Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

和物理教学相关的ai产品有哪些

Answer

以下是一些与物理教学相关的 AI 产品:

  1. 目前虽没有专门针对物理教学的知名 AI 产品,但在教育领域,有一些通用的 AI 教育工具可能对物理教学有所帮助。例如,像 Speak(https://www.speak.com/)、Quazel(https://www.quazel.com/)和 Lingostar(https://www.lingostar.ai/)这类产品,它们在语言教学方面发挥作用,可能对物理教学中的概念阐述和交流有一定辅助。
  2. 像 Photomath(https://photomath.com/en)和 Mathly(https://mathly.webflow.io/)这样的应用,主要指导学生解决数学问题,其解题思路和方法可能对物理中的数学计算部分有借鉴意义。
  3. 工具如 Grammarly、Orchard(https://orchard.ink/)和 Lex(https://lex.page/~)能帮助学生克服写作难题、提升写作水平,这对物理学习中的实验报告和作业书写有帮助。
  4. Tome(https://beta.tome.app/)和 Beautiful.ai(https://www.beautiful.ai/)协助创建演示文稿,可用于物理课程的展示和汇报。

需要注意的是,AI 技术在教育领域的应用仍在不断发展和创新,未来可能会有更多专门针对物理教学的优质 AI 产品出现。

Content generated by AI large model, please carefully verify (powered by aily)

References

问:有哪些健身的 AI 产品?

AI健身是指利用人工智能(AI)技术来辅助或改善健身训练和健康管理的方法。这种方法利用AI算法和数据分析来个性化地指导用户进行锻炼、提供健康建议、监测运动进度和提供反馈。AI健身可以根据用户的健康状况、身体指标、运动目标和偏好,提供定制化的训练计划和建议,以帮助用户更有效地达到健康和健身目标。这种技术可以应用于健身应用程序、智能健身设备和在线健身培训等领域,为用户提供更智能、更个性化的健身体验。当涉及到健身的AI工具时,有几个不错的选择:1.Keep:Keep是中国最大的健身平台,为用户提供全面的健身解决方案,以帮助用户实现其健身目标。https://keep.com/2.Fiture:沸彻魔镜由核心AI技术打造,集硬件、丰富课程内容、明星教练和社区于一体。https://www.fiture.com/3.Fitness AI:利用人工智能进行锻炼,增强力量和速度。https://www.fitnessai.com/4.Planfit:健身房家庭训练与AI健身计划,AI教练是专门针对健身的生成式人工智能,使用800多万条文本数据和ChatGPT实时提供指导。https://planfit.ai/相似问题:请帮我推荐关于健身的AI内容由AI大模型生成,请仔细甄别。

生成式 AI:下一个消费者平台

教育科技长期以来一直在有效性和规模之间做权衡。为大众打造有效的解决方案,就会失去吸引个体的个性化。为满足个体的需求而打造完美的解决方案,却又难以扩展。有了AI,这种状况不再存在。我们现在可以大规模部署个性化的学习计划,为每个用户提供一个“口袋里的老师”,这个老师理解他们独特的需求,并可以回答问题或测试他们的技能。想象一个由AI驱动的语言老师,能够实时交流,并对发音或措辞给予反馈。[Speak](https://www.speak.com/)、[Quazel](https://www.quazel.com/)和[Lingostar](https://www.lingostar.ai/)已经在做这样的事情!我们已经看到了教授新概念或帮助学习者在几乎所有学科中“摆脱困境”的产品。像[Photomath](https://photomath.com/en)和[Mathly](https://mathly.webflow.io/)这样的应用指导学生解决数学问题,而[PeopleAI](https://chatbotkit.com/apps/peopleai?ref=theresanaiforthat)和[Historical Figures](https://twitter.com/scottbelsky/status/1611244139764649991)通过模拟与杰出人物的聊天来教授历史。除了学习特定的科目,学生们还在他们的作业中利用AI助手。像Grammarly、[Orchard](https://orchard.ink/)和[Lex](https://lex.page/~)这样的工具帮助学生克服写作难题,并提升他们的写作水平。处理其他形式内容的产品也在全国各地的中学和大学中越来越受欢迎——例如,[Tome](https://beta.tome.app/)和[Beautiful.ai](https://www.beautiful.ai/)协助创建演示文稿。了解更多关于[AI时代学习的未来](https://a16z.com/2023/02/08/the-future-of-learning-education-knowledge-in-the-age-of-ai/)。

