Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

想在comfyui搭建一个音频节奏生成ai抽象粒子视觉效果的工作流,应该使用哪些模型节点?如何搭建?

Answer

在 ComfyUI 搭建音频节奏生成 AI 抽象粒子视觉效果的工作流,您可以参考以下内容:

  1. 大模型节点:
    • 您可以根据自己的风格选择不同的大模型,推荐使用:
      • AWPainting,链接:https://civitai.com/models/84476/awpainting
      • primemixanything,链接:https://civitai.com/models/75089/primemixanything
      • xxmix9realistic v40,链接:https://civitai.com/models/47274/xxmix9realistic
  2. 关键词节点:
    • 可以使用工作流内的关键词,也可以输入自己的正负面关键词。
  3. Lora 节点:
    • 可根据自己风格搭配进行选择,如需多个 Lora 可进行串联。
  4. ControlNet 节点:
    • 选用 qrcode_monster V2 版本,相比于 V1 版本 V2 版本识别性更强。下载需要魔法,没有魔法的同学文末领取模型。下载链接:https://huggingface.co/monster-labs/control_v1p_sd15_qrcode_monster/tree/main/v2
  5. 采样器节点:
    • 所有生图的老演员了,Step 要选择高步数,35 - 50 即可。采样器默认的 euler a /dpmpp - 2m - sde

基础节点介绍:

  1. Checkpoint 基础模型(大模型/底模型)节点:
    • 属于预调模型,决定了 AI 图片的主要风格。输出连接:Model 连接 KSampler 采样器的 Model;Clip 连接终止层数的 Clip;Vae 连接 VaeDecode 的 Vae。
  2. Clip 终止层数(clip skip)节点:
    • ComfyUI 的是负数的,webUI 的是正数。输出入点:Clip 连接 Checkpoint 基础模型的 Clip。输出节点:Clip 连接 Prompt 节点的 Clip。正向提示词和负面提示词各一个。
  3. Prompt 节点:
    • 输出入点:Clip 连接 Clip 终止层数节点的 Clip。输出节点:正向提示词和负面提示词各连接一个。
  4. KSampler 采样器:
    • 输出入点:Model 连接 Checkpoint 基础模型;Positive 连接正向提示词;negative 连接负面提示词;latent_imageL 连接 Empty Latent Image 潜空间图像的 Latent。输出节点:Latent 连接一个 VAE 的 Samples。
  5. Empty Latent Image 潜空间图像:
    • 设置出图尺寸,例如 1024*1024。输出入点:Latent 连接 KSampler 采样器的 Latent。

此外,还有一些根据插件整理的工作流,您可以先随便选择一个“文生图”中的“基础+自定 VAE”。选好之后,点击“替换节点树”。界面中就会出现已经连接好的工作流节点(如果没看到,就按一下 home 键),包括大模型、clip、vae、正反提示词、尺寸,采样器等所有在 webUI 中熟悉的参数,而且全都是中文面板。打开模型节点,可以看到 webUI 中的模型全部都在。这次先不更改参数,点击“运行节点树”,直接生成。此时会提醒您是否启用 ComfyUI,点击确定即可。等待一会,就能在最后一个节点预览图中看到生成的图片。点击这里就可以打开后台,看到出图时间。

Content generated by AI large model, please carefully verify (powered by aily)

References

只需2步小白也能制作自己专属的艺术二维码 副本

打开ComfyUI导入我的工作流(本工作流在文末即可扫码领取)接下来给大家介绍一下本次工作流所用到的节点(基础文生图)[heading2]1、大模型节点:[content]大模型根据自己的风格可以选择不同的大模型,推荐使用:AWPainting链接:https://civitai.com/models/84476/awpaintingprimemixanything链接:https://civitai.com/models/75089/primemixanythingxxmix9realistic v40链接:https://civitai.com/models/47274/xxmix9realistic[heading2]2、关键词节点:[content]用我工作流内的关键词也可以输入自己的正负面关键词,[heading2]3、Lora节点:[content]Lora可根据自己风格搭配进行选择,如需多个Lora可进行串联即可。[heading2]4、ControlNet节点:[content]选用的qrcode_monster V2版本,相比于V1版本V2版本识别性更强了。(下载需要魔法,没有魔法的同学文末领取模型)下载链接:https://huggingface.co/monster-labs/control_v1p_sd15_qrcode_monster/tree/main/v2[heading2]5、采样器节点:[content]所有生图的老演员了,Step要选择高步数,35-50即可。采样器默认的euler a /dpmpp-2m-sde

