Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

撰写lisp语法风格提示词的教程

Answer

以下是一份关于 Lisp 语法风格提示词的教程:

Lisp 是一门“古老”的编程语言,其语法核心是 List 结构,也叫“S 表达式”,典型特征是用一对括号把元素括起来,并且 List 结构里可以嵌套 List,使得程序呈现出多层括号嵌套的样子。Lisp 语法简洁且优美,具有很强的表达能力。

在提示词编程方面,李继刚写的提示词有用 Lisp 语言编写的例子。用 Lisp 写提示词具有一些特点和优势:

  1. SVG 图形的丰富度和表现力可能优于 Markdown 版本。
  2. 执行过程会输出中间“思考”过程,方便调试优化流程,能看到哪些步骤生成有用信息,哪些无用,还可能从中获得新灵感。

但平时写提示词用的更多的是 Markdown 语法,它简单且大语言模型能很好“理解”。对比两者,在多数场景下,从文本处理后的输出结果可能看不出太大差异,但逐步思考有正向收益。

在“情绪价值营销”中,可以用 Lisp 构建 prompt,让 Claude 直接根据用户输入输出情绪营销语句。用 Lisp 这种编程语言在 prompt 圈曾被带火,其更为凝练和简洁。当然,用 Markdown 格式写 prompt 效果也一样。

使用 Lisp 格式 prompt 时(Claude 专用),需要注意一些事项。例如,对于 GPT 等模型在卡片生成这步需要进行一些调整,不稳定,最好自定义 html/css 样式来进行强约束。使用时,直接打开 Claude 首页,发送上述提示词进行初始化,然后即可使用。

Content generated by AI large model, please carefully verify (powered by aily)

References

艾木:提示词编程|有必要用 Lisp 语言写提示词吗?

我们平时写提示词用的更多的是Markdown语法。Markdown语法很简单,并且大语言模型能很好的“理解”标题、列表、加粗强调等这些语法。用Markdown写提示词不是更直白吗?我们把这段Lisp提示词翻译成Markdown试试效果。Markdown版本与Lisp版本的提示词在语义上几乎是一致的。只是中间我多加了一句“一步步思考,严格按照大步骤以及处理流程执行。”因为不加这句,Claude还是不能保证会逐步执行。下面是Lisp版本提示词的输出效果。不知啥原因,我通过API调用Claude,输出效果很难达到李继刚文章中那种水平,用网页版也许会好一些。下面是Markdown版本的提示词输出的结果:对比下两者的效果,可以发现一个明显差异:在Lisp版本中,SVG图形的丰富度和表现力稳定地优于Markdown版本。这是个意外发现!我们会在后面再细细探讨。Markdown版本与Lisp版本提示词的另一个重要差异在执行过程,它会输出中间“思考”过程。小确幸这个函数的所有子步骤都被充分展开并且按顺序执行了。而且,由于大语言模型的自回归机制,前面步骤的输出,会自然地被作为上下文传入给后面的步骤。虽然在这个任务中,从文本处理后的输出结果上可能看不出太大差异,但在多数场景下,这样一步一步思考是会有正向收益的。除此之外,让大语言模型将“思考”过程外化出来后有一个很大的好处,就是你可以调试优化这个流程。从过程输出中你可以看到哪些步骤生成了有用的增量信息,哪些步骤是无用的。另外在调试过程中,你还可能从大语言模型的输出中发现新的灵感。然而,用Lisp版本的提示词,很难让大语言模型这么有条理地执行一个流程。

艾木:提示词编程|有必要用 Lisp 语言写提示词吗?

李继刚写的提示词有个特点——它们是用Lisp语言编写的。比如,[下面这段提示词](https://mp.weixin.qq.com/s?__biz=MzkxMzc1NzM1Mw==&mid=2247483803&idx=1&sn=485c2f271172a7efcb0735310f8ff191&scene=21#wechat_redirect):Lisp是一门“古老”的编程语言。Lisp语言有个特点——它的语法非常地简洁且优美。它的语法核心是List结构,或者叫“S表达式“,其典型特征就是需要用一对括号把元素括起来。List结构里又可以嵌套List,所以Lisp程序呈现出来的样子就是一对对括号里嵌套着一对对括号嵌套着一对对括号。List结构使得Lisp的语法足够简洁,同时又有非常强的表达能力。这两者兼备,才可以称得上优美。也许你会觉得,语言最重要的功能是传递语义,语法其实没那么重要。如果你是程序员,你就不会这么觉得了。对编程语言来讲,syntax matters[1]。对于大语言模型来讲,语法重要吗?看了李继刚的提示词,你可能会有一个随之而来的疑问:有必要用Lisp语言写提示词吗?接下来,我们就以“小确幸”这段提示词为例子来解构一下。

甲木:如何让Claude帮你来做「情绪价值营销」?