Others are asking
目前有什么ai可以审核文件
目前有以下几种 AI 可以审核文件: 1. AI Review:这是一项功能,可让您查看代码库中的最近更改以捕获任何潜在的错误。您可以单击各个审阅项以查看编辑器中的完整上下文,并与 AI 聊天以获取详细信息。为了让其对您有利,您可以为 AI 提供自定义说明以专注于特定方面,比如性能。目前有几个选项可供选择进行审核,如审查工作状态、审查与主分支的差异、审查上次提交。 2. 在专利审查方面: 专利检索与分类:AI 可以帮助进行高效的专利检索和分类,通过自然语言处理(NLP)和机器学习算法,自动识别和分类专利文献。示例平台如 Google Patents、IBM Watson for IP。 专利分析和评估:AI 可以分析专利文本,评估专利的新颖性和创造性,预测专利的授权可能性。示例平台如 TurboPatent、PatentBot。 自动化专利申请:AI 可以帮助自动生成专利申请文件,减少人工编写和审查时间。示例平台如 Specifio、PatentPal。 专利图像和图表分析:AI 可以分析专利申请中的图像和图表,帮助识别和分类技术内容。示例平台如 Aulive、AIpowered image recognition tools。 3. Midjourney:今天早上 3 小时前 MJ 将测试全新的“外部图像编辑器、图像重纹理化功”能以及下一代 AI 审核系统。图像编辑器允许您从计算机上传图像,然后扩展、裁剪、重绘、添加或修改场景中的元素,还推出了“图像重纹理化模式”。AI 审核系统将从整体上检查您的提示、图像、绘制蒙版以及生成的输出图像。但在第一个发布阶段,这些功能仅开放给已生成至少 10,000 张图像的用户(年度会员可用)以及过去 12 个月内一直是月度订阅用户的用户。
2025-03-15
如何让ai帮我写论文
利用 AI 写论文可以参考以下步骤: 1. 确定论文主题:明确您的研究兴趣和目标,选择一个具有研究价值和创新性的主题。 2. 收集背景资料:使用 AI 工具如学术搜索引擎和文献管理软件来搜集相关的研究文献和资料。 3. 分析和总结信息:利用 AI 文本分析工具来分析收集到的资料,提取关键信息和主要观点。 4. 生成大纲:使用 AI 写作助手生成论文的大纲,包括引言、文献综述、方法论、结果和讨论等部分。 5. 撰写文献综述:利用 AI 工具来帮助撰写文献综述部分,确保内容的准确性和完整性。 6. 构建方法论:根据研究需求,利用 AI 建议的方法和技术来设计研究方法。 7. 数据分析:如果论文涉及数据收集和分析,可以使用 AI 数据分析工具来处理和解释数据。 8. 撰写和编辑:利用 AI 写作工具来撰写论文的各个部分,并进行语法和风格的检查。 9. 生成参考文献:使用 AI 文献管理工具来生成正确的参考文献格式。 10. 审阅和修改:利用 AI 审阅工具来检查论文的逻辑性和一致性,并根据反馈进行修改。 11. 提交前的检查:最后,使用 AI 抄袭检测工具来确保论文的原创性,并进行最后的格式调整。 需要注意的是,AI 工具可以作为辅助,但不能完全替代研究者的专业判断和创造性思维。在使用 AI 进行论文写作时,应保持批判性思维,并确保研究的质量和学术诚信。 另外,在让孩子使用 AI 辅助写作时,可以将任务改成让孩子提交一份他和 AI 共同完成作文的聊天记录。作文需要由 AI 来写,孩子要对 AI 的作文进行点评批改、让 AI 迭代出更好的文章。对话记录里孩子能否说清楚 AI 写的作文哪里好哪里不好、要怎么改(孩子可能还得给 AI 做示范),才是评价的关注点。 还有成功利用 AI 写小说的经验,比如先让 AI 帮助写故事概要和角色背景介绍,并在其基础上按自己的审美略做修改。然后让 AI 以表格的形式输出细节描述,这样做有打破 AI 叙事习惯、便于局部调整、确保内容是具体细节等好处。之后把生成的表格依次复制粘贴,让 AI 照着写文章。但在局部修改时可能会遇到问题,比如 AI 记性不好导致修改不符合预期。
2025-03-15
AI应用开发社区或者微信群