5、基础工作流搭建 副本

所有模型节点的左边为节点输入,右边为节点输出。[heading2]Checkpoint基础模型(大模型/底模型)节点:[content]属于预调模型,它决定了AI图片的主要风格。输出连接:Model连接KSampler采样器的Mdel;Clip连接终止层数的Clip;Vae连接VaeDecode的Vae。[heading2]Clip终止层数(clip skip)节点[content]comfyUI的是负数的,webUI的是正数。输出入点:Clip连接Checkpoint基础模型的Clip。输出节点:Clip连接Prompt节点的Clip。正向提示词和负面提示词各一个。[heading2]Prompt节点[content]输出入点:Clip连接Clip终止层数节点的Clip。输出节点:正向提示词和负面提示词各连接一个。[heading2]KSampler采样器[content]输出入点:Model连接Checkpoint基础模型;Positive连接正向提示词;negative连接负面提示词;latent_imageL连接Empty Latent Image潜空间图像的Latent。输出节点:Latent连接一个VAE的Samples。[heading2]Empty Latent Image潜空间图像[content]设置出图尺寸,我这里设置的1024*1024。输出入点:Latent连接KSampler采样器的Latent。

【ComfyUI】Blender+Stable Diffusion!少年啊,这盛世如你所愿!(附中文汉化插件)

还有一些根据插件整理的工作流,可谓是相当丰富了。我们就先随便选择一个“文生图”中的“基础+自定VAE”吧。选好之后,点击“替换节点树”。界面中就出现了已经连接好的工作流节点(如果没看到,就按一下home键),包括大模型、clip、vae、正反提示词、尺寸,采样器等所有我们在webUI中都已经熟悉的参数,而且全都是中文面板。打开模型节点,可以看到我们webUI中的模型全部都在。这个地方不知道怎么操作的朋友,可以看我的上一篇[【ComfyUI】本地部署ComfyUI上手指南,我就喜欢连连看](http://mp.weixin.qq.com/s?__biz=MzkzMzIwMDgxMQ==&mid=2247487895&idx=1&sn=aa21eede16dfe4bde7e0e93e353f7357&chksm=c2514753f526ce451175f654a93f48b526fc6de3e3b1564b218db41f7e3f99df5a84bb887043&scene=21#wechat_redirect)。我们这次先不更改参数,点击“运行节点树”,直接生成。此时会提醒你是否启用ComfyUI,点击确定即可。等待一会,就能在最后一个节点预览图中看到生成的图片了。点击这里就可以打开后台,看到出图时间,用时为2.15s。

