Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

具身智能在制造业的应用场景

Answer

具身智能在制造业的应用场景包括:

  1. 机器人自动化:通过具身智能控制工业机器人,提高生产效率。
  2. 预测性维护:利用具身智能预测机器故障,帮助工厂避免停机。
  3. 质量控制:借助具身智能检测产品缺陷,提升产品质量。
  4. 供应链管理:运用具身智能优化供应链,提高效率并降低成本。

此外,在制造业领域,AIGC(AI Generated Content)也有广泛应用:

  1. 产品设计和开发:使用 AI 生成工具如 Adobe Firefly、Midjourney 等,根据文字描述快速生成产品的 3D 模型、渲染图、插图等设计元素,提高产品设计效率。
  2. 工艺规划和优化:结合大语言模型的自然语言处理能力,自动生成制造工艺流程、设备选型、质量控制等方案,优化生产过程。
  3. 设备维护和故障诊断:利用 AI 模型分析设备运行数据,预测设备故障,并自动生成维修建议,增强设备可靠性。
  4. 供应链管理:AI 可依据历史数据和市场变化,自动生成采购计划、库存预测、物流优化等内容,提升供应链管理效率。
  5. 客户服务:基于对话模型的 AI 客服机器人,能够自动生成个性化的客户回复,改善客户体验。

尽管具身智能在理论和技术上取得了显著进展,但仍面临诸多挑战,如如何设计智能体的身体以最大化其智能表现,如何让智能体在复杂多变的环境中有效学习,以及如何处理智能体与人类社会的伦理和安全问题等。未来的研究将继续探索这些问题,以推动具身智能的发展和应用。

Content generated by AI large model, please carefully verify (powered by aily)

References

问:具身智能是什么?

具身智能的一个重要应用是在机器人领域,特别是在服务机器人、工业自动化和辅助技术等方面。通过具身智能,机器人可以更好地理解和适应人类的生活环境,提供更加自然和有效的人机交互。此外,具身智能也在虚拟现实、增强现实和游戏设计等领域有着广泛的应用,通过创造更具沉浸感和交互性的体验,丰富了人们的数字生活。尽管具身智能在理论和技术上取得了显著进展,但它仍面临许多挑战。例如,如何设计智能体的身体以最大化其智能表现,如何让智能体在复杂多变的环境中有效学习,以及如何处理智能体与人类社会的伦理和安全问题等。未来的研究将继续探索这些问题,以推动具身智能的发展和应用。

问:请问 AI 有哪些应用场景?

聊天机器人:AI可以用于提供聊天机器人服务,回答客户的问题并解决他们的问题。4.制造业:预测性维护:AI可以用于预测机器故障,帮助工厂避免停机。质量控制:AI可以用于检测产品缺陷,提高产品质量。供应链管理:AI可以用于优化供应链,提高效率和降低成本。机器人自动化:AI可以用于控制工业机器人,提高生产效率。5.交通运输:自动驾驶:AI可以用于开发自动驾驶汽车,提高交通安全性和效率。交通管理:AI可以用于优化交通信号灯和交通流量,缓解交通拥堵。物流和配送:AI可以用于优化物流路线和配送计划,降低运输成本。无人机送货:AI可以用于无人机送货,将货物快速送达偏远地区。6.其他应用场景:教育:AI可以用于个性化学习,为每个学生提供定制化的学习体验。农业:AI可以用于分析农田数据,提高农作物的产量和质量。娱乐:AI可以用于开发虚拟现实和增强现实体验。能源:AI可以用于优化能源的使用,提高能源效率。人工智能的应用场景还在不断扩展,未来人工智能将对我们的生活产生更加深远的影响。内容由AI大模型生成,请仔细甄别

问:有制造业的 AI 应用吗?

在制造业领域也有一些AIGC(AI Generated Content)的应用:1.产品设计和开发:利用AI生成工具如Adobe Firefly、Midjourney等,可以根据文字描述快速生成产品的3D模型、渲染图、插图等设计元素,大幅提高产品设计效率。2.工艺规划和优化:结合大语言模型的自然语言处理能力,可以自动生成制造工艺流程、设备选型、质量控制等方案,优化生产过程。3.设备维护和故障诊断:利用AI模型分析设备运行数据,可以预测设备故障,并自动生成维修建议,提高设备可靠性。4.供应链管理:AI可以根据历史数据和市场变化,自动生成采购计划、库存预测、物流优化等内容,提高供应链管理效率。5.客户服务:基于对话模型的AI客服机器人,可以自动生成个性化的客户回复,提升客户体验。总的来说,AIGC技术正在制造业各环节得到广泛应用,从产品设计到生产管理再到客户服务,都能发挥重要作用,提高企业的效率和竞争力。内容由AI大模型生成,请仔细甄别