以下是一些与 AI 应用开发相关的社区和微信群信息: 云栖大会 9 月 19 日招募 AI 创作者,包括 AI 艺术创作者、AI 应用开发者(特别是工作流、企业解决方案开发者)、开源社区的活跃成员、有 AI 技术背景的初创企业和工作室。招募渠道包括在线招募(在开源社区平台如 GitHub、Gitee 的项目展示页面发布招募信息,在 AI 技术论坛和设计论坛如 CSDN、简书、知乎等发布招募帖,在微信、QQ 社群内的 AI 开发者群发布信息)和线下招募(在相关行业会议和活动中设置摊位,与高校 AI 实验室或研究机构合作)。招募方式包括报名表单、筛选流程(初步筛选和二次筛选)、确认参展并提供详细参展指导手册。 通往 AGI 之路有飞书和微信交流群。说明:请填写问卷进群,群内会分享最新 AI 信息、社区活动;加入群后欢迎积极分享,飞书群内置 AI 智能机器人可回复任何与 AI 相关的问题。同时欢迎投稿,包括 AI 技术探讨与分析、实践经验与案例分享、行业动态与趋势观察、开发心得与技术教程等。投稿要求原创、严谨、有深度,配图说明更佳,观点明确,结构清晰,建议字数 1500 5000 字,提交后 2 3 工作日反馈,必要时沟通修改建议,优质内容将收录知识库。 加入 AI 编程社开发者社群,可获得更多 AI 编程相关资讯。若二维码过期,公众号后台回复“社群”即可进群。
2025-03-15
现在有能自主抓取股票交易数据的AI吗
目前在信息爆炸的时代,借助 AI 工具可以实现集检索、整合与分析为一体的工作。以 A 股行情问答为例,可构建一个 Bot,当被问及如“XX 股票今天表现怎么样?”“复盘今天的家电板块”等问题时,它能从海量市场数据中找到有价值信息,进行整合分析并提供个性化回复。但需要注意的是,若希望在本地私有化部署,就无法使用某些相关服务。 不过,尚未有明确表明存在能完全自主抓取股票交易数据的 AI 。
2025-03-15
如何学习ai绘画
以下是关于如何学习 AI 绘画的一些指导: 首先,了解 AI 绘画的工作原理很重要。就像学习画画要临摹大师的作品一样,AI 绘画也是通过学习大量的美术风格作品来生成类似风格的作品。以 Stable Diffusion 为例,其大模型就相当于您花四十年学习的绘画风格,您需要选对合适的大模型才能画出符合心意的作品。大模型可以在 C 站(https://civitai.com/)下载,但需要科学上网。 其次,您可以借助一些专业的工具和导师。比如《AI 绘画助手》,它是一位专业且贴心的学习导师,能为新手小白和进阶爱好者提供优质实用的指导。它能将复杂的神经网络等知识用通俗易懂的语言解释清楚,介绍流行的 AI 绘画工具如 DALLE、MidJourney、Stable Diffusion 等的使用步骤和独特之处,传授风格迁移技术、生成对抗网络在图像生成和编辑中的应用以及获取高分辨率精美图像的方法,还能通过丰富的实战案例引领您从零基础起步创作作品,并为您答疑解惑和规划学习路径。 另外,像二师兄这样的学习者的经验也值得借鉴。他从下载安装包和教学视频开始,啃完 SD 的教程并进行炼丹实践,还与小伙伴探讨 AI 变现途径,加入 Prompt battle 社群学习 Midjourney 并打磨文生图提示词。 总之,学习 AI 绘画需要了解原理、选对工具、不断实践和交流学习。
2025-03-15
想在comfyui搭建一个音频节奏生成ai抽象粒子视觉效果的工作流,应该使用哪些模型节点?如何搭建?
在 ComfyUI 搭建音频节奏生成 AI 抽象粒子视觉效果的工作流,您可以参考以下内容: 1. 大模型节点: 您可以根据自己的风格选择不同的大模型,推荐使用: AWPainting,链接:https://civitai.com/models/84476/awpainting primemixanything,链接:https://civitai.com/models/75089/primemixanything xxmix9realistic v40,链接:https://civitai.com/models/47274/xxmix9realistic 2. 关键词节点: 可以使用工作流内的关键词,也可以输入自己的正负面关键词。 3. Lora 节点: 可根据自己风格搭配进行选择,如需多个 Lora 可进行串联。 4. ControlNet 节点: 选用 qrcode_monster V2 版本,相比于 V1 版本 V2 版本识别性更强。下载需要魔法,没有魔法的同学文末领取模型。下载链接:https://huggingface.co/monsterlabs/control_v1p_sd15_qrcode_monster/tree/main/v2 5. 采样器节点: 所有生图的老演员了,Step 要选择高步数,35 50 即可。采样器默认的 euler a /dpmpp 2m sde 基础节点介绍: 1. Checkpoint 基础模型(大模型/底模型)节点: 属于预调模型,决定了 AI 图片的主要风格。输出连接:Model 连接 KSampler 采样器的 Model;Clip 连接终止层数的 Clip;Vae 连接 VaeDecode 的 Vae。 2. Clip 终止层数(clip skip)节点: ComfyUI 的是负数的,webUI 的是正数。输出入点:Clip 连接 Checkpoint 基础模型的 Clip。输出节点:Clip 连接 Prompt 节点的 Clip。正向提示词和负面提示词各一个。 3. Prompt 节点: 输出入点:Clip 连接 Clip 终止层数节点的 Clip。输出节点:正向提示词和负面提示词各连接一个。 