Others are asking
comfyui工作流搭建基础
以下是 ComfyUI 工作流搭建的基础步骤: 1. 准备加载大模型的节点(load 节点):在工作区鼠标右键点击,选择“Add Node”,然后依次选择“loaders”和“Load Checkpoint”,接着选择对应的模型,点击“Ckpt_name”下拉选择对应的模型。 2. 加载 Conditioning(条件):在工作区鼠标右键点击,选择“Add Node”,然后选择“Conditioning”,再选择“CLIP TEXT Encode”。这里需要输入正向和反向提示词,相同节点可使用快捷键 Ctrl+C 和 Ctrl+V 复制粘贴。 3. 添加采样器:这部分和 WEB_UI 的设置类似,包括采样器、迭代步数、CFG 等。需要注意的是,seed 值只有固定、随机、每次增加、每次减少这四个选项,采样器和调度器是分开的。 4. 加载 Latent:可以设置图片的宽、高和批次,设置方式与 WEB_UI 相同。 5. 加载 VAE:操作与 WEB_UI 加载 VAE 相同。 6. 加载保存图片的节点。 7. 串联节点:节点分为起始节点、最终输出节点和过程执行节点。首先,checkpoint 加载器中模型选择好可直接使用,CLIP 对应链接需要的两个条件(正向提示词/负向提示词),VAE 直接连接对应的 VAE。然后将正向提示词、负向提示词链接到对应的采样器节点,latent 直接链接空 Latent。串联完毕后即得到最简单的 ComfyUI 工作流。 此外,ComfyUI 共学快闪的飞书学习群中有众多关于 ComfyUI 的学习内容,如王蓉的基础搭建和转绘、唯有葵花向日晴的基础教程、工作流开发和实际应用场景等。
2025-03-15
如何搭建一个你这样的知识库智能问答机器人,有相关的流程教程吗?
搭建一个知识库智能问答机器人通常包括以下流程: 1. 基于 RAG 机制: RAG 机制全称为“检索增强生成”,是一种结合检索和生成的自然语言处理技术。它先从大型数据集中检索与问题相关的信息,再利用这些信息生成回答。 要实现知识库问答功能,需创建包含大量文章和资料的知识库,例如有关 AI 启蒙和信息来源的知识库,并通过手工录入方式上传文章内容。 2. 利用 Coze 搭建: 收集知识:确认知识库支持的数据类型,通过企业或个人沉淀的 Word、PDF 等文档、云文档(通过链接访问)、互联网公开内容(可安装 Coze 提供的插件采集)等方式收集。 创建知识库。 创建数据库用以存储每次的问答。 创建工作流: 思考整个流程,包括用户输入问题、大模型通过知识库搜索答案、大模型根据知识库内容生成答案、数据库存储用户问题和答案、将答案展示给用户。 Start 节点:每个工作流默认都有的节点,是工作流的开始,可定义输入变量,如 question,由 Bot 从外部获取信息传递过来。 知识库节点:输入为用户的查询 Query,输出为从知识库中查询出来的匹配片段。注意查询策略,如混合查询、语义查询、全文索引等概念。 变量节点:具有设置变量给 Bot 和从 Bot 中获取变量的能力。 编写 Bot 的提示词。 预览调试与发布。 海外官方文档:https://www.coze.com/docs/zh_cn/knowledge.html 国内官方文档:https://www.coze.cn/docs/guides/use_knowledge
2025-03-14
学习智能体搭建应该从哪里开始?
学习智能体搭建可以从以下几个方面开始: 1. 利用相关平台:例如 Coze、Dify 等 AI 智能体编排平台,它们降低了制作智能体的门槛。 2. 输入人设等信息:创建智能体时,输入相关人设等基础信息,并配置相关工作流。 3. 体验常见工具:对于没有编程基础但对 AI 有一定概念的小白,可以从工具入门篇开始,如 Agent 工具 小白的 Coze 之旅。 4. 参考优秀案例:可以获取现成好用的 Prompt 案例,直接复制、粘贴使用。 5. 了解相关教程:如阅读等详细讲解搭建步骤的文章。
2025-03-13
如何做本地知识库的搭建