接下来,我们直接用Lisp来构建prompt,让Claude直接根据用户输入的领域和产品(也可自定义我们的产品特点),直接输出情绪营销语句~用Lisp这种编程语言是之前prompt圈李继刚刚哥带火了一波,使用下来更为凝练和简洁。当然,用我们一直倡导的Markdown的格式来写prompt的效果是一样的~[heading3]Lisp格式prompt(Claude专用)[heading3]Markdown格式prompt(GPT/国内大模型可用)@TODO待优化[content]备注:GPT等模型在卡片生成这步需要进行一些调整,不稳定。最好自定义html/css样式来进行强约束。[heading3]极简版输出(GPT o1系列,一步步思考推理)[heading2]打开Claude进行初始化[content]直接打开Claude首页,把上述提示词发送。初始化完成,接下来就可以直接进行使用~

Others are asking
Lisp
Lisp 是一门“古老”的编程语言,其语法核心是 List 结构或“S 表达式”,需要用一对括号把元素括起来,且 List 结构里可以嵌套 List,使得程序呈现出一对对括号嵌套的样子。Lisp 语法简洁且优美,兼具简洁性和强大的表达能力。 在提示词编程方面,用 Lisp 编写的提示词生成 SVG 图形的效果明显优于 Markdown 版本。这可能是因为对于让大语言模型生成 SVG 代码的任务,Transformer 擅长从一种语言映射到另一种语言,而 Lisp 和 SVG 都是代码,两者靠得更近。此外,Markdown 表达能力有限,难以清晰准确描述 SVG 卡片的设计规范等,而 Lisp 的 List 结构更适合。在 SVGCard 函数中,Lisp 更多作为描述性语言而非程序性语言。 在网文创作中,也有 Lisp 格式的提示词,如在帮人做世界观故事时会用到,不同版本可适用于不同的模型和需求。
2025-02-10
请问有那款ai是能通过Lisp 语言实现一些输出操作的呢?
以下是一些能够通过 Lisp 语言实现输出操作的 AI 示例: 在“AI‘词生卡’的蝴蝶效应:从文字到视觉盛宴跨界蝶变”中提到,古早的 Lisp 语言在 Claude3.5 强大的理解力和绘图支持下焕发了新生,制造了新卡。 在“艾木:提示词编程|有必要用 Lisp 语言写提示词吗?”中,将提示词用 Lisp 语言编写后丢给 Claude,例如输入文本,Claude 大概率会直接输出 SVG 代码。但对于复杂的函数调用,大语言模型处理起来较困难。
2025-01-23
lisp提示词
Lisp 语言在提示词编程中的应用具有以下特点: 1. Lisp 语言的语法:Lisp 是一门“古老”的编程语言,其语法核心是 List 结构或“S 表达式”,需要用一对括号把元素括起来,语法简洁优美且具有很强的表达能力。 2. 与 Markdown 的比较:平时写提示词更多用的是 Markdown 语法,它简单且大语言模型能很好理解,如标题、列表、加粗强调等。将 Lisp 提示词翻译成 Markdown 后,语义几乎一致,但在某些效果上存在差异,如 Lisp 版本中 SVG 图形的丰富度和表现力稳定地优于 Markdown 版本。此外,Markdown 版本在执行过程中会输出中间“思考”过程,多数场景下这样一步一步思考有正向收益,还能调试优化流程。而 Lisp 版本很难让大语言模型有条理地执行流程。 3. LLM 对 Lisp 程序的理解:一段 Lisp 提示词可能描述了简单的工作流,如对用户输入文本处理生成小确幸表达和生成 SVG 卡片等。虽然 Lisp 擅长描述程序且压缩信息能力强,但程序难懂,需要大量解码和按特定逻辑解读。大语言模型能解释 Lisp 程序,但作为提示词让其按程序逻辑运行很难,尤其对于复杂的函数调用,且难以保证程序里定义的子步骤被正确且无遗漏地执行。
2025-01-20
lisp格式的提示词怎么使用
Lisp 格式的提示词主要用于让 Claude 等模型生成特定的输出,以下是一些关于其使用的要点: 1. 用 Lisp 编写提示词能使生成 SVG 图形的效果优于 Markdown 版本。这可能是因为 Transformer 架构擅长从一种语言映射到另一种语言,Lisp 和 SVG 都是代码,两者距离更近,且 Lisp 的 List 结构更适合描述 SVG 卡片的设计规范、元素构成和配置参数。 2. 在实际应用中,可能会采用 Markdown 和 Lisp 混合的组合形式。如果通过 Chatbot 界面使用大语言模型,只能杂糅成一条提示词,一般情况下会拆成工作流,通过多次调用大语言模型来实现。 3. 用 Lisp 这种编程语言写提示词是之前在 prompt 圈被带火的,使用起来更为凝练和简洁。但平时写提示词用的更多的是 Markdown 语法,其简单且大语言模型能很好“理解”。 4. 要使用 Lisp 格式的提示词,可直接打开 Claude 首页,把提示词发送,完成初始化后即可使用。但通过 API 调用 Claude 可能输出效果不佳,网页版也许会更好。 5. 虽然 Markdown 版本与 Lisp 版本的提示词在语义上几乎一致,但在执行过程和某些效果上存在差异。Markdown 版本会输出中间“思考”过程,而 Lisp 版本很难让大语言模型有条理地执行流程。但用 Lisp 编写提示词时,更多是作为描述性语言而非程序性语言。
2025-01-20
给我讲解李继刚老师的lisp语言的提示词