Others are asking
具身智能是什么?
具身智能是人工智能领域的一个子领域,指智能体(如机器人、虚拟代理等)通过与物理世界或虚拟环境的直接交互来发展和展现智能。 其核心在于智能体的“身体”或“形态”,这些身体可以是物理形态(如机器人的机械结构),也可以是虚拟形态(如在模拟环境中的虚拟角色)。身体不仅为智能体提供了与环境互动的手段,也影响其学习和发展。 具身智能的研究涉及多个学科,包括机器人学、认知科学、神经科学和计算机视觉等。在机器人学中,关注设计能自主行动和适应环境的机器人;在认知科学和神经科学中,探索大脑处理与身体相关信息的机制及应用于人造智能系统;在计算机视觉中,致力于开发使智能体能够理解和解释视觉信息,进行有效空间导航和物体识别的算法。 具身智能在机器人领域(如服务机器人、工业自动化和辅助技术等)有重要应用,也在虚拟现实、增强现实和游戏设计等领域通过创造更具沉浸感和交互性的体验发挥作用。 具身智能的三要素为“本体”(硬件载体)、“智能”(大模型、语音、图像、控制、导航等算法)、“环境”(本体所交互的物理世界),本体、智能、环境的高度耦合是高级智能的基础。其行动可分为“感知决策行动反馈”四个步骤,并形成闭环。 尽管具身智能取得了显著进展,但仍面临诸多挑战,如智能体身体的设计、在复杂环境中的有效学习以及与人类社会相关的伦理和安全问题等。未来的研究将继续探索这些问题以推动其发展和应用。
2025-03-06
什么是具身智能?
具身智能是人工智能领域的一个子领域。它强调智能体(如机器人、虚拟代理等)通过与物理世界或虚拟环境的直接交互来发展和展现智能。 其核心在于智能体的“身体”或“形态”,这些身体可以是物理形态(如机器人的机械结构),也可以是虚拟形态(如在模拟环境中的虚拟角色)。身体不仅为智能体提供与环境互动的手段,也影响其学习和发展。 具身智能的研究涉及多个学科,包括机器人学、认知科学、神经科学和计算机视觉等。在机器人学中,关注设计能自主行动和适应环境的机器人;在认知科学和神经科学中,探索大脑处理与身体相关信息的机制及应用于人造智能系统;在计算机视觉中,致力于开发使智能体理解和解释视觉信息的算法。 具身智能在机器人领域(如服务机器人、工业自动化和辅助技术等)有重要应用,能让机器人更好地理解和适应人类生活环境,提供更自然有效的人机交互。在虚拟现实、增强现实和游戏设计等领域也有广泛应用,创造更具沉浸感和交互性的体验。 具身智能的三要素为“本体”(硬件载体)、“智能”(大模型、语音、图像、控制、导航等算法)、“环境”(本体所交互的物理世界),本体、智能、环境的高度耦合是高级智能的基础。其行动可分为“感知决策行动反馈”四个步骤,分别由四个模块完成并形成闭环。 尽管具身智能取得显著进展,但仍面临诸多挑战,如设计智能体身体以最大化智能表现、让智能体在复杂环境中有效学习以及处理与人类社会的伦理和安全问题等。
2025-02-20
具身智能是什么?
具身智能是人工智能领域的一个子领域,指智能体(如机器人、虚拟代理等)通过与物理世界或虚拟环境的直接交互来发展和展现智能。 其核心在于智能体的“身体”或“形态”,这些身体可以是物理形态,如机器人的机械结构,也可以是虚拟形态,如在模拟环境中的虚拟角色。身体不仅为智能体提供了与环境互动的手段,也影响其学习和发展。 具身智能的研究涉及多个学科,包括机器人学、认知科学、神经科学和计算机视觉等。在机器人学中,关注如何设计能自主行动和适应环境的机器人;在认知科学和神经科学中,探索大脑处理与身体相关信息的机制及应用于人造智能系统;在计算机视觉中,致力于开发使智能体能够理解和解释视觉信息,从而进行有效空间导航和物体识别的算法。 具身智能在机器人领域有重要应用,特别是在服务机器人、工业自动化和辅助技术等方面,能让机器人更好地理解和适应人类生活环境,提供更自然有效的人机交互。此外,在虚拟现实、增强现实和游戏设计等领域也有广泛应用,创造更具沉浸感和交互性的体验。 具身智能的三要素包括“本体”(硬件载体)、“智能”(大模型、语音、图像、控制、导航等算法)、“环境”(本体所交互的物理世界),本体、智能、环境的高度耦合是高级智能的基础。其行动可分为“感知决策行动反馈”四个步骤,并形成一个闭环。 尽管具身智能取得了显著进展,但仍面临诸多挑战,如设计智能体身体以最大化智能表现、让智能体在复杂多变环境中有效学习,以及处理与人类社会的伦理和安全问题等。
2025-02-19
具身智能是什么?