4. KSampler 采样器: 输出入点:Model 连接 Checkpoint 基础模型;Positive 连接正向提示词;negative 连接负面提示词;latent_imageL 连接 Empty Latent Image 潜空间图像的 Latent。输出节点:Latent 连接一个 VAE 的 Samples。 5. Empty Latent Image 潜空间图像: 设置出图尺寸,例如 10241024。输出入点:Latent 连接 KSampler 采样器的 Latent。 此外,还有一些根据插件整理的工作流,您可以先随便选择一个“文生图”中的“基础+自定 VAE”。选好之后,点击“替换节点树”。界面中就会出现已经连接好的工作流节点(如果没看到,就按一下 home 键),包括大模型、clip、vae、正反提示词、尺寸,采样器等所有在 webUI 中熟悉的参数,而且全都是中文面板。打开模型节点,可以看到 webUI 中的模型全部都在。这次先不更改参数,点击“运行节点树”,直接生成。此时会提醒您是否启用 ComfyUI,点击确定即可。等待一会,就能在最后一个节点预览图中看到生成的图片。点击这里就可以打开后台,看到出图时间。
2025-03-15
关于教学的ai提示词
以下是关于教学的 AI 提示词的相关内容: 遵循最简化原则: 1. 内容长度限制:确保模型输出不超过用户设定的字数或信息量。 2. 内容类型限制:避免生成不恰当或不相关内容,可通过预设过滤规则实现。 3. 逻辑和一致性限制:增强模型理解和处理逻辑关系的能力。 4. 风格和语调限制:使模型输出符合特定写作风格或语调。 未遵循最简原则的情况: 1. “理解中文语义”这类描述无意义,因这是大模型基础设定。 2. “评估和打分文本质量”目标已包含打分任务,无需再提。 3. “提供文本改进建议”在目标中重复出现。 4. Markdown 格式错误,如“Profile:Goals:”结构错误,应将 Goals 放到 Role 层级下。 5. Initialization 部分可细化,如“明白以上要求后请回复:‘请提供需要打分的提示词:’”,更清晰指代用户下一句回复信息。 此外,写 Prompt 应先分析达成任务所需模块,且模块并非一成不变,需根据任务增减。同时注意: 1. 不需要包含作者信息,如 author、version 等。 2. 避免分类错误,如将输出错误分类到 Goals 目标,像“提供改进建议,以及改进原因”与“对用户的 Prompt 进行评分 1~10 分,10 分为满分”目标相似易造成困惑,应放到达成目标后的输出模块。 3. 注意拼写正确,如 Constrains 应拼写为 Constraints,限制条件要清晰且可被大模型执行。 以下是一些提示词模板的相关网站: 1. Majinai: 2. 词图: 3. Black Lily: 4. Danbooru 标签超市: 5. 魔咒百科词典: 6. AI 词汇加速器: 7. NovelAI 魔导书: 8. 鳖哲法典: 9. Danbooru tag: 10. AIBooru:
2025-03-15
怎样做一个辅助数学教学的智能体
要制作一个辅助数学教学的智能体,可以考虑以下几个方面: 1. 提示词技术: CCoT:通过正反力矩机制,指导模型识别正确与错误,方法简洁直观。 PoT:作为思维链技术的衍生,适用于数值推理任务,引导模型生成代码再通过代码解释器工具进行运算,能显著提升模型在数学问题求解上的表现。PoT 遵循零样本和少样本的学习范式。 2. 利用现有模型和技术: 如 MathGPT 可用于数学辅导,具备公式编辑等功能。 谷歌 Gemini 可辅助教学,例如通过分析视频并回答相关逐步深入的数学问题,包括理解核心概念、阐述数学原理、提供编程示例等。 此外,还需注意模型性能与计算量、模型参数量、数据大小等因素的幂律关系,以优化智能体的性能。
2025-03-13
怎样做一个辅助教学的数学智能体
要制作一个辅助教学的数学智能体,可以参考以下步骤和要点: 1. 准备教学材料:包括相关的数学视频,并为其设计一系列逐步深入的问题。 2. 设定关键步骤: 为视频设置 URI 和 URL,打印视频内容以确保正常。 设计三个相关问题,例如: 问题 1:视频中解释了哪个概念? 问题 2:基于问题 1 的答案,能解释这个基本的数学原理吗? 问题 3:能提供一个简单的 scikitlearn 代码示例来解释这个概念吗? 3. 整合材料和问题:将三个问题和视频整合到一起,创建一个完整的查询内容。 4. 运用相关技术和模型:例如利用谷歌 Gemini 模型等,运行代码并检查输出,查看模型是否正确理解视频内容并恰当回答问题。 5. 考虑其他因素:了解不同的 AI 技术在教学中的应用,如腾讯的智能体、天工 AI 等,以及大语言模型中的规模定律、统一表示、推理能力等相关原理和技术。
2025-03-13
张翼然:AI 赋能教学,创新引领未来