以下是关于本地知识库搭建的详细步骤和相关知识: 一、RAG 技术 利用大模型的能力搭建知识库本身就是一个 RAG 技术的应用。在进行本地知识库的搭建实操之前,需要先对 RAG 有大概的了解。 大模型的训练数据有截止日期,当需要依靠不包含在训练集中的数据时,主要通过检索增强生成 RAG(Retrieval Augmented Generation)来实现。这个过程包括以下 5 个步骤: 1. 文档加载:从多种不同来源加载文档,LangChain 提供了 100 多种不同的文档加载器,包括 PDF 在内的非结构化数据、SQL 在内的结构化数据,以及 Python、Java 之类的代码等。 2. 文本分割:文本分割器把 Documents 切分为指定大小的块,称为“文档块”或者“文档片”。 3. 存储:涉及将切分好的文档块进行嵌入转换成向量的形式,并将 Embedding 后的向量数据存储到向量数据库。 4. 检索:通过某种检索算法找到与输入问题相似的嵌入片。 5. 输出:把问题以及检索出来的嵌入片一起提交给 LLM,LLM 会通过问题和检索出来的提示生成更加合理的答案。 二、本地知识库进阶 如果想要对知识库进行更加灵活的掌控,需要一个额外的软件:AnythingLLM。这个软件包含了所有 Open WebUI 的能力,并且额外支持了以下能力: 1. 选择文本嵌入模型。 2. 选择向量数据库。 安装地址:https://useanything.com/download 。安装完成后,进入配置页面,主要分为三步: 1. 第一步:选择大模型。 2. 第二步:选择文本嵌入模型。 3. 第三步:选择向量数据库。 在 AnythingLLM 中有一个 Workspace 的概念,可以创建自己独有的 Workspace 跟其他的项目数据进行隔离。搭建过程如下: 1. 首先创建一个工作空间。 2. 上传文档并且在工作空间中进行文本嵌入。 3. 选择对话模式。AnythingLLM 提供了两种对话模式: Chat 模式:大模型会根据自己的训练数据和上传的文档数据综合给出答案。 Query 模式:大模型仅仅会依靠文档中的数据给出答案。 配置完成之后,就可以跟大模型进行对话了。 三、硬件要求 运行大模型需要很高的机器配置,个人玩家大多负担不起。生成文字大模型的最低配置为 8G RAM + 4G VRAM,建议配置为 16G RAM + 8G VRAM,理想配置为 32G RAM + 24G VRAM(如果要跑 GPT3.5 差不多性能的大模型)。生成图片大模型(比如跑 SD)的最低配置为 16G RAM + 4G VRAM,建议配置为 32G RAM + 12G VRAM。生成音频大模型的最低配置为 8G VRAM。 如果想要私滑的体验知识库,可以参考文章: 。
2025-03-13
通义灵码搭建微信小程序
以下是关于通义灵码搭建微信小程序的相关内容: 1. 项目流程 先形成项目需求文档,与 composer 沟通确认需求细节并查看对应文档。 根据需求文档整理对应模块,进行功能设计模块文档设计,包括明确需求、UI 和技术(前后端实现途径)、测试用例等,观看确认和完善,以了解项目技术实现和执行方式。 按照模块任务写代码,并将代码文件和更改记录写在对应代码说明文档中,同时做好代码注解。在功能设计技术文档时要仔细,及时更改 cursor 写得不明确的地方,每个功能块开发完用测试用例跑一遍。 2. 前端开发 一开始用 cursor 生成的小程序简陋,添加背景元素(天使恶魔图片)和画框时,需考虑自适应、字体清晰等问题,由于大模型的限制,在理解和实现某些需求上存在困难,如镶在画里滑动、自定义滑动感觉等。 意图分析页面要注重信息展示,包括排版和整体风格,大模型在理解白色遮罩对文字展现的影响、更好的视觉呈现方案等方面存在不足。 生成海报时,要处理意图分析字数过长的显示和行数限制,以及加上小程序码便于用户分享,大模型在理解这些需求上也有困难。 3. 注册与开发 登录微信公众号首页,选取小程序,用新邮箱绑定注册。 注册验证通过后,填写小程序信息和类目,小程序名称可填写功能名称,头像可网上找或用 midjourney 生成。 回到发布流程页面,点击“普通小程序开发者工具”,在新页面中点击“微信开发者工具”,选择 windows 64 位下载。 相关参考文章:https://mp.weixin.qq.com/s/WkFxMMrlMqv52ce2n0xX6A
2025-03-12
coze搭建