具身智能是人工智能领域的一个子领域,指智能体(如机器人、虚拟代理等)通过与物理世界或虚拟环境的直接交互来发展和展现智能。 其核心在于智能体的“身体”或“形态”,这些身体可以是物理形态,如机器人的机械结构,也可以是虚拟形态,如在模拟环境中的虚拟角色。身体不仅为智能体提供了与环境互动的手段,也影响其学习和发展。 具身智能的研究涉及多个学科,包括机器人学、认知科学、神经科学和计算机视觉等。在机器人学中,关注如何设计能自主行动和适应环境的机器人;在认知科学和神经科学中,探索大脑处理与身体相关信息的机制及应用于人造智能系统;在计算机视觉中,致力于开发使智能体能够理解和解释视觉信息,从而进行有效空间导航和物体识别的算法。 具身智能的应用广泛,在机器人领域,特别是服务机器人、工业自动化和辅助技术等方面,能让机器人更好地理解和适应人类生活环境,提供更自然有效的人机交互。在虚拟现实、增强现实和游戏设计等领域,能创造更具沉浸感和交互性的体验。 具身智能有三要素:本体(硬件载体)、智能(大模型、语音、图像、控制、导航等算法)、环境(本体所交互的物理世界),本体、智能、环境的高度耦合是高级智能的基础。其行动可分为“感知决策行动反馈”四个步骤,分别由四个模块完成并形成闭环。 尽管具身智能取得了显著进展,但仍面临诸多挑战,如如何设计智能体的身体以最大化其智能表现,如何让智能体在复杂多变环境中有效学习,以及如何处理智能体与人类社会的伦理和安全问题等。
2025-02-18
最新具身智能新闻
以下是关于具身智能的最新新闻: 具身智能是将机器学习算法适配至物理实体,从而与物理世界交互的人工智能范式。以 ChatGPT 为代表的“软件智能体”通过网页端、手机 APP 与用户交互,而具身智能体则将大模型嵌入到物理实体上,通过机器配备的传感器与人类交流。人形机器人是具身智能的代表产品。 具身智能的三要素包括本体(硬件载体)、智能(大模型、语音、图像、控制、导航等算法)、环境(本体所交互的物理世界),三者高度耦合是高级智能的基础。不同环境下会有不同形态的硬件本体适应,如室内平地适用轮式机器人,崎岖地面适用四足机器人。 具身智能体的行动分为“感知决策行动反馈”四个步骤,感知模块负责收集和处理信息,通过多种传感器感知和理解环境。常见的传感器有可见光相机、红外相机、深度相机、激光雷达、超声波传感器、压力传感器、麦克风等。 最近,具身智能的概念很火。例如稚晖君开源人形机器人全套图纸+代码引发圈内热议,各类具身智能产品如李飞飞的 Voxposer、谷歌的 RT1 和 RT2、RTX、字节跳动的 Robot Flamingo、斯坦福的 ACT 和卡耐基梅隆的 3D_diffuser_act 等,在不同任务和场景中展示了强大能力,并有潜力带来革命性变革。本文拆分为上下两篇,明天会更新下篇,聚焦人机交互、发展讨论。本文部分参考中国信息通信研究院和北京人形机器人创新有限公司的《具身智能发展报告》。
2025-01-27
具身智能
具身智能是人工智能领域的一个子领域。 它强调智能体(如机器人、虚拟代理等)通过与物理世界或虚拟环境的直接交互来发展和展现智能。智能不仅仅是处理信息的能力,还包括感知环境、自主导航、操作物体、学习和适应环境等能力。 具身智能的核心在于智能体的“身体”或“形态”,其可以是物理形态(如机器人的机械结构)或虚拟形态(如模拟环境中的虚拟角色)。这些身体为智能体提供了与环境互动的手段,并影响其学习和发展。 具身智能的研究涉及多个学科,如机器人学、认知科学、神经科学和计算机视觉等。在机器人学中,关注设计能自主行动和适应环境的机器人;在认知科学和神经科学中,探索大脑处理与身体相关信息的机制及应用于人造智能系统;在计算机视觉中,致力于开发使智能体理解和解释视觉信息的算法。 具身智能在机器人领域(如服务机器人、工业自动化和辅助技术等)、虚拟现实、增强现实和游戏设计等领域有广泛应用。 具身智能的三要素包括“本体”(硬件载体)、“智能”(大模型、语音、图像、控制、导航等算法)、“环境”(本体所交互的物理世界),三者高度耦合是高级智能的基础。其行动分为“感知决策行动反馈”四个步骤,并形成闭环。 尽管具身智能取得了显著进展,但仍面临诸多挑战,如智能体身体的设计、在复杂多变环境中的有效学习以及与人类社会相关的伦理和安全问题等。
2024-12-31
AI工具在人力资源岗位提效的应用场景
AI 工具在人力资源岗位提效的应用场景主要包括以下方面: 1. 招聘环节: 职位描述生成。 简历分析。 面试题设计。 自动化筛选候选人简历,提升筛选工作的效率和准确性,减少人力资源部门的工作负担,降低因人为错误导致的招聘成本浪费。 2. 员工绩效评估: 分析员工工作表现。 识别绩效趋势和提升点。 为管理层提供数据支持的绩效反馈。 3. 员工培训与发展。 在全行业中,基础办公提效方面如 PPT、Excel、会议报告、策划会、文案包装、图文海报、客服机器人 bot 等,都可以从【单个任务 task>角色 role>角色间协同 collaboration】显著提高工作效率。 此外,阿里云百炼大模型与猎聘携手共同推动招聘领域 AI 技术的全面升级,AI 赋能的全链路招聘流程,通过大模型的深度参与,显著提升了招聘效率和候选人体验,优化了整体业务效能。 但同时,人工智能在招聘中也存在潜在风险,如算法偏见、数据隐私和歧视等方面: 1. AI 偏见:训练数据集存在对特定社会群体或性别的偏见,可能会复制甚至加剧这些偏见。 2. 数据隐私:公司使用 AI 招聘系统收集大量个人数据,若被滥用,可能侵犯候选人隐私。 3. 算法偏见:数据集存在偏差会导致 AI 系统存在偏差。 4. 对残疾申请人:雇主使用 AI 招聘工具时,需为残疾申请人提供合理便利,确保不会无意或故意排除这些群体。 5. 种族和性别影响:AI 在招聘和晋升过程中存在无意中歧视某些种族和性别群体的风险。