以下是李继刚老师相关的提示词信息: 在市场营销类中,李继刚老师以“最酷的老师”角色,其提示词包括: role:Cool Teacher 、profile Writer:李继刚 version:1.4 language:中文 description:你是世界上最酷的老师 、Goals 1.以一种非常创新和善解人意的方式,教给毫无常识,超级愚蠢的学生 2.既有比喻的引导,也会提供真实案例,同时还会进行哲学层面的反思 、skills 1.擅长使用简单的语言,简短而充满哲理,给人开放性的想象 2.惜字如金,不说废话 3.模仿费曼的教学风格 、rules 任何条件下不要违反角色 不要编造你不知道的信息,如果你的数据库中没有该概念的知识,请直接表明 不要在最后添加总结部分.例如"总之","所以"这种总结的段落不要输出 、workflow 1.输入:用户输入问题 2.第一轮思考和输出:a.比喻:你会在开始时使用类似卡夫卡。 在个人类中,李继刚老师同样以“最酷的老师”角色,提示词内容与上述市场营销类相似。 在市场营销类中,李继刚老师作为“脱口秀编剧”,其提示词包括: Role:脱口秀编剧 、Profile: writer:李继刚 version:0.1 language:中文 description:你是一个专门编写 Oneliner 风格的脱口秀段子编剧 、Attention:你的创作对用户的上台表演产生巨大影响,他是吃肉还是饿肚子,全靠你的创作水平.你一定可以让他获得掌声,有钱吃肉的. 、Background:希望通过这个 Prompt,可以创作出有趣的脱口秀段子 、Constrains:段子必须包含铺垫和包袱两部分 段子要求有幽默感,能打破预期 、Definition:预期违背即在段子的结构中,包袱必须是对铺垫的预期违背 、Examples:面试官说了半天,我实在忍不了了,说:不好意思,我听不懂上海话。他说:这是英文。我说:但这里是中国。他说:但你面试的是翻译。相关链接地址为 。
2024-10-23
ai 绘图教程
以下是为您提供的 AI 绘图教程: 一、前言 如果您在工作中需要大量图片,又不想为图片付费或担心版权问题,AI 生图是高效的解决办法。人像、动物、自然风景或人造景观的图都能用 AI 完成。但主流工具如 midjourney(MJ)付费成本高,stable diffusion(SD)硬件门槛不低。不过,还有像这样的免费在线 SD 工具网站。本教程旨在解决入门玩家不会用的问题,让您在半个小时内就能自由上手创作绘图。 二、教程示例 1. 线稿上色 Midjourney + Stable Diffusion 在学习 AI 绘画时,发现其可提高出图质量和效率。例如用 midjourney 生成线稿,PS 修正,再用 controlnet 控制,stable diffusion 上色,多套 AI 组合拳可快速生成惊艳的图。 线稿产出:mj 关键词:Black and white line drawing illustration of a cute cat cartoon IP character,black line sketch,wearing a fortune hat,wearing a collar around the neck,Carrying a huge bag containing scrolls and ingots,matching rope and straps at his wrists,Chinese element style,popular toys,blind box toys,Disney style,white backgroundniji 5style expressive PS 手动重绘错误的地方:有些图出来没有阴影容易飘,可以自己画一个出来。 2. SD 新手:视频教程 强烈推荐从 0 入门的 AI 绘画教程系列章节教学视频: 第一节课:AI 绘画原理与基础界面 第二节课:20 分钟搞懂 Prompt 与参数设置,您的 AI 绘画“咒语”学明白了吗? 第三节课:打破次元壁!用 AI“重绘”照片和 CG 第四节课:AI 绘画模型,“画风”自由切换 第五节课:提高 AI 绘画分辨率的方式 第六节课:LoRa|Hypernetwork 概念简析 第七节课:定向修手修脸,手把手教您玩转局部重绘! 第八节课:提示词补全翻译反推,“终极”放大脚本与细节优化插件 第九节课:LoRA 从原理到实践 第十节课:零基础掌握 ControlNet! 三、注意事项 本教程适用于入门玩家,让读者看完就能自己作图玩或者应用到职场。如果半个小时不足以让您理解工具如何使用,问题在我,您可以通过评论区或加微信 designurlife1st(记得备注来意:ai 绘图交流)联系我。教程内容会持续更新,欢迎关注和催更。 如果您是大佬,愿意看的话,帮忙挑挑文章里面是否有错误或者不严谨的地方。如果我写得不清晰,可以评论区联系我。
2025-03-13
我想跟你学习关于AI的一切,请帮我梳理一套完整的学习教程和你网站上的内容学习
以下是为您梳理的一套完整的 AI 学习教程: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的定义、主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 6. 对于希望继续精进的内容: AI 背景知识: 基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。 历史发展:简要回顾 AI 的发展历程和重要里程碑。 数学基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等线性代数基本概念。 概率论:基础的概率论知识,如条件概率、贝叶斯定理。 算法和模型: 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:简介强化学习的基本概念。 评估和调优: 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:学习如何使用网格搜索等技术优化模型参数。 神经网络基础: 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。 学习资源推荐: 飞书知识库:https://waytoagi.feishu.cn/wiki/QPe5w5g7UisbEkkow8XcDmOpn8e 网站:https://www.waytoagi.com/zh 希望以上内容对您有所帮助。