以下是关于“张翼然:AI 赋能教学,创新引领未来”的相关内容: 张翼然是湖南农业大学教育技术系副教授,拥有国家教学成果奖,国家级和省级精品在线课程,是“人工智能+教育”实践专家,长期关注新技术及教育应用,探讨 AI 赋能教师的具体方法。 主要内容包括: 1. AI 从工具到助手赋能教师提升效率与能力。 2. AI 与教育场景融合拓展教学边界与创新场景。 3. AI 与人类智能的共生放大学生思考力塑造深度学习能力: 核心能力:AI 通过动态反馈和开放性问题引导学生超越记忆与理解,进入分析、评价与创造等高阶思维层次,拓展思维边界。 关键价值:帮助学生超越低阶任务,专注于深度学习与复杂问题的解决,激发学生的多维度思考与系统化认知。 案例:AI 介入教学后,客观上降低了学生使用知识的“门槛”,生成课程内容的问题链问题,用问题驱动学生的深度学习。 4. AIGC 教育革命:技术原理与课堂实践。 5. 大语言模型的教学潜力:交流技巧与心得。 6. 一线教师的 AI 需求与高效工具推荐。 7. AI 赋能课堂的核心逻辑:从理论到应用。 8. 解码 AI 教学案例:创新与实践。 具体的核心能力和关键价值还包括: 1. 个性化支持与学习自主性: 核心能力:AI 通过数据分析与即时反馈,提供定制化学习路径和资源,帮助学生根据自身兴趣、需求和能力规划学习。同时,赋予学生更多的学习自主权,支持自定步调学习。 关键价值:实现精准教学,关注每个学生的个体需求,帮助学生在学习过程中培养自主决策能力。 2. 群智协同与知识动态生成: 核心能力:AI 通过多主体协作框架(师生、生生、人与 AI),支持知识的动态生成与实时共享,实现课堂中知识的灵活建构与动态更新。 关键价值:知识不再静态存在,而是在交互中动态生成,多主体协同促进创新解决方案的敏捷生成。 此外,还提到了一些实践中的观点,如掌握工具只是起点,将其转化为教学实践的智慧才是目标,要共创共享、互学互鉴,不止于工具操作,更重要的是将 AI 与教育理念深度融合,打造真正有温度的智慧课堂。
2025-03-11
用于课堂教学
以下是关于 AI 用于课堂教学的相关内容: Character.ai: 愿景是让每个人都能获得深度个性化超级智能,帮助完成各种任务。 授课教师、游戏玩家、情感伴侣等服务都可被 AI 重构。 借助大型语言模型,人工智能生成的角色可作为数字教师,如牛顿授课《牛顿运动定律》,白居易讲述《长恨歌》背后的故事。 数字教师能实现一对一辅导,不受情绪左右,提高教育效率和质量,让学生更生动地了解历史文化,增强学习兴趣。 个性化数字教师可根据学生情况提供定制化学习计划和资源,实现因材施教,缓解教育资源不平等问题。 人工智能生成的虚拟角色也可作为数字陪伴,促进儿童成长和提高学习成绩。 获取信息和学习东西: 人工智能可用于帮助教育,包括自学学习。 可要求人工智能解释概念,但因可能产生幻觉,关键数据需根据其他来源仔细检查。 北京市新英才学校的探索: 跨学科项目老师带学生用 AIGC 做学校地图桌游。 英语老师在 AIGC 帮助下备课和授课。 生物和信息科技老师合作带学生用训练 AI 模型识别植物。 数字与科学中心 EdTech 跨学科小组组长魏一然深入参与,学校领导层重视,给予自由空间,目前处于探索初级阶段,已有一定经验和成果。但学生对 AIGC 的认知和理解差异大。
2025-03-05
教师如何用ai提升教学效率
以下是教师利用 AI 提升教学效率的一些方式: 1. 利用多文体智能作文批改评分工具,如 BigModel 智谱 AI 大模型开放平台。大模型能凭借其数据处理能力和应用潜力,为教师提供精确的学生需求洞察,帮助教师量身打造学习方案,提高教学效果和工作效率。 2. 借助 Character.ai 平台,让历史人物作为数字教师为学生授课,实现一对一辅导,提高学生参与感,生动地传授知识,还能根据学生情况提供定制化学习计划和资源,缓解教育资源不平等问题。 3. 使用阅读备课小助手,如在 flowgpt 上传的相关工具,极大缩短教学准备时间。例如,以前准备教研素材和制作 PPT 可能需要一天到一天半,现在可缩短至 1 2 小时。它能根据输入的阅读文章,按要求生成教学目标、词汇列表、段落分析、阅读理解题目和泛读文章等,还能实现一键课程目标设计、制作词汇练习、生成段落结构、生成泛读练习、生成口语输出活动和回答模板等功能。
2025-03-03
我是一名高中物理教师,怎样才能得到ai最大化的帮助
以下是一些高中物理教师可能获得 AI 最大化帮助的途径: 1. 利用 AI 提供代码帮助,例如在使用特定计算语言(如 Wolfram 语言)表达教学内容时,从非正式概念转变为明确的计算语言。 2. 参考关于教师使用 AI 的小技巧,例如在生成教学相关的各种材料(如教案、课程计划、大单元教学计划等)时,借助 AI 提高效率和质量。 3. 探索人机智慧学习协作框架,以更好地将 AI 融入教学过程。 但需要注意的是,目前关于 AI 在科学领域的文献研究还不够系统,其在教学中的应用也有待进一步探索和完善。
2025-02-13
如何创建一个含有物理试题库且能分析试题、命制试题和组卷的的智能体