以下是关于 Coze 搭建的相关内容: 搭建证件照应用页面: 创建基础容器,为后续操作做准备。 页面分为上中下三块,顶部为标题,中间有原图、过渡和最终结果,底部为展示区域和表单。 对容器的高度、宽度、排列方向进行设置,对文本组件的字体、颜色、加粗等属性进行调整。 介绍图片组件的本地上传和绑定数据功能,微信截图可能导致上传问题。 页面分为左右两块,左侧展示区域,右侧为表单,左侧还需嵌套容器处理图片和文字展示。 前端页面搭建技巧: 在 DIV10 中选择子容器、复制搭建元素等。 调整表单组件的尺寸、按钮文案和上传文件类型等设置。 业务逻辑流程设计: 阐述了证件照生成的业务逻辑,包括用户上传照片、图片理解、图像生成、智能换脸、背景修改等步骤,还提及了各步骤中的参数设置、提示词调整和测试方法。 页面布局的常见方式与实际操作讲解: 常见的左右、上下布局及嵌套方法,演示如何设置容器实现左右布局、调整大小分割等,强调外层高度设置的重要性。 说明溢出处理方式及内边距影响,建议初学者用固定宽高布局。 介绍换行布局及元素分布设置,用于图片排版。 Coze 应用实战指南: 创建 Coze 应用:点击 Coze 创建,选择应用,选择空白,即可进入 Coze IDE。 搭建业务逻辑:进入 Coze IDE 后,默认显示业务逻辑编辑界面,基于业务逻辑搭建一个工作流。业务逻辑的实现依靠工作流来实现,Coze IDE 内编写工作流与捏 bot 编写工作流的逻辑完全一致,只是入口不同。并给出了大模型节点系统提示词。
2025-03-12
在使用comfyUI制作ai视频时,如何减小频闪
很抱歉,您提供的内容中没有关于在使用 ComfyUI 制作 AI 视频时如何减小频闪的相关信息。建议您检查 ComfyUI 的设置选项,看是否有与视频帧率、显示刷新率相关的设置,适当调整这些参数可能有助于减小频闪。同时,确保您的硬件设备(如显卡、显示器)性能良好且驱动程序为最新版本,也可能对解决频闪问题有所帮助。
2025-03-15
comfyui怎么一键连接节点
要在 ComfyUI 中一键连接节点,可以按照以下步骤进行操作: 1. 了解成对的节点:SetNode 可当成无线发射器,GetNode 可当成无线接收器。一个发射器可以对应多个接收器,但它是定向发射的,不会自动连接。 2. 添加节点的方式:推荐在普通节点上点击右键,找到“添加设置节点”和“添加获取节点”。需注意从输出拉出连线后的查找节点列表里找不到这两个节点。 3. 具体连接操作:将输出连接到“SetNode”节点上,并为其起一个好记的名字。在要连入的节点附近添加“GetNode”节点,选择刚刚起的名字,把这个节点和要输入的部分连接上即可。 此外,ComfyUI 的核心是其节点式界面,节点类型包括输入节点(如文本提示节点、图像输入节点、噪声节点等)、处理节点(如采样器节点、调度器节点等)、输出节点(如图像输出节点)和辅助节点(如批处理节点、图像变换节点等)。用户可以通过拖动节点之间的连接线来构建整个工作流,还可以创建自定义节点来扩展功能,自定义节点安装目录为 D:\\ComfyUI\\custom_nodes。ComfyUI 的界面包括顶部工具栏(包含全局操作和工具)、左侧面板(用于显示节点库)和中央画布(主要工作区域)。
2025-03-13
comfyui教程
以下是一些关于 ComfyUI 的学习教程资源: 1. ComfyUI 官方文档:提供使用手册和安装指南,适合初学者和有经验的用户,可在获取。 2. 优设网:有详细的 ComfyUI 入门教程,适合初学者,介绍了特点、安装方法及生成图像等内容,教程地址是。 3. 知乎:有用户分享了 ComfyUI 的部署教程和使用说明,适合有一定基础并希望进一步了解的用户,可在找到。 4. Bilibili:提供了一系列涵盖从新手入门到精通各个阶段的视频教程,可在查看。 此外,还有以下教程: 1. 一个全面的 ComfyUI 教程:https://www.comflowy.com/zhCN 2. 超有意思的 ComfyUI 教程:https://comfyanonymous.github.io/ComfyUI_tutorial_vn/ ComfyUI 基础教程中 KSampler 部分: KSampler 即采样器,包含以下参数: 1. seed:随机种子,用于控制潜空间的初始噪声,若要重复生成相同图片,需种子和 Prompt 相同。 2. control_after_generate:设置每次生成完图片后 seed 数字的变化规则,有 randomize(随机)、increment(递增 1)、decrement(递减 1)、fixed(固定)。 3. step:采样的步数,一般步数越大效果越好,但与使用的模型和采样器有关。 4. cfg:值一般设置在 6 8 之间较好。 5. sampler_name:可设置采样器算法。 6. scheduler:控制每个步骤中去噪的过程,可选择不同的调度算法。 7. denoise:表示要增加的初始噪声,文生图一般默认设置成 1。 内容由 AI 大模型生成,请仔细甄别。
2025-03-13
我要学ComfyUI,我们有哪些学习资源?