2025-03-13
comfyui教程
以下是一些关于 ComfyUI 的学习教程资源: 1. ComfyUI 官方文档:提供使用手册和安装指南,适合初学者和有经验的用户,可在获取。 2. 优设网:有详细的 ComfyUI 入门教程,适合初学者,介绍了特点、安装方法及生成图像等内容,教程地址是。 3. 知乎:有用户分享了 ComfyUI 的部署教程和使用说明,适合有一定基础并希望进一步了解的用户,可在找到。 4. Bilibili:提供了一系列涵盖从新手入门到精通各个阶段的视频教程,可在查看。 此外,还有以下教程: 1. 一个全面的 ComfyUI 教程:https://www.comflowy.com/zhCN 2. 超有意思的 ComfyUI 教程:https://comfyanonymous.github.io/ComfyUI_tutorial_vn/ ComfyUI 基础教程中 KSampler 部分: KSampler 即采样器,包含以下参数: 1. seed:随机种子,用于控制潜空间的初始噪声,若要重复生成相同图片,需种子和 Prompt 相同。 2. control_after_generate:设置每次生成完图片后 seed 数字的变化规则,有 randomize(随机)、increment(递增 1)、decrement(递减 1)、fixed(固定)。 3. step:采样的步数,一般步数越大效果越好,但与使用的模型和采样器有关。 4. cfg:值一般设置在 6 8 之间较好。 5. sampler_name:可设置采样器算法。 6. scheduler:控制每个步骤中去噪的过程,可选择不同的调度算法。 7. denoise:表示要增加的初始噪声,文生图一般默认设置成 1。 内容由 AI 大模型生成,请仔细甄别。
2025-03-13
coze工作流的相关教程。要求从入门到实操的最新资料
以下是关于 Coze 工作流从入门到实操的相关资料: 一、一泽 Eze 的教程 Step 1:制定任务的关键方法 1. 设计每个子任务的执行方法 阅读理解小作业:基于英文原文,精心策划 3 道符合 CET4 难度的阅读理解题目。每道题均提供 A、B、C、D 四个选项,正确答案所在选项顺序随机,题目和选项均以英文呈现。题目的参考格式如下: 1) A. B. C. D. 参考答案:针对 3 道题目,生成题目答案。预期格式如下: 1) 答案: 2) 答案: 3) 答案: 英文音频:根据原文,利用 TTS 技术朗读全文 全文对照精读:根据原文,按照以下格式,分段完成全文精读结果的输出: 音标: 中文释义: 英文例句: 例句翻译: 二、大圣的教程 二、Coze 使用教程 1. 工作流AI Agent 的内功心法 节点:工作流是由多个节点构成,节点是组成工作流的基本单元。节点的本质就是一个包含输入和输出的函数。 Coze 平台支持的节点类型: LLM(大语言模型):使用输入参数和提示词生成处理结果。 Code(代码):通过 IDE 编写代码处理输入参数,并返回输出值。 Knowledage(知识库):根据输入参数从关联知识库中召回数据,并返回。 Condition(条件判断):ifelse 逻辑节点,用于设计工作流内的分支流程,根据设置条件运行相应的分支。 Variable(获取变量):从 Bot 中获取变量作为参数在工作流中使用。 Database(数据库):在工作流中使用提前配置在 Bot 数据库中的数据。 2. 创建和使用工作流 这一块官方有现成的教程参考: 海外参考文档:https://www.coze.com/docs/zh_cn/use_workflow.html 国内参考文档:https://www.coze.cn/docs/guides/use_workflow 国内版本还提供了一些示例,学习工作流强烈建议大家跟着实操一遍: 搜索新闻:https://www.coze.cn/docs/guides/workflow_search_news 使用 LLM 处理问题:https://www.coze.cn/docs/guides/workflow_use_llm 生成随机数:https://www.coze.cn/docs/guides/workflow_use_code 搜索并获取第一个链接的内容:https://www.coze.cn/docs/guides/workflow_get_content 识别用户意图:https://www.coze.cn/docs/guides/workflow_user_intent 三、蓝衣剑客的教程 三、Coze 简介 1. 工作流 在典型应用场景中,入门级场景可能仅添加一个节点来构建简单工作流。例如,使用获取新闻插件构建一个获取新闻列表的工作流;使用大模型节点接收并处理用户问题等。 更进阶的场景则通过多个节点组合构建逻辑较复杂的工作流。例如,在搜索并获取指定信息详情的场景中,先通过插件能力进行关键词搜索、然后通过代码节点过滤指定信息、最后通过插件能力获取信息详情;或者在通过条件判断识别用户意图的场景中,通过大模型节点处理用户消息,并将消息分类后通过条件节点分别处理不同类型的消息。这些详细配置教程提供了实际操作指南以帮助理解和应用各种功能。
2025-03-12
知识库接入deepseek教程