2025-03-06
Midjourney多人物在不同场景下的一致性
以下是关于 Midjourney 多人物在不同场景下一致性的相关内容: 参数局限性: 最好使用 Midjourney 生成的图像,因为其对自身输出的解读已优化,使用真实世界图像可能导致扭曲或不一致。 无法精确复制每一个小细节,AI 更倾向于关注更广泛的视觉特征。 不太适用于多人组合,通常会让组内所有人看起来相同。 实际应用案例: 分镜和漫画:在不同面板和场景中保持同一角色的一致性,不丧失角色核心身份。 角色设计:为角色创建不同版本,如不同服装、姿势或环境中的版本。 奇幻和叙事艺术:以视觉一致的方式描绘角色在旅程中的变化。 最佳结果的技巧: 使用清晰、放大的图片,其中角色面部特征清晰可见,最好正对镜头,有助于 AI 更好地解读关键面部特征。 从 cw 100 开始,若希望引入变化,可逐渐降低该值。 角色参考: Midjourney 中的 cref 是一个高级命令参数,允许用户在多张图像之间保持角色一致性。无论创作故事板还是创建不同场景中的角色变化,该命令参数能确保角色的核心视觉特征(如面部特征、发型和服装)在每次生成时得以保留。 频道说明: 您可以仅描述环境、周围环境、背景或情境,Midjourney 将努力将角色融入场景中。但可能会出现不连贯的结果,此时可尝试使用更高值的样式化(s),如 s 800。 多个角色的放置: cref 命令适用于单一主题、单一角色的图像。若计划在场景中添加多个角色,需要使用平移按钮来添加。 基于 cref 的多个角色放置到单个画布上的最佳方法是使用平移功能将新的画布与现有画布拼接在一起,每个新画布的部分都将有自己的 cref。 1. 使用 /settings 将 Remix 打开,然后选择 。 2. 选择将包含第二个字符的图像,然后使用 U 将其从网格中分离出来。 3. 寻找蓝色小箭头。⬆️⬇️⬅️➡️每个都会在现有图像中添加一条新图像。选择新角色的前进方向并输入提示及其 cref。这将缝合一条新的画布。
2025-03-06
打工使用ai的场景
以下是一些打工中使用 AI 的场景: 1. 在处理信息方面,可输入 AI 产品的网址,如 https://www.anthropic.com/news/introducingclaude ,让 AI 自动处理并返回产品的名称、简介等信息。当下的 AI 产品大都支持自定义回复方式,如在 ChatGPT/GPTs 里是“Instructions”,在 Coze 里是“人设与回复逻辑”。设定时,其写法类似于 Prompt,可充分相信 AI 的理解能力,但由于其特性,可能不会总能返回合适结果,处理方法包括重试、优化 Prompt 或使用 Workflow 等。 2. 在工作中,要注意 AI 带来的影响,如信息茧房问题,不能过度依赖 AI 而忽视独立思考,同时应重视自身的行业积累。虽然 AI 目前不能大幅减少工作时间,且可能只是内卷手段,但它是技术和工程的结晶,对于推动创新和实用应用具有重要价值。
2025-03-05
ai使用场景
AI 的应用场景广泛,涵盖以下多个领域: 1. 医疗保健: 医学影像分析,辅助诊断疾病。 药物研发,加速研发进程。 个性化医疗,提供定制治疗方案。 机器人辅助手术,提高手术精度和安全性。 2. 金融服务: 风控和反欺诈,降低金融机构风险。 信用评估,辅助贷款决策。 投资分析,帮助投资者做出明智决策。 客户服务,提供 24/7 服务并回答常见问题。 3. 零售和电子商务: 产品推荐,根据客户数据推荐感兴趣的产品。 搜索和个性化,改善搜索结果和购物体验。 动态定价,根据市场需求调整产品价格。 聊天机器人,回答客户问题和解决问题。 4. 制造业: 预测性维护,预测机器故障避免停机。 质量控制,检测产品缺陷提高质量。 供应链管理,优化供应链提高效率和降低成本。 机器人自动化,控制工业机器人提高生产效率。 5. 交通运输: 自动驾驶,提高交通安全性和效率。 交通管理,优化信号灯和交通流量缓解拥堵。 物流和配送,优化路线和配送计划降低运输成本。 无人机送货,将货物快速送达偏远地区。 6. 其他领域: 教育,提供个性化学习体验。 农业,分析农田数据提高农作物产量和质量。 娱乐,开发虚拟现实和增强现实体验。 能源,优化能源使用提高能源效率。 此外,还有众多具体的 AI 应用产品,如辅助创作与学习方面的 AI 智能写作助手、语言学习助手等;推荐与规划方面的图像识别商品推荐、旅游行程规划器等;监控与预警方面的宠物健康监测设备、家居安全监控系统等;优化与管理方面的办公自动化工具、物流路径优化工具等;销售与交易方面的艺术作品生成器、汽车销售平台等。总之,AI 的应用场景还在不断扩展,未来将对我们的生活产生更深远的影响。