以下是一些学习 ComfyUI 的资源: 1. 网站资源: ComfyUI 官方文档:提供使用手册和安装指南,适合初学者和有经验的用户。网站:https://www.comfyuidoc.com/zh/ 优设网:有详细的入门教程,介绍了 ComfyUI 的特点、安装方法及生成图像等内容。教程地址:https://www.uisdc.com/comfyui3 知乎:有用户分享的部署教程和使用说明,适合有一定基础并希望进一步了解的用户。教程地址:https://zhuanlan.zhihu.com/p/662041596 Bilibili:有一系列涵盖从新手入门到精通各个阶段的视频教程。教程地址:https://www.bilibili.com/video/BV14r4y1d7r8/ 2. 飞书学习群资源: 王蓉🍀🎈Wang Easy 基础搭建和转绘 唯有葵花向日晴 基础教程,工作流开发,实际应用场景 热辣 Huolarr AI 系统课私聊图生视频 咖菲猫咪 基础教程/工作流搭建思路/各版本模型使用的优缺点 傅小瑶 Lucky 如何制作多人转绘视频 云尚 工作流节点搭建思路 FǎFá 热门节点功能,搭建 森林小羊 基本报错解决方式及基础工作流逻辑分析 苏小蕊 基础教程 Sophy 基础课程 蜂老六 装一百个最新常用插件后如何快速解决冲突问题 阿苏 工作流框架设计 aflyrt comfyui 节点设计与开发 老宋&SD 深度解释虚拟环境部署和缺失模型的安装 Liguo 模型训练 啊乐福 基础课程 塵 优秀案例 风信 基础课程➕平面设计应用场景 北南 基础课程 视频工作流框架设计 Damon 基础课程 渔舟 基础课程+工作流搭建思路 乔木船长 工作流 ☘️ 基础教程 ☘ 基础教程 工作流设计+典型案例剖析 麒白掌 工作流搭建 OutSider 风格迁移 吴鹏 基础+工作流搭建 拾光 工作流基础搭建从入门到精通 茶浅浅。视频转绘/节点工作流介绍 百废待.新(早睡版)工作流从入门到进阶 电商应用场景 Stuart 风格迁移 红泥小火炉 基础课程 大雨 换背景图 Anna 娜娜° 图生 3D 🎵柒小毓 基础课程 Ting 基础课程 郑个小目标 针对于某个插件的深入讲解 波风若川 报错解决 chen 工作流的研发 朱敏🎈 基础课程,工作流 王卓圻 基础课程 南城 基础课程 Zero one 工作流开发 梓阳 基础课程 蓝牙耍手机 工作流搭建思路 皮皮 Peter 工作流的设计规划和调优逻辑 Jāy Līn 锦鲤 工作流搭建逻辑和原理 K 如何本地部署基础生图参数选择工作流的基本应用 Adai 基础课程 镜生 视频 x 基础教程 梦飞 基础教程 🙋🙋🙋 各个节点讲解和参数含义 戴志伟 基础课程 雪娴_CC 基础课程,从安装开始 Joey 实时转绘工作流 倪星宇 22 换脸换背景实践落地 早点睡觉 CT 优秀案例 三思 基础教程 晓珍 Mr.大狐🏝 报错解决 Duo 多吉~ 基础课程 陈旭 常用节点讲解和简单的节点制作 长风归庭 基础教程+工作流创建 ヘヘ阿甘 采样器原理与优化 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-03-12
comfyUI和webUI的区别
ComfyUI 和 WebUI 的区别主要体现在以下几个方面: ComfyUI: 简介:是一个基于节点流程式的 stable diffusion AI 绘图工具 WebUI,将 stable diffusion 的流程拆分成节点,实现更精准的工作流定制和完善的可复现性。 优势: 对显存要求相对较低,启动速度快,出图速度快。 具有更高的生成自由度。 可以和 WebUI 共享环境和模型。 可以搭建自己的工作流程,可以导出流程并分享给别人,报错时能清晰发现错误所在步骤。 生成的图片拖进后会还原整个工作流程,模型也会选择好。 劣势: 操作门槛高,需要有清晰的逻辑。 生态没有 WebUI 多(常用的都有),但也有一些针对 ComfyUI 开发的有趣插件。 