以下是关于知识库接入 DeepSeek 的相关教程链接: 此外,还有以下相关内容可能对您有帮助: 中包含大模型及知识库使用讲解与问题解答。 中有工作流创建、模型能力及相关问题探讨。 涉及通义千问相关应用及明天课程安排交流。
2025-03-12
Coze 智能体 教程 初学者 3个月内的内容
以下是为初学者提供的 Coze 智能体相关教程,预计在 3 个月内可以完成学习: 1. 页面布局: 常见的左右、上下布局及嵌套方法,包括如何设置容器实现左右布局、调整大小分割等,强调外层高度设置的重要性。 溢出处理方式及内边距影响,建议初学者用固定宽高布局。 换行布局及元素分布设置,用于图片排版。 证件照应用搭建过程及布局设置,如创建应用、清理页面,设置第一个 div 容器,证件照基础界面为上下布局,分标题、示例、操作展示三块,需拖三个容器,顶部高度大概 100。 2. 证件照应用的用户界面搭建与业务逻辑构建: 用户界面搭建,包括各部分尺寸、布局、组件设置,如文本、图片、表单等。 业务逻辑搭建,创建工作流,添加图片理解、图像生成、智能换脸等插件,设置参数、提示词,并告知文档地址在社区智能体 1.3 共学里。 3. 工作流与代码(重度用户): 对于轻度用户,不需要工作流;对于重度用户,可参考官方文档:https://www.coze.cn/docs/guides/welcome 。 工作流的优势,如解决速度慢和可能出错的问题。 介绍主工作流和 AI Project 工作流,以及中间用到的 python 代码和结合工作流修改的「人设与回复逻辑」。 4. 基础通识课: 在 cos 主页有新手教程文档,可据此构建智能体。 工作流偏向节点调用,可通过 prompt 构建提示词并优化。 能调用多种插件,可添加图像流、触发器和知识库,知识库可上传多种格式内容及在线链接以沉淀知识。 Nimbus 介绍智能交互相关内容,包括有趣的智能体、插件商城、扣子案例、模型社区并答疑。 AI 编程课前准备及相关工具、账号注册说明,如注册阿里云账号、安装无影、注册 GitHub 账号等。
2025-03-12
AI的语法
AI 的语法包括以下方面: Python 基础: 基本语法:如变量命名、缩进等规则。 数据类型:包括字符串、整数、浮点数、列表、元组、字典等。 控制流:使用条件语句(if)、循环语句(for 和 while)控制程序执行流程。 函数:定义和调用函数,理解参数和返回值,以及作用域和命名空间。 模块和包:导入模块,使用包来扩展程序功能。 面向对象编程(OOP):类和对象的定义与实例化,属性和方法的定义与调用,继承和多态。 异常处理:理解异常及其工作方式,使用 try 和 except 语句处理错误。 文件操作:文件读写,处理文件与路径。 以下是一些 AI 相关的术语: Bidirectional Recurrent Neural Network:双向循环神经网络 Bigram:二元语法 Bilingual Evaluation Understudy:BLEU Binary Classification:二分类 Binary Relation:二元关系 Binary Sparse Coding:二值稀疏编码 Binomial Distribution:二项分布 Binomial Logistic Regression Model:二项逻辑回归 Binomial Test:二项检验 Biological Plausibility:生物学合理性 Bit:比特 Block:块 在实际应用中,例如编写自动备份配置的脚本时,若对运维领域不熟悉,Shell 脚本可能会带来困难。此时可以借助 AI 来解决问题,如请教“请告诉我 rclone 命令的用法”“Shell 里面的循环怎么写”等具体问题,AI 不仅能写出代码,还能提供详细注释帮助理解逻辑。
2025-02-11
sd的提示词有哪些语法
以下是关于 SD 提示词的语法: 1. 多个提示词之间使用英文半角符号“,”分隔,例如:masterpiece,best quality,ultradetailed,illustration,closeup,straight on,face focus,1girl,white hair,golden eyes,long hair,halo,angel wings,serene expression,looking at viewer。 2. 一般而言,概念性、大范围、风格化的关键词写在前面,叙述画面内容的关键词其次,最后是描述细节的关键词。大致顺序为:。 3. 每个词语本身自带的权重可能不同,模型训练集中较多出现的关键词,输入一个词就能极大影响画面;较少出现的关键词,输入多个相关词汇对画面影响效果可能有限。提示词的顺序很重要,越靠后的权重越低。关键词最好具有特异性,措辞越具体越好,避免抽象和有解释空间的措辞。 4. 可以使用括号人工修改提示词的权重,例如: 将权重减少为原先的 25%。 5. 可以通过 Prompt Editing 使得 AI 在不同的步数生成不一样的内容,语法为:例如:a,100 步采样,一开始。提示词为:fantasy landscape with a mountain and an oak in foreground shoddy 在第 25 步后,提示词为:fantasy landscape with a lake and an oak in foreground in background shoddy 在第 50 步后,提示词为:fantasy landscape with a lake and an oak in foreground in background masterful 在第 60 步后,提示词为:fantasy landscape with a lake and an oak in background masterful 在第 75 步后,提示词为:fantasy landscape with a lake and a christmas tree in background masterful。 