2025-03-05
我想要生成一张海报图,主题是妇女节,画面的主体是一个容光焕发的女性,海报下方有一个小场景,表达赠送阿胶产品的场景,该怎么提问
很抱歉,您提供的这些内容似乎与生成以妇女节为主题、包含特定元素的海报图的提问方式没有直接关联。如果您想要生成这样的海报图,您可以这样提问:“生成一张以妇女节为主题的海报,画面主体是一位容光焕发的女性,海报下方有一个小场景展示赠送阿胶产品的情景,画面色彩要温馨,女性形象要优雅自信,整体风格简约而富有节日氛围。”
2025-03-04
应用场景
以下是一些常见的 AI 应用场景: 1. 算法学习方面: KNN 近邻算法: 分类问题:如文本分类、图像识别、手写数字识别、医学诊断等。 回归问题:如房价预测、股票价格预测等。 异常检测:常用于识别异常值或离群点。 推荐系统:找到与用户兴趣相似的其他用户或物品进行推荐。 图像分割:识别图像中的区域并进行分割。 聚类分析:适用于数据集中簇非明显球形或高斯分布的聚类任务。 Adaptive Boosting: 程序化广告领域,辅助在 ocpx 领域单一 KPI 场景下进行“展示”或“不展示”的逻辑门判断。 证明观点,如判断 40 岁以上、收入>50k 的人群更倾向于购买商品的观点是否成立。 解决回归问题,如预测连续值。 2. 医疗保健: 医学影像分析:辅助诊断疾病。 药物研发:加速药物研发,识别潜在药物候选物和设计新治疗方法。 个性化医疗:分析患者数据提供个性化治疗方案。 机器人辅助手术:提高手术精度和安全性。 3. 金融服务: 风控和反欺诈:识别和阻止欺诈行为,降低风险。 信用评估:评估借款人信用风险,辅助贷款决策。 投资分析:分析市场数据,辅助投资决策。 客户服务:提供 24/7 服务,回答常见问题。 4. 零售和电子商务: 产品推荐:分析客户数据进行推荐。 搜索和个性化:改善搜索结果和提供个性化购物体验。 动态定价:根据市场需求调整产品价格。 聊天机器人:回答客户问题并解决问题。 5. 制造业: 预测性维护:预测机器故障,避免停机。 质量控制:检测产品缺陷,提高质量。 供应链管理:优化供应链,提高效率和降低成本。 机器人自动化:控制工业机器人,提高生产效率。 6. 交通运输:(此处未给出具体应用场景的详细描述)
2025-03-03
Coze智能体接入到企业微信
要将 Coze 智能体接入到企业微信,您可以按照以下步骤进行操作: 1. 技术实现原理: 登录宝塔面板,在宝塔面板中可视化控制云服务器,部署 docker 容器,启动 COW 项目与微信取得关联。 点击“Docker”中的“项目模板”中的“添加”按钮。 项目模板代码示例如下:将编译好的内容复制进来。 在容器中创建容器,选择容器编排,填入模板和名称,确定。 运行成功后,点击容器,可以看到运行的是两个服务,接口文档中启动了两个服务。 点击“wcandyaibot”后面的日志按钮,在弹出层中用提前预备好的微信进行扫码。 此界面不会实时更新显示,需手动刷新,点击“刷新日志”,若看到“WeChat login success”,则成功将 Bot 接入微信。 2. 创建扣子的令牌: 在扣子官网左下角选择扣子 API。 在 API 令牌中选择“添加新令牌”。 名称:给令牌起一个名字。 过期时间:为方便选择永久有效。 选择指定团队空间:可以是个人空间、也可以选择团队空间。 权限:勾选所有权限。 保存好令牌的 Token,切勿向他人泄露。 3. Coze 设置: 获取机器人 ID:在个人空间中找到要接入到微信中的机器人,比如画小二智能小助手。点击对应的机器人进入机器人编辑界面,在浏览器地址栏的 bot/之后的数据就是该机器人的 Bot ID。 API 授权:然后再点击右上角发布,会发现多了一个 Bot as API,勾选 Bot as API,确定应用已成功授权 Bot as API。 4. 服务器设置: chatgptonwechat(简称 CoW)项目是基于大模型的智能对话机器人,支持微信公众号、企业微信应用、飞书、钉钉接入,可选择多种模型,能处理多种内容,通过插件访问外部资源,支持基于自有知识库定制企业 AI 应用。 点击“Docker”中的“编排模板”中的“添加”按钮。 备注说明版:此处借用“程序员安仔”封装的代码,以资感谢。 无备注干净版:将上面编译好的内容复制进来。 在“容器编排”中“添加容器编排”,选择在“编排模板”里创建的“coze2openai”。 提示运行成功,如果无法正常启动,请看文档后面的“常见问题”。