官方链接:从 github 上下载作者部署好环境和依赖的整合包,按照官方文档安装即可:https://github.com/comfyanonymous/ComfyUI 插件推荐: 插件安装管理器:https://github.com/ltdrdata/ComfyUIManager SDXL 风格样式:https://github.com/twri/sdxl_prompt_styler ComfyUI 界面汉化:https://github.com/AIGODLIKE/AIGODLIKECOMFYUITRANSLATION 中文提示词输入:https://github.com/AlekPet/ComfyUI_Custom_Nodes_AlekPet 蟒蛇八卦工具箱:https://github.com/pythongosssss/ComfyUICustomScripts 提示词权重调节器:https://github.com/BlenderNeko/ComfyUI_AD WebUI: 采样器与调度器:在 ComfyUI 中,采样器与调度器分开,而在 WebUI 中的采样方法是把两者合并在一起。ComfyUI 通过采样器+调度器组合的方式与 WebUI 中的一致,一般选择 karras 调度器效果较好。 在插件安装方面,WebUI 有较好的用户界面,安装插件后可直观看到并使用;而 ComfyUI 安装插件后可能看不到,需通过节点连接才能感受到其功能。
2025-03-12
目前有什么ai可以审核文件
目前有以下几种 AI 可以审核文件: 1. AI Review:这是一项功能,可让您查看代码库中的最近更改以捕获任何潜在的错误。您可以单击各个审阅项以查看编辑器中的完整上下文,并与 AI 聊天以获取详细信息。为了让其对您有利,您可以为 AI 提供自定义说明以专注于特定方面,比如性能。目前有几个选项可供选择进行审核,如审查工作状态、审查与主分支的差异、审查上次提交。 2. 在专利审查方面: 专利检索与分类:AI 可以帮助进行高效的专利检索和分类,通过自然语言处理(NLP)和机器学习算法,自动识别和分类专利文献。示例平台如 Google Patents、IBM Watson for IP。 专利分析和评估:AI 可以分析专利文本,评估专利的新颖性和创造性,预测专利的授权可能性。示例平台如 TurboPatent、PatentBot。 自动化专利申请:AI 可以帮助自动生成专利申请文件,减少人工编写和审查时间。示例平台如 Specifio、PatentPal。 专利图像和图表分析:AI 可以分析专利申请中的图像和图表,帮助识别和分类技术内容。示例平台如 Aulive、AIpowered image recognition tools。 3. Midjourney:今天早上 3 小时前 MJ 将测试全新的“外部图像编辑器、图像重纹理化功”能以及下一代 AI 审核系统。图像编辑器允许您从计算机上传图像,然后扩展、裁剪、重绘、添加或修改场景中的元素,还推出了“图像重纹理化模式”。AI 审核系统将从整体上检查您的提示、图像、绘制蒙版以及生成的输出图像。但在第一个发布阶段,这些功能仅开放给已生成至少 10,000 张图像的用户(年度会员可用)以及过去 12 个月内一直是月度订阅用户的用户。
2025-03-15
如何让ai帮我写论文
利用 AI 写论文可以参考以下步骤: 1. 确定论文主题:明确您的研究兴趣和目标,选择一个具有研究价值和创新性的主题。 2. 收集背景资料:使用 AI 工具如学术搜索引擎和文献管理软件来搜集相关的研究文献和资料。 3. 分析和总结信息:利用 AI 文本分析工具来分析收集到的资料,提取关键信息和主要观点。 4. 生成大纲:使用 AI 写作助手生成论文的大纲,包括引言、文献综述、方法论、结果和讨论等部分。 5. 撰写文献综述:利用 AI 工具来帮助撰写文献综述部分,确保内容的准确性和完整性。 6. 构建方法论:根据研究需求,利用 AI 建议的方法和技术来设计研究方法。 7. 数据分析:如果论文涉及数据收集和分析,可以使用 AI 数据分析工具来处理和解释数据。 8. 撰写和编辑:利用 AI 写作工具来撰写论文的各个部分,并进行语法和风格的检查。 9. 生成参考文献:使用 AI 文献管理工具来生成正确的参考文献格式。 10. 审阅和修改:利用 AI 审阅工具来检查论文的逻辑性和一致性,并根据反馈进行修改。 11. 提交前的检查:最后,使用 AI 抄袭检测工具来确保论文的原创性,并进行最后的格式调整。 需要注意的是,AI 工具可以作为辅助,但不能完全替代研究者的专业判断和创造性思维。在使用 AI 进行论文写作时,应保持批判性思维,并确保研究的质量和学术诚信。 另外,在让孩子使用 AI 辅助写作时,可以将任务改成让孩子提交一份他和 AI 共同完成作文的聊天记录。作文需要由 AI 来写,孩子要对 AI 的作文进行点评批改、让 AI 迭代出更好的文章。对话记录里孩子能否说清楚 AI 写的作文哪里好哪里不好、要怎么改(孩子可能还得给 AI 做示范),才是评价的关注点。 还有成功利用 AI 写小说的经验,比如先让 AI 帮助写故事概要和角色背景介绍,并在其基础上按自己的审美略做修改。然后让 AI 以表格的形式输出细节描述,这样做有打破 AI 叙事习惯、便于局部调整、确保内容是具体细节等好处。之后把生成的表格依次复制粘贴,让 AI 照着写文章。但在局部修改时可能会遇到问题,比如 AI 记性不好导致修改不符合预期。