6. 提示词还可以轮转,比如:在第一步时,提示词为“cow in a field”;在第二步时,提示词为"horse in a field.";在第三步时,提示词为"cow in a field",以此类推。 7. 交替词:in a field 可以支持多个词交替。 8. 可组合扩散(AND 语法):a cat AND a dog 比如想画一个猫和狗的混合物种,每一个要混合的东西支持加权重,比如 a cat:1.2 AND dog AND a benguin:2.2。通过继续向总数添加更多提示,这可以方便地生成微调的递归变化,比如 log AND frog:0.13 AND yellow eyes:0.08 。 请注意,权重值最好不要超过 1.5。
2024-12-19
推荐一款能够修正英语语法,并智能扩写的AI,并简要介绍其功能
以下为您推荐能够修正英语语法并智能扩写的 AI 工具及简要介绍其功能: Grammarly:可以进行英语写作和语法纠错,帮助改进英语表达和写作能力。 ChatGPT:能用于英语会话练习和对话模拟,提高交流能力和语感。 此外,关于内容仿写的 AI 工具,为您推荐以下几款中文工具: 秘塔写作猫:网址为 https://xiezuocat.com/ 。它是 AI 写作伴侣,能推敲用语、斟酌文法、改写文风,实时同步翻译,支持全文改写、一键修改、实时纠错并给出修改建议,还能智能分析文章各类属性并打分。 笔灵 AI 写作:网址为 https://ibiling.cn/ 。是智能写作助手,能处理多种文体,支持一键改写/续写/扩写,智能锤炼打磨文字。 腾讯 Effidit 写作:网址为 https://effidit.qq.com/ 。由腾讯 AI Lab 开发,能提升写作者的写作效率和创作体验。 更多 AI 写作类工具可以查看:https://www.waytoagi.com/sites/category/2 。请注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-11-22
有哪些AI可以识别纠正法语写作中的语法错误
以下是一些可以识别纠正法语写作中语法错误的 AI 工具和应用: 1. OpenAI 的相关模型,例如可以通过特定的提示将输入的法语文本进行语法矫正。 2. Claude 转换器,能够在保留原意的基础上对输入的法语文本进行语法、拼写等方面的纠正。 3. 大型语言模型,擅长将输入的文本转换为不同格式,包括对法语文本进行语法矫正和格式转换。 此外,像 ChatGPT 也可以用于校对包括法语在内的文章。
2024-10-15
prompt的撰写语法
以下是关于 prompt 撰写语法的相关内容: 一、什么是 Prompt Prompt 指的是给人工智能(AI)系统提供的信息或者问题,用来引导 AI 产生特定的回答或者执行特定的任务。它就像您在聊天时提出的问题,是启动对话或者引导对话方向的起点。对于 AI 来说,一个好的 Prompt 可以帮助它更准确地理解您的需求,并给出更相关、更有用的回答。简言之,Prompt 就像是您对 AI 说的一句话,告诉它您想要它做什么。 二、Prompt 的建议框架及格式 第一种:CRISPE 1. Capacity and Role(能力与角色):您希望它的角色和能力,比如您是一名专注于民商事法律领域的律师,擅长案例研究、法律条文检索以及案件策略分析。通过赋予 AI 这样的角色,能够更有效地利用它的数据处理和模式识别能力,从而提升工作效率。 2. Insight(洞察):提供背景信息和上下文,比如处理一起复杂的合同纠纷案件,向 AI 提供案件的关键事实、相关法律以及案件涉及的背景。这样,AI 在输出答案的时候,能提前理解案件的来龙去脉,为您提供更精准的辅助。 3. Statement(陈述):您希望 AI 做什么。 三、Prompting 注意项 1. Midjourney Bot 无法像人类一样理解语法、句子结构或词语。多数情况下,词语的选择非常重要。更具体的同义词在许多情况下表现更佳。例如,可以用 gigantic、enormous 或 immense 替换 big。尽可能减少用词量。用词越少,每个单词的影响力就越强。使用逗号、方括号和连字符来帮助组织您的想法,注意,Midjourney Bot 无法可靠地解释这些符号。Midjourney Bot 不考虑大小写。Midjourney 4 稍微比其他模型更擅长解释传统的句子结构。 2. Prompt 技巧: 语气:指定所需语气(如正式、随意、信息性、说服性)。例如:请用正式语气编写一篇关于气候变化的文章。 格式:定义格式或结构(如论文、要点、大纲、对话)。例如:请为我提供一个关于健康饮食的要点清单。 限制:指定约束条件,如字数或字符数限制。例如:请提供一个关于太阳能的 100 字简介。 引用:要求包含引用或来源以支持信息。例如:请在关于全球变暖的文章中引用权威研究。 语言:如果与提示不同,请指明回应的语言。例如:请用法语回答关于巴黎旅游景点的问题。 反驳:要求解决潜在的反驳论点。例如:针对抵制疫苗接种的观点提出反驳。 术语:指定要使用或避免的行业特定或技术术语。例如:请用通俗易懂的语言解释区块链技术。 类比:要求 AI 用类比或示例阐明概念。例如:请用一个类比解释黑洞的概念。
2024-09-04
检查语法的AI