2025-03-06
数据分析领域智能化应用实践
以下是关于数据分析领域智能化应用实践的相关内容: ChatGPT 助力数据分析 在个性化分析示例中,上传的数据均为假数据,包括游戏 A 流水数据、游戏产品数据、页面事件统计和用户行为数据等,仅供测试。涉及单维度数据、多维度数据的折线图和柱状图。有时 AI 会误将数据项作为维度分析,可通过输入提示告诉它用哪个字段作为维度,或描述其他数据信息以使分析更准确。 总结和展望方面,ChatGPT 在数据分析领域具有广泛应用前景,能提高效率、降低技能门槛和支持决策。但案例分析结果可能简单,实际接入业务可定制多种分析模板,增加分析多样性。处理大量数据时,除注意长类型字段限制,还应指定允许查询或解析的字段,并对结果数据进行校验。随着技术进步,ChatGPT 等工具将为数据分析带来更多创新和突破。 金融领域的智能化应用 摩根大通的模型显示,美联储鹰鸽派评分上升 10 个百分点,意味着加息 25 个基点可能性增加约 10 个百分点。为深入应用成果,摩根大通等银行与大学合作培育生态系统,采用开源合作推动知识产权发展。研究者认为人工智能可通过处理大量数据集等完善经济和货币预测,为政策决策提供信息。摩根大通任命 Teresa Heitsenrether 领导新的数据和分析部门,目前公司有 300 多个人工智能用例投入生产,用于风险、勘探、营销等方面,降低了零售业务风险,改善了交易优化和投资组合构建。公司有 1000 多名数据管理人员、900 多名数据科学家和 600 名 ML 工程师,专注于自然语言处理等方面的人工智能和机器学习。
2025-03-06
扣子AI智能体搭建
以下是关于扣子 AI 智能体搭建的相关内容: 扣子是字节跳动旗下的 AI 应用开发平台,搭建智能体的门槛较低,无论有无编程基础都能快速搭建基于 AI 模型的多样化问答 Bot。 搭建智能体的步骤如下: 1. 创建一个智能体,输入人设等信息,并放上创建的工作流。 2. 配置完成后进行测试,但千万不要直接发布。工作流中使用的插件 api_token 若填的是自己的 token,其他人调用会消耗自己的费用。可以将 api_token 作为工作流最开始的输入,用户购买后输入 token 再发布。 3. 搭建时首先需要想一个智能体的名字,然后写一段该智能体的介绍,越详细越好,因为会根据介绍智能生成符合主题的图标。最后点击确认,新的智能体就诞生了。也可以使用 AI 创建一个头像。 扣子还提供了丰富的插件、工作流、知识库等功能来增强 Bot 的能力和交互性。例如菠萝作词家智能体,是专为音乐创作设计的辅助工具,能根据用户输入的提示词等信息生成歌词。 扣子官网:https://www.coze.cn/ 。开发完成后,还可以将构建的 Bot 发布到各种社交平台和通讯软件上供用户交互聊天。
2025-03-06
智能体
智能体(Agent)在人工智能和计算机科学领域是一个重要概念,指能够感知环境并采取行动以实现特定目标的实体,可以是软件程序或硬件设备。 智能体的定义: 智能体是自主系统,通过感知环境(通常通过传感器)并采取行动(通常通过执行器)来达到目标。在 LLM 支持的自主 Agent 系统中,LLM 充当 Agents 的大脑,并辅以规划、子目标和分解、反思和完善、记忆、工具使用等关键组成部分。 智能体的类型: 1. 简单反应型智能体(Reactive Agents):根据当前感知输入直接采取行动,不维护内部状态,不考虑历史信息。例如温控器。 2. 基于模型的智能体(Modelbased Agents):维护内部状态,对当前和历史感知输入进行建模,能推理未来状态变化并据此行动。例如自动驾驶汽车。 3. 目标导向型智能体(Goalbased Agents):具有明确目标,能根据目标评估不同行动方案并选择最优行动。例如机器人导航系统。 4. 效用型智能体(Utilitybased Agents):不仅有目标,还能量化不同状态的效用值,选择效用最大化的行动,评估行动优劣并权衡利弊。例如金融交易智能体。 5. 学习型智能体(Learning Agents):能够通过与环境交互不断改进其性能,学习模型、行为策略以及目标函数。例如强化学习智能体。 智能体功能实现: 本智能体主要通过一个工作流实现,采用单 Agent(工作流模式)。工作流全景图按照市场分析报告内容划分,分成 7 个分支处理,每个分支调研并生成报告中的一部分,以发挥并行处理的效率。工作流主要节点包括文本处理节点、必应搜索节点、LinkerReader 节点、代码节点、大模型节点和结束节点。文本处理节点将用户输入与报告主题拼装形成关键词句;必应搜索节点根据关键词句搜索相关网络内容;LinkerReader 节点获取网页详细内容;代码节点对搜索到的网页链接信息进行过滤;大模型节点生成报告内容并添加引用链接;结束节点将 7 部分内容拼接并流式输出。