2025-03-15
AI应用开发社区或者微信群
以下是一些与 AI 应用开发相关的社区和微信群信息: 云栖大会 9 月 19 日招募 AI 创作者,包括 AI 艺术创作者、AI 应用开发者(特别是工作流、企业解决方案开发者)、开源社区的活跃成员、有 AI 技术背景的初创企业和工作室。招募渠道包括在线招募(在开源社区平台如 GitHub、Gitee 的项目展示页面发布招募信息,在 AI 技术论坛和设计论坛如 CSDN、简书、知乎等发布招募帖,在微信、QQ 社群内的 AI 开发者群发布信息)和线下招募(在相关行业会议和活动中设置摊位,与高校 AI 实验室或研究机构合作)。招募方式包括报名表单、筛选流程(初步筛选和二次筛选)、确认参展并提供详细参展指导手册。 通往 AGI 之路有飞书和微信交流群。说明:请填写问卷进群,群内会分享最新 AI 信息、社区活动;加入群后欢迎积极分享,飞书群内置 AI 智能机器人可回复任何与 AI 相关的问题。同时欢迎投稿,包括 AI 技术探讨与分析、实践经验与案例分享、行业动态与趋势观察、开发心得与技术教程等。投稿要求原创、严谨、有深度,配图说明更佳,观点明确,结构清晰,建议字数 1500 5000 字,提交后 2 3 工作日反馈,必要时沟通修改建议,优质内容将收录知识库。 加入 AI 编程社开发者社群,可获得更多 AI 编程相关资讯。若二维码过期,公众号后台回复“社群”即可进群。
2025-03-15
现在有能自主抓取股票交易数据的AI吗
目前在信息爆炸的时代,借助 AI 工具可以实现集检索、整合与分析为一体的工作。以 A 股行情问答为例,可构建一个 Bot,当被问及如“XX 股票今天表现怎么样?”“复盘今天的家电板块”等问题时,它能从海量市场数据中找到有价值信息,进行整合分析并提供个性化回复。但需要注意的是,若希望在本地私有化部署,就无法使用某些相关服务。 不过,尚未有明确表明存在能完全自主抓取股票交易数据的 AI 。
2025-03-15
如何学习ai绘画
以下是关于如何学习 AI 绘画的一些指导: 首先,了解 AI 绘画的工作原理很重要。就像学习画画要临摹大师的作品一样,AI 绘画也是通过学习大量的美术风格作品来生成类似风格的作品。以 Stable Diffusion 为例,其大模型就相当于您花四十年学习的绘画风格,您需要选对合适的大模型才能画出符合心意的作品。大模型可以在 C 站(https://civitai.com/)下载,但需要科学上网。 其次,您可以借助一些专业的工具和导师。比如《AI 绘画助手》,它是一位专业且贴心的学习导师,能为新手小白和进阶爱好者提供优质实用的指导。它能将复杂的神经网络等知识用通俗易懂的语言解释清楚,介绍流行的 AI 绘画工具如 DALLE、MidJourney、Stable Diffusion 等的使用步骤和独特之处,传授风格迁移技术、生成对抗网络在图像生成和编辑中的应用以及获取高分辨率精美图像的方法,还能通过丰富的实战案例引领您从零基础起步创作作品,并为您答疑解惑和规划学习路径。 另外,像二师兄这样的学习者的经验也值得借鉴。他从下载安装包和教学视频开始,啃完 SD 的教程并进行炼丹实践,还与小伙伴探讨 AI 变现途径,加入 Prompt battle 社群学习 Midjourney 并打磨文生图提示词。 总之,学习 AI 绘画需要了解原理、选对工具、不断实践和交流学习。
2025-03-15
AI数字人排名
以下是为您整理的部分 AI 数字人的排名情况: 23 年 4 月访问量排名:DID 位列第一,月访问量约 600 多万;Heygen 紧随其后。 23 年 4 月~24 年 3 月月访问量增量排名:vidnoz AI 增长了 598.0 万。 23 年 4 月~24 年 3 月月访问量减量排名:DID 的访问量减少了 490.0 万。 23 年 4 月访问量 Top10 中有 aiwatch.ai 。 2025 年 1 月 ARR100 排名中,数字人类别的 Glambase 排名靠前。 全球高增速 Top50 中,数字人类别的 Artflow ai 排名 38,月访问量 86.1 万,相对 3 月变化 0.307。 需要注意的是,这些排名数据可能会随着时间和市场变化而有所不同。
2025-03-15