Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

lisp格式的提示词怎么使用

Answer

Lisp 格式的提示词主要用于让 Claude 等模型生成特定的输出,以下是一些关于其使用的要点:

  1. 用 Lisp 编写提示词能使生成 SVG 图形的效果优于 Markdown 版本。这可能是因为 Transformer 架构擅长从一种语言映射到另一种语言,Lisp 和 SVG 都是代码,两者距离更近,且 Lisp 的 List 结构更适合描述 SVG 卡片的设计规范、元素构成和配置参数。
  2. 在实际应用中,可能会采用 Markdown 和 Lisp 混合的组合形式。如果通过 Chatbot 界面使用大语言模型,只能杂糅成一条提示词,一般情况下会拆成工作流,通过多次调用大语言模型来实现。
  3. 用 Lisp 这种编程语言写提示词是之前在 prompt 圈被带火的,使用起来更为凝练和简洁。但平时写提示词用的更多的是 Markdown 语法,其简单且大语言模型能很好“理解”。
  4. 要使用 Lisp 格式的提示词,可直接打开 Claude 首页,把提示词发送,完成初始化后即可使用。但通过 API 调用 Claude 可能输出效果不佳,网页版也许会更好。
  5. 虽然 Markdown 版本与 Lisp 版本的提示词在语义上几乎一致,但在执行过程和某些效果上存在差异。Markdown 版本会输出中间“思考”过程,而 Lisp 版本很难让大语言模型有条理地执行流程。但用 Lisp 编写提示词时,更多是作为描述性语言而非程序性语言。
Content generated by AI large model, please carefully verify (powered by aily)

References

甲木:如何让Claude帮你来做「情绪价值营销」?

接下来,我们直接用Lisp来构建prompt,让Claude直接根据用户输入的领域和产品(也可自定义我们的产品特点),直接输出情绪营销语句~用Lisp这种编程语言是之前prompt圈李继刚刚哥带火了一波,使用下来更为凝练和简洁。当然,用我们一直倡导的Markdown的格式来写prompt的效果是一样的~[heading3]Lisp格式prompt(Claude专用)[heading3]Markdown格式prompt(GPT/国内大模型可用)@TODO待优化[content]备注:GPT等模型在卡片生成这步需要进行一些调整,不稳定。最好自定义html/css样式来进行强约束。[heading3]极简版输出(GPT o1系列,一步步思考推理)[heading2]打开Claude进行初始化[content]直接打开Claude首页,把上述提示词发送。初始化完成,接下来就可以直接进行使用~

艾木:提示词编程|有必要用 Lisp 语言写提示词吗?

我们平时写提示词用的更多的是Markdown语法。Markdown语法很简单,并且大语言模型能很好的“理解”标题、列表、加粗强调等这些语法。用Markdown写提示词不是更直白吗?我们把这段Lisp提示词翻译成Markdown试试效果。Markdown版本与Lisp版本的提示词在语义上几乎是一致的。只是中间我多加了一句“一步步思考,严格按照大步骤以及处理流程执行。”因为不加这句,Claude还是不能保证会逐步执行。下面是Lisp版本提示词的输出效果。不知啥原因,我通过API调用Claude,输出效果很难达到李继刚文章中那种水平,用网页版也许会好一些。下面是Markdown版本的提示词输出的结果:对比下两者的效果,可以发现一个明显差异:在Lisp版本中,SVG图形的丰富度和表现力稳定地优于Markdown版本。这是个意外发现!我们会在后面再细细探讨。Markdown版本与Lisp版本提示词的另一个重要差异在执行过程,它会输出中间“思考”过程。小确幸这个函数的所