2025-03-06
智能体API
智能体 API 相关内容如下: 在扣子平台上,插件就像一个工具箱,里面可以放一个或者好几个工具,这些工具被称为 API。目前扣子平台已有多种类型的插件,如看新闻、规划旅行、提高办公效率、理解图片内容的 API,以及能处理多种任务的模型。若现有的插件不符合需求,还可自行制作插件并加入所需 API。 多智能体 AI 搜索引擎方案中,第一步需根据用户任务使用搜索工具 API WebSearchPro 补充信息,参考文档为 https://bigmodel.cn/dev/api/searchtool/websearchpro 。第二步用大模型如 GLM40520 规划和分解子任务,并转换为 JSON 格式,参考 API 文档 https://bigmodel.cn/dev/api/normalmodel/glm4 和 JSON 工具 https://bigmodel.cn/dev/howuse/jsonformat 。第三步通过 AI 搜索智能体完成子任务,其调用方式参考文档 https://bigmodel.cn/dev/api/qingyanassistant/assistantapi ,智能体 id 为 659e54b1b8006379b4b2abd6 。第四步总结子任务生成思维导图,智能体调用方式参考文档 https://bigmodel.cn/dev/api/qingyanassistant/assistantapi ,智能体 id 为 664e0cade018d633146de0d2 。 让 Coze 智能体机器人连上微信和微信群时,需在扣子官网左下角选择扣子 API ,在 API 令牌中添加新令牌,设置名称、过期时间、选择指定团队空间和权限,并保存好令牌的 Token 。获取机器人 ID 时,在个人空间中找到要接入微信的机器人,如“画小二智能小助手”,其 Bot ID 在浏览器地址栏的 bot/之后。然后进行 API 授权,点击右上角发布,勾选 Bot as API 并确定应用已成功授权。
2025-03-06
AI如何应用在制造业中
在制造业中,AI 有以下应用: 1. 产品设计和开发:利用 AI 生成工具如 Adobe Firefly、Midjourney 等,可根据文字描述快速生成产品的 3D 模型、渲染图、插图等设计元素,大幅提高产品设计效率。 2. 工艺规划和优化:结合大语言模型的自然语言处理能力,能自动生成制造工艺流程、设备选型、质量控制等方案,优化生产过程。 3. 设备维护和故障诊断:利用 AI 模型分析设备运行数据,可预测设备故障,并自动生成维修建议,提高设备可靠性。 4. 供应链管理:AI 可以根据历史数据和市场变化,自动生成采购计划、库存预测、物流优化等内容,提高供应链管理效率。 5. 客户服务:基于对话模型的 AI 客服机器人,能够自动生成个性化的客户回复,提升客户体验。 总的来说,AIGC 技术正在制造业的各环节得到广泛应用,从产品设计到生产管理再到客户服务,都能发挥重要作用,提高企业的效率和竞争力。
2025-02-07
制造业质量管理可以应用ai做些什么
在制造业质量管理方面,AI 有以下应用: 1. 质量控制:AI 可以用于检测产品缺陷,提高产品质量。 2. 预测性维护:能够预测机器故障,帮助工厂避免因设备问题影响产品质量。 3. 工艺规划和优化:结合大语言模型的自然语言处理能力,自动生成制造工艺流程、设备选型、质量控制等方案,优化生产过程,从而间接保障产品质量。 4. 工业质检:作为基于视觉的检测方式,虽然相对成熟但未深入 B 端核心应用场景,如今可通过多模态和大模型解决上一代无法解决的问题,提升质检性能。
2025-02-06
我是一名传统制造业的产品经理,一名ai小白,想在ai方面进行创业,有哪些方向建议