要创建一个含有物理试题库且能分析试题、命制试题和组卷的智能体,您可以参考以下步骤: 1. 阿里云百炼: 访问百炼控制台中“我的应用”,单击新增应用,在智能体应用页签,单击直接创建。如果您之前已创建过应用,则单击右上角的新增应用。控制台页面链接:https://bailian.console.aliyun.com/?spm=5176.29619931.J__Z58Z6CX7MY__Ll8p1ZOR.1.2f3e59fciQnmL7/home 进入智能体应用管理界面后,选择大模型并进行参数配置。您可以参考相关图示,单击设置,并在模型选择的下拉菜单中选择模型,比如通义千问Max。您可以根据需求进行模型参数的配置。 选择大模型之后,您就在百炼创建完成了一个智能体应用。您可以输入问题进行测试。 2. 智谱BigModel: 注册智谱Tokens:智谱AI开放平台:https://bigmodel.cn/ 参与课程至少需要有token体验资源包,获取资源包的方式有:新注册用户,注册即送2000万Tokens;充值/购买多种模型的低价福利资源包,直接充值现金,所有模型可适用:https://open.bigmodel.cn/finance/pay ;语言资源包:免费GLM4Flash语言模型/ ;所有资源包购买地址:https://bigmodel.cn/finance/resourcepack ;共学营报名赠送资源包。 先去【财务台】左侧的【资源包管理】看看自己的资源包,本次项目会使用到的有GLM4、GLM4VPlus、CogVideoX、CogView3Plus模型。 进入智能体中心我的智能体,开始创建智能体。 3. Coze智能体: 知识库: 本次创建知识库使用手动清洗数据,上节课程是自动清洗数据:,自动清洗数据会出现目前数据不准的情况,本节视频就尝试使用手动清洗数据,提高数据的准确性。 在线知识库:点击创建知识库,创建一个画小二课程的FAQ知识库。知识库的飞书在线文档,其中每个问题和答案以分割。选择飞书文档,选择自定义的自定义,输入,然后他就将飞书的文档内容以区分开来,这里可以点击编辑修改和删除。点击添加Bot,添加好可以在调试区测试效果。 本地文档:本地word文件,注意如何拆分内容,提高训练数据准确度,将海报的内容训练的知识库里面。画小二这个课程80节课程,分为了11个章节,不能一股脑全部放进去训练。正确的方法,首先将11章的大的章节名称内容放进来,章节内详细内容格式按固定方式进行人工标注和处理,然后选择创建知识库自定义清洗数据。 发布应用:点击发布,确保在Bot商店中能够搜到。
2025-02-10
初中物理教师如何将AI辅助教学
初中物理教师可以通过以下方式将 AI 辅助教学: 1. 学情分析与作业测评:利用基于平台数据的学情智能分析工具,实现精准教育。例如,让 AI 生成作业题目并优化题目质量与难度,对主观题进行辅助批改。 2. 课程规划:借助像沃顿商学院提供的提示词库,将自己视为教学助理,明确学习目标,细化希望学生思考和练习的内容,预判常见难点并帮助克服,详细说明教学任务,描述优秀学习表现,运用提问和检查理解的方式评估学习效果,合理安排讲解、示范、练习、复习等环节。 3. 创新教学方法:可以像初中数学老师朱力老师那样,将生活中的实际案例,如巴以冲突、泰坦尼克号的史料等,借助 AI 转化为与物理相关的教学内容,让学生从生活中学习物理。 4. 提示词工程:注重提示词的逻辑,将复杂任务拆分成科学合理的步骤,让前一步的结果成为后一步的基础,且要确保步骤能打印出来,以便影响后续预测结果。例如,让智谱清言出 20 道物理选择题,配上参考答案和解析,从中挑选可用的题目。
2025-02-06
为什么2024年诺贝尔物理学奖颁发给了Hinton
2024 年诺贝尔物理学奖颁发给了 Hinton(杰弗里·埃弗里斯特·辛顿),原因是“以表彰他们利用人工神经网络进行机器学习的奠基性发现和发明”。 Hinton 出生于 1947 年 12 月 6 日的英国温布尔登。他的职业生涯丰富: 1970 年,获得剑桥大学实验心理学学士学位。 1976 年—1978 年,担任苏塞克斯大学认知科学研究项目研究员。 1978 年,获得爱丁堡大学人工智能学博士学位。 1978 年—1980 年,担任加州大学圣地亚哥分校认知科学系访问学者。 1980 年—1982 年,担任英国剑桥 MRC 应用心理学部科学管理人员。 1982 年—1987 年,历任卡内基梅隆大学计算机科学系助理教授、副教授。 1987 年—1998 年,担任多伦多大学计算机科学系教授。 1996 年,当选为加拿大皇家学会院士。 1998 年,当选为英国皇家学会院士。 1998 年—2001 年,担任伦敦大学学院盖茨比计算神经科学部创始主任。 2001 年—2014 年,担任多伦多大学计算机科学系教授。 2003 年,当选为认知科学学会会士。 2013 年—2016 年,担任谷歌杰出研究员。 2016 年—2023 年,担任谷歌副总裁兼工程研究员。 2023 年,从谷歌辞职。 2023 年,当选为美国国家科学院院士。 Hinton 是反向传播算法和对比散度算法的发明人之一,也是深度学习的积极推动者,被誉为“深度学习教父”。他曾花了小半个世纪的时间开发神经网络,让机器拥有了深度学习的能力。
2024-10-29