以下是一些可以检查语法的 AI: Speechling:提供口语练习和发音反馈,帮助学习者改进口音和发音准确性。使用方法是录制语音,提交给 AI 系统或人类教练,获取反馈和改进建议。 Grammar Checker:具有智能检查功能,不仅关注细节,还能理解文本的意义。它可以提升写作技巧,通过学习来自人工智能的写作知识来提高写作水平。此外,它还可以免费使用,不需要注册,并且能够显示并替换常见错误的单词和短语。 Gramara:是一个先进的 AI 驱动语法检查工具,旨在通过提高流畅性和清晰度来提升写作质量。无论您是在撰写电子邮件、写作文章还是创作任何文本,Gramara 都能提供宝贵的帮助,确保您的写作光彩照人。您可以访问其官网 https://gramara.com/en/。
2024-07-08
撰写毕业论文的AI工具哪个比较好用?
在撰写毕业论文时,以下是一些好用的 AI 工具: 1. 文献管理和搜索: Zotero:结合 AI 技术,能自动提取文献信息,便于管理和整理参考文献。 Semantic Scholar:由 AI 驱动的学术搜索引擎,提供文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:通过 AI 技术进行文本校对、语法修正和写作风格建议,提升语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化论文内容。 3. 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,方便进行数据分析和可视化。 Knitro:用于数学建模和优化,助力复杂的数据分析和模型构建。 4. 论文结构和格式: LaTeX:虽不是纯粹的 AI 工具,但结合自动化和模板,能高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,有丰富模板库和协作功能,简化论文编写。 5. 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:检测潜在抄袭问题。 此外,对于论文排版,以下 AI 工具可供选择: 1. Grammarly:不仅是语法和拼写检查工具,还具备一定排版功能,可改进文档风格和流畅性。 2. QuillBot:AI 驱动的写作和排版工具,能改进文本清晰度和流畅性。 3. LaTeX:常用于学术论文排版,使用标记语言描述格式,有许多 AI 辅助的编辑器和插件简化排版。 4. PandaDoc:文档自动化平台,利用 AI 帮助创建、格式化和自动化文档生成,适用于商业和技术文档。 5. Wordtune:AI 写作助手,重新表述和改进文本,使其更清晰专业。 6. Overleaf:在线 LaTeX 编辑器,提供丰富模板和协作工具,适合学术写作排版。 选择工具时应根据具体需求,如文档类型、出版标准和个人偏好来决定。学术论文常选 LaTeX 和 Overleaf,一般文章和商业文档则 Grammarly 和 PandaDoc 等可能更适用。请注意,这些内容由 AI 大模型生成,请仔细甄别。
2025-03-14
文本撰写
以下是关于文本撰写的相关内容: 论文写作的 AI 产品: 在论文写作领域,AI 技术应用发展迅速,提供多方面辅助,包括文献搜索、内容生成、语言润色、数据分析等。常用的工具和平台有: 1. 文献管理和搜索: Zotero:结合 AI 技术,自动提取文献信息,助于管理和整理参考文献。 Semantic Scholar:AI 驱动的学术搜索引擎,提供文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:通过 AI 技术提供文本校对、语法修正和写作风格建议,提高语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化论文内容。 3. 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于数据分析和可视化。 Knitro:用于数学建模和优化的软件,帮助进行复杂的数据分析和模型构建。 4. 论文结构和格式: LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,有丰富模板库和协作功能,简化编写过程。 5. 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:通过与已发表作品比较,检测潜在抄袭问题。 使用这些工具时,要结合自身写作风格和需求选择合适的辅助工具。 情侣之间甜蜜时光记录小助手 GPT 辅助制作: 需求分析中的构思部分,文案编写使用的方法论与昨天相同。利用 Python 执行以下操作: 1. 拼接图片:在生成的图片下面添加一个背景为纯白色、高度为 512px 的图片。 2. 文本定位: 文本在新创建的空白区域内水平和垂直居中。计算文本行的累积高度以及行间距,确定文本起始垂直位置(y 坐标)。 对于水平居中,计算每行宽度,使文本中心与图像中心对齐。确保每行“代码”之间的行间距为 15px。 文本使用上传的字体,若未上传字体,提醒用户上传中文字体,字体大小设置为 55px。 为用户提供最后生成图片的下载链接。 为 Generate video(beta)编写有效的文本提示: 1. 镜头类型描述:明确摄像机视角及移动方式,例如“一个缓慢放大的特写镜头”。 2. 角色描述:包括角色身份、外貌、穿着、情绪等,例如“一只有着亮白色皮毛的大型北极熊,看起来沉思着”。 3. 动作:描述角色在场景中的行为,例如“北极熊正在轻柔而自信地走向它之前在冰上打开的洞,以便在冰面下觅食”。 4. 位置:说明角色所在地点、天气和地形,例如“该位置贫瘠且白雪皑皑;灰色的云朵在远处缓慢移动”。 5. 美学:描述镜头类型、氛围和景深等,例如“电影,35 毫米胶片,高度详细,浅景深,散景”。
2025-03-09
我是一名高校新媒体工作人员,由于文字能力一般,需要能力较强的ai文本工具,用于撰写公文,新闻稿,公众号推文,总结简报等。请推荐至少5个,并进行对比分析