以下是为您提供的在 AI 方面创业的方向建议: 对于技术爱好者: 1. 从小项目开始,如搭建简单博客或自动化脚本,熟悉 AI 能力和局限性。 2. 探索 AI 编程工具,如 GitHub Copilot 或 Cursor,从生成注释或简单函数逐步过渡到复杂任务。 3. 参与 AI 社区,如 Stack Overflow 的 AI 板块或 Reddit 的 r/artificial 子版块,与开发者交流,了解最新趋势。 4. 构建 AI 驱动的项目,如开发简单的聊天机器人或图像识别应用,深入理解实际应用过程。 对于内容创作者: 1. 利用 AI 辅助头脑风暴,针对主题生成创意方向。 2. 建立 AI 写作流程,从生成大纲开始,逐步扩展到段落生成和数据支持。 3. 探索多语言内容,借助 AI 辅助翻译和本地化内容以拓展国际市场。 4. 利用 AI 工具优化 SEO,根据建议调整标题、元描述和关键词使用。 从行业观点来看: 1. 可能成功的 AI 公司应打造自身的数据飞轮,尤其在 ToC 场景中寻求突破,因为 C 端的数据飞轮效应可能是早期决胜关键。 2. 有专业壁垒的垂直模型可能是机会所在,如高价值、特定领域依赖丰富的专有数据集。 3. 大模型产品可朝个性化(装上“记忆”成为工作助理或陪伴者)和场景化(装上“手”和“眼睛”)方向发展。 从 AI 创业者的情况来看: 1. 如天涯,具备软件开发经验和连续创业经历,可在 AI 领域发挥优势。 2. 像 Eureka 这样的 Fintech 产品经理,可在 AI 金融领域应用方面探索。 3. Zima 在编程和 AI 教育探索方面有基础,可关注 AI+教育和 AI4Science 方向。 4. Mr.water🐳 可凭借与高校教授的联系,考虑科研方向转化。 总之,AI 创业要注重技术驱动和产品定义,用好市面上的 AI 工具,从效率和变革角度组织公司架构。同时,把握好融资节奏,在实践中有效迭代。
2024-12-06
AI在制造业的应用
在制造业领域,AI 有以下应用: 1. 产品设计和开发:利用 AI 生成工具如 Adobe Firefly、Midjourney 等,可根据文字描述快速生成产品的 3D 模型、渲染图、插图等设计元素,大幅提高产品设计效率。 2. 工艺规划和优化:结合大语言模型的自然语言处理能力,能自动生成制造工艺流程、设备选型、质量控制等方案,优化生产过程。 3. 设备维护和故障诊断:利用 AI 模型分析设备运行数据,可预测设备故障,并自动生成维修建议,提高设备可靠性。 4. 供应链管理:AI 可根据历史数据和市场变化,自动生成采购计划、库存预测、物流优化等内容,提高供应链管理效率。 5. 客户服务:基于对话模型的 AI 客服机器人,能自动生成个性化的客户回复,提升客户体验。 此外,AI 在制造业还包括以下方面的应用: 1. 预测性维护:可预测机器故障,帮助工厂避免停机。 2. 质量控制:能够检测产品缺陷,提高产品质量。 3. 供应链管理:优化供应链,提高效率和降低成本。 4. 机器人自动化:用于控制工业机器人,提高生产效率。
2024-11-22
AI目前在制造业和零售领域有什么案例吗?
在制造业领域,AI 的应用案例包括: 预测性维护:可用于预测机器故障,避免工厂停机。 质量控制:能够检测产品缺陷,提升产品质量。 供应链管理:有助于优化供应链,提高效率并降低成本。 机器人自动化:用于控制工业机器人,提高生产效率。 生产计划、供应链计划状态查询。 产线预测性维保辅助。 产品质量分析与溯源。 自动驾驶全场景模拟训练及虚拟汽车助手。 在零售领域,AI 的应用案例包括: 舆情、投诉、突发事件监测及分析。 品牌营销内容撰写及投放。 自动化库存管理。 自动生成或完成 SKU 类别选择、数量和价格分配。 客户购物趋势分析及洞察。
2024-08-29
具身智能在制造业的应用场景有哪些?
具身智能在制造业的应用场景主要包括以下方面: 1. 预测性维护:可用于预测机器故障,帮助工厂避免停机。 2. 质量控制:能够检测产品缺陷,提升产品质量。 3. 供应链管理:有助于优化供应链,提高效率并降低成本。 4. 机器人自动化:用于控制工业机器人,提高生产效率。 具身智能是指智能体通过身体与环境的交互来学习和理解世界,并做出相应的决策和行动。其在机器人领域,特别是服务机器人、工业自动化和辅助技术等方面有重要应用。同时,具身智能也在虚拟现实、增强现实和游戏设计等领域广泛应用,能创造更具沉浸感和交互性的体验。 具身智能发展的核心问题并非算法和硬件,而是在现实物理世界构建数据闭环。实现闭环需要数据获取成本足够低,并能在具体化场景中持续收集数据。 在具身智能的发展历史中,之前的机器人厂商有过方向转变,如波士顿动力从液压转向电动。第一代机器人处于技术探索阶段,如早稻田大学的仿人机器人,1970 年之前的示教再现型机器人没有感知和思考能力,仅根据预设程序重复动作,目前在汽车制造业和一些工业生产线上仍常见。1960 年代,美国机床铸造公司和美国 Unimation 公司分别生产出不同类型的机器人。1970 1997 年,出现了有感觉的机器人,它们拥有一定的感觉系统,可获取环境和对象信息。 尽管具身智能在理论和技术上取得显著进展,但仍面临诸多挑战,如智能体身体设计、复杂环境中的有效学习以及与人类社会相关的伦理和安全问题等。未来的研究将继续探索这些问题,以推动具身智能的发展和应用。
2024-08-09