放。 自动化库存管理。 自动生成或完成 SKU 类别选择、数量和价格分配。 客户购物趋势分析及洞察。
2024-08-29
具身智能在制造业的应用场景
具身智能在制造业的应用场景包括: 1. 机器人自动化:通过具身智能控制工业机器人,提高生产效率。 2. 预测性维护:利用具身智能预测机器故障,帮助工厂避免停机。 3. 质量控制:借助具身智能检测产品缺陷,提升产品质量。 4. 供应链管理:运用具身智能优化供应链,提高效率并降低成本。 此外,在制造业领域,AIGC(AI Generated Content)也有广泛应用: 1. 产品设计和开发:使用 AI 生成工具如 Adobe Firefly、Midjourney 等,根据文字描述快速生成产品的 3D 模型、渲染图、插图等设计元素,提高产品设计效率。 2. 工艺规划和优化:结合大语言模型的自然语言处理能力,自动生成制造工艺流程、设备选型、质量控制等方案,优化生产过程。 3. 设备维护和故障诊断:利用 AI 模型分析设备运行数据,预测设备故障,并自动生成维修建议,增强设备可靠性。 4. 供应链管理:AI 可依据历史数据和市场变化,自动生成采购计划、库存预测、物流优化等内容,提升供应链管理效率。 5. 客户服务:基于对话模型的 AI 客服机器人,能够自动生成个性化的客户回复,改善客户体验。 尽管具身智能在理论和技术上取得了显著进展,但仍面临诸多挑战,如如何设计智能体的身体以最大化其智能表现,如何让智能体在复杂多变的环境中有效学习,以及如何处理智能体与人类社会的伦理和安全问题等。未来的研究将继续探索这些问题,以推动具身智能的发展和应用。
2024-08-17
AI在制造业的应用
AI 在制造业的应用包括以下几个方面: 1. 产品设计和开发:利用 AI 生成工具如 Adobe Firefly、Midjourney 等,可以根据文字描述快速生成产品的 3D 模型、渲染图、插图等设计元素,大幅提高产品设计效率。 2. 工艺规划和优化:结合大语言模型的自然语言处理能力,可以自动生成制造工艺流程、设备选型、质量控制等方案,优化生产过程。 3. 设备维护和故障诊断:利用 AI 模型分析设备运行数据,可以预测设备故障,并自动生成维修建议,提高设备可靠性。 4. 供应链管理:AI 可以根据历史数据和市场变化,自动生成采购计划、库存预测、物流优化等内容,提高供应链管理效率。 5. 客户服务:基于对话模型的 AI 客服机器人,可以自动生成个性化的客户回复,提升客户体验。 总的来说,AI 技术正在制造业各环节得到广泛应用,从产品设计到生产管理再到客户服务,都能发挥重要作用,提高企业的效率和竞争力。
2024-05-30