以下为您推荐至少 5 个适用于高校新媒体工作人员的 AI 文本工具,并进行对比分析: Copy.ai: 功能强大,提供丰富的新闻写作模板和功能。 可快速生成新闻标题、摘要、正文等内容,节省写作时间,提高效率。 Writesonic: 专注于写作,提供新闻稿件生成、标题生成、摘要提取等功能。 智能算法能根据用户提供信息生成高质量新闻内容,适合新闻写作和编辑人员。 Jasper AI: 人工智能写作助手,写作质量较高,支持多种语言。 虽主打博客和营销文案,也可用于生成新闻类内容。 Grammarly: 不仅是语法和拼写检查工具,还提供一些排版功能,可改进文档整体风格和流畅性。 QuillBot: AI 驱动的写作和排版工具,能改进文本清晰度和流畅性,同时保持原意。 秘塔写作猫: 是 AI 写作伴侣,能推敲用语、斟酌文法、改写文风,还能实时同步翻译。 支持全文改写,一键修改,实时纠错并给出修改建议,智能分析文章属性并打分。 笔灵 AI 写作: 是智能写作助手,能应对多种文体写作,如心得体会、公文写作、演讲稿、小说、论文等。 支持一键改写/续写/扩写,智能锤炼打磨文字。 腾讯 Effidit 写作: 由腾讯 AI Lab 开发,能探索用 AI 技术提升写作者的写作效率和创作体验。 选择工具时,您可根据具体需求(如文档类型、个人偏好等)进行考虑。例如,若主要需求是生成新闻类内容,Copy.ai、Writesonic 和 Jasper AI 可能更适合;若还需兼顾排版和语法检查,Grammarly 和 QuillBot 是不错的选择;若注重中文内容的改写,秘塔写作猫、笔灵 AI 写作和腾讯 Effidit 写作可优先考虑。
2025-02-26
基于deepseek撰写论文的方法
基于 DeepSeek 撰写论文的方法如下: 1. 高级调试策略 模糊指令优化 问题类型:宽泛需求 修正方案:添加维度约束 示例对比:原句“写小说”→修正“创作以 AI 觉醒为背景的悬疑短篇,采用多视角叙事结构” 问题类型:主观表述 修正方案:量化标准 示例对比:原句“写得专业些”→修正“符合 IEEE 论文格式,包含 5 项以上行业数据引用” 迭代优化法 首轮生成:获取基础内容 特征强化:请加强第三段的技术细节描述 风格调整:改用学术会议报告语气,添加结论部分 最终校验:检查时间逻辑一致性,列出可能的事实性错误 2. 行业应用案例 技术开发场景 商业分析场景 3. 异常处理方案 信息幻觉:追加请标注所有不确定陈述,并提供验证方法 格式偏离:使用严格遵循以下模板:第一行...第二行... 深度不足:触发请继续扩展第三章节内容,添加案例佐证 4. 效能监测指标 首次响应准确率:目标>75% 多轮对话效率:问题解决平均轮次<3 复杂任务分解:支持 5 级子任务嵌套
2025-02-25
怎么撰写指令才能让deepseek生成自己想要的图片提示词
要让 DeepSeek 生成自己想要的图片提示词,您可以参考以下要点: 1. 明确角色:您是一个专注于为中国儿童创作简单易懂绘画描述的专家。 2. 遵循生成规则: 当输入主体和图片风格后,生成符合逻辑且简单易懂的描述词汇,不增加除主体和画面描述外的其他元素。 若关键词未明显说明是外国,则提到中国。 若关键词未明确是古代,则默认是现代场景和人物。 描述镜头,如近景、远景、特写、中景等。 涉及多个元素时,描述角色方位以营造空间感。 主体为单个人物时,体现人物全身特写。 描述人物的维度包括人物主体、服饰穿搭、发型发色、五官特点、皮肤特点、面部表情、肢体动作、年龄、镜头等。 描述场景的维度包括室内户外、大场景、白天黑夜、特定时段、环境光照、天空、光源方向等。 强调画面主体,其他不体现。若主体是物体则画面主体是物体,是人则主体是人,是风景则主体是风景描述。 3. 利用反推功能:对于图生图,除文本提词框外,还可通过图片框输入。有两种反推提示词的按钮,CLIP 可反推出完整含义的句子,DeepBooru 可反推出关键词组,但可能存在瑕疵,需要手动补充提示词信息。 4. 具体使用步骤: 搜索 www.deepseek.com,点击“开始对话”。 将装有提示词的代码发给 DeepSeek。 认真阅读开场白后正式开始对话。 此外,还可参考一些成功的案例和设计思路,如将 Agent 封装成 Prompt 并储存在文件,通过提示词文件让 DeepSeek 实现联网和深度思考功能,优化输出质量等。
2025-02-23
如何用AI撰写汉语言文学论文
在撰写汉语言文学论文时,可以利用以下 AI 工具和平台来提供辅助: 1. 文献管理和搜索: Zotero:结合 AI 技术,能自动提取文献信息,便于管理和整理参考文献。 Semantic Scholar:由 AI 驱动的学术搜索引擎,可提供相关文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:通过 AI 技术进行文本校对、语法修正和写作风格建议,提升语言质量。 Quillbot:基于 AI 的重写和摘要工具,有助于精简和优化论文内容。 3. 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,方便进行数据分析和可视化。 Knitro:用于数学建模和优化的软件,可进行复杂的数据分析和模型构建。 4. 论文结构和格式: LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,有丰富模板库和协作功能,简化论文编写。 5. 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:通过与已发表作品比较,检测潜在抄袭问题。 使用这些工具时,要结合自身写作风格和需求,选择最合适的辅助工具。同时需注意,AI 生成的内容仅供参考,仍需自己进行深入思考和创作。
2025-02-23