请问是否有AI赋能企业的相关内容推荐
以下是关于 AI 赋能企业的相关内容: 企业可以涉及具身智能、3D 眼镜、AI 绘本、AI 图书、学习机、飞书的多维表格、蚂蚁的智能体、Coze 的智能体、Zeabur 等云平台、0 编码平台、大模型(如通义、智谱、kimi、deepseek 等)、编程辅助、文生图(如可灵、即梦等)、推荐咖啡奶茶等 AI 调配(需相应资质)。 企业权益包括学校大屏幕广告(时长可为 1 周或 1 个月的 PA 屏)、开幕式露出、摊位本身的宣传、其他露出(如直播等)、工作坊场(可能是 500 人中的部分人报名,深度参与其中,尽量不是卖东西,应用实操,如 AI 辅助编程,每个人做一个专属自己的一站式工作台、工具箱,针对典型的教学教研过程做尝试)、圆桌会论坛之类、真实案例收集反馈等,让大模型厂家的诉求、半透明的 chatbot 会话,有二维码引流等。 法律法规方面,《促进创新的人工智能监管方法》提到要使创新者更容易适应监管环境,如建立多监管机构的 AI 沙盒等,并要开展教育和提高意识的活动,包括为企业提供指导、提高消费者和公众的意识等。 张翼然的相关研究中提到了 AI 赋能教学的一些内容,但未直接涉及 AI 赋能企业。
2025-03-15
Java相关的AI
以下是关于 Java 相关的 AI 的一些信息: 1. 利用固定格式文档结合 AI 进行代码开发的可行性分析:建议优化方面,要强调组员主观能动性,让他们自主设计,组长负责引导和经验分享。文档并非唯一最佳方式,可尝试用简短描述或 Prompt 辅助代码生成。经验分享方面,在 AI 编程中,设计非常重要,模块化低耦合设计和清晰的上下文对代码生成效果尤为关键。参考链接: 2. 后端 Java 程序员转向 LLM 方向的行动建议:借助 AI 编程(如 Cursor),熟悉 LLM 原理,探索复杂 Prompt 和定制化规则。开展 LLM 相关的 Side Project(如翻译工具、AI 对话应用等),通过实践快速掌握技能。将 AI 当老师,边做边学,获取即时反馈,持续提升。核心建议是行动起来,找到正反馈,坚持使用 AI 辅助编程。参考链接:
2025-03-14
如何搭建一个你这样的知识库智能问答机器人,有相关的流程教程吗?
搭建一个知识库智能问答机器人通常包括以下流程: 1. 基于 RAG 机制: RAG 机制全称为“检索增强生成”,是一种结合检索和生成的自然语言处理技术。它先从大型数据集中检索与问题相关的信息,再利用这些信息生成回答。 要实现知识库问答功能,需创建包含大量文章和资料的知识库,例如有关 AI 启蒙和信息来源的知识库,并通过手工录入方式上传文章内容。 2. 利用 Coze 搭建: 收集知识:确认知识库支持的数据类型,通过企业或个人沉淀的 Word、PDF 等文档、云文档(通过链接访问)、互联网公开内容(可安装 Coze 提供的插件采集)等方式收集。 创建知识库。 创建数据库用以存储每次的问答。 创建工作流: 思考整个流程,包括用户输入问题、大模型通过知识库搜索答案、大模型根据知识库内容生成答案、数据库存储用户问题和答案、将答案展示给用户。 Start 节点:每个工作流默认都有的节点,是工作流的开始,可定义输入变量,如 question,由 Bot 从外部获取信息传递过来。 知识库节点:输入为用户的查询 Query,输出为从知识库中查询出来的匹配片段。注意查询策略,如混合查询、语义查询、全文索引等概念。 变量节点:具有设置变量给 Bot 和从 Bot 中获取变量的能力。 编写 Bot 的提示词。 预览调试与发布。 海外官方文档:https://www.coze.com/docs/zh_cn/knowledge.html 国内官方文档:https://www.coze.cn/docs/guides/use_knowledge
2025-03-14
我想跟大概40岁左右的科研从业者科普人工智能和大模型的相关知识,挑选合适的内容作为提纲。
以下是为您挑选的向 40 岁左右科研从业者科普人工智能和大模型的提纲内容: 一、AI 大模型的基本概念 1. 生成式 AI 生成的内容称为 AIGC 2. 相关技术名词 AI:人工智能 机器学习:电脑找规律学习,包括监督学习、无监督学习、强化学习 监督学习:有标签的训练数据,学习输入和输出之间的映射关系,包括分类和回归 无监督学习:学习的数据没有标签,算法自主发现规律,经典任务如聚类 强化学习:从反馈里学习,最大化奖励或最小化损失,类似训小狗 深度学习:参照人脑有神经网络和神经元,因层数多称为深度,神经网络可用于多种学习方式 生成式 AI:可以生成文本、图片、音频、视频等内容形式 LLM:大语言模型,生成图像的扩散模型不是大语言模型,大语言模型的生成只是处理任务之一,如谷歌的 BERT 模型可用于语义理解 二、AI 大模型的技术里程碑 1. 2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出 Transformer 模型,完全基于自注意力机制处理序列数据,不依赖循环神经网络或卷积神经网络 三、AI 模型及相关进展 1. 包括视频生成模型、相关论文,以及 AI 在诺奖和蛋白质研究领域的应用等 2. 人工智能发展历程:从图灵测试、早期的图灵机器人和 ELISA,到 IBM 的语音控制打印机、完全由人工智能创作的小说、微软的同声传译系统,再到 OpenAI 发布 ChatGPT 模型,经历了萌芽、积累沉淀到如今大模型和多模态模型百花齐放的阶段 3. 大模型的基石:由数据、算法、算力构成,算法有技术架构的迭代,如英伟达的显卡辅助模型训练,数据质量对生成理想的大模型至关重要 4. 针对弱智 8 的问题对大模型进行测试,开展让大模型回复问题并找出真人回复的活动,且国内大模型的回答能力有很大改进 5. 大语言模型的特点:早期回复缺乏情感,如今有所改进,后续将体验几个大模型的回复场景
2025-03-13
有没有使用AI炒股的相关内容
以下是关于使用 AI 炒股的相关内容: 1. Stocked AI 是一个投资服务,提供每日股票推荐。其推荐由机器学习模型生成,使用人工智能预测下一天的股票收盘价。 2. 博主林亦 LYi 的《AI 炒股?我开了一家员工全是 AI 的公司,自动帮我炒股》在某种程度上实现了多 Agent 协作的能力。 3. 有摊位提出“AI+交易:来定制专属于你的私人高级交易顾问吧!”的思路,期望借助 AI 分析行情,提高资金使用效率。 目前 AI Agent 应用大多集中在 2B 场景,面向个人消费者的产品较少。一方面高度智能化的 Agent 能力需要打磨,概念落地还有距离;另一方面 AI 和娱乐消费诉求的结合几乎没有,其主要带来的是生产方式变革和效率变革。个人消费者方向,目前只看到“私人助理”场景。
2025-03-13
coze工作流的相关教程。要求从入门到实操的最新资料
以下是关于 Coze 工作流从入门到实操的相关资料: 一、一泽 Eze 的教程 Step 1:制定任务的关键方法 1. 设计每个子任务的执行方法 阅读理解小作业:基于英文原文,精心策划 3 道符合 CET4 难度的阅读理解题目。每道题均提供 A、B、C、D 四个选项,正确答案所在选项顺序随机,题目和选项均以英文呈现。题目的参考格式如下: 1) A. B. C. D. 参考答案:针对 3 道题目,生成题目答案。预期格式如下: 1) 答案: 2) 答案: 3) 答案: 英文音频:根据原文,利用 TTS 技术朗读全文 全文对照精读:根据原文,按照以下格式,分段完成全文精读结果的输出: 音标: 中文释义: 英文例句: 例句翻译: 二、大圣的教程 二、Coze 使用教程 1. 工作流AI Agent 的内功心法 节点:工作流是由多个节点构成,节点是组成工作流的基本单元。节点的本质就是一个包含输入和输出的函数。 Coze 平台支持的节点类型: LLM(大语言模型):使用输入参数和提示词生成处理结果。 Code(代码):通过 IDE 编写代码处理输入参数,并返回输出值。 Knowledage(知识库):根据输入参数从关联知识库中召回数据,并返回。 Condition(条件判断):ifelse 逻辑节点,用于设计工作流内的分支流程,根据设置条件运行相应的分支。 Variable(获取变量):从 Bot 中获取变量作为参数在工作流中使用。 Database(数据库):在工作流中使用提前配置在 Bot 数据库中的数据。 2. 创建和使用工作流 这一块官方有现成的教程参考: 海外参考文档:https://www.coze.com/docs/zh_cn/use_workflow.html 国内参考文档:https://www.coze.cn/docs/guides/use_workflow 国内版本还提供了一些示例,学习工作流强烈建议大家跟着实操一遍: 搜索新闻:https://www.coze.cn/docs/guides/workflow_search_news 使用 LLM 处理问题:https://www.coze.cn/docs/guides/workflow_use_llm 生成随机数:https://www.coze.cn/docs/guides/workflow_use_code 搜索并获取第一个链接的内容:https://www.coze.cn/docs/guides/workflow_get_content 识别用户意图:https://www.coze.cn/docs/guides/workflow_user_intent 三、蓝衣剑客的教程 三、Coze 简介 1. 工作流 在典型应用场景中,入门级场景可能仅添加一个节点来构建简单工作流。例如,使用获取新闻插件构建一个获取新闻列表的工作流;使用大模型节点接收并处理用户问题等。 更进阶的场景则通过多个节点组合构建逻辑较复杂的工作流。例如,在搜索并获取指定信息详情的场景中,先通过插件能力进行关键词搜索、然后通过代码节点过滤指定信息、最后通过插件能力获取信息详情;或者在通过条件判断识别用户意图的场景中,通过大模型节点处理用户消息,并将消息分类后通过条件节点分别处理不同类型的消息。这些详细配置教程提供了实际操作指南以帮助理解和应用各种功能。
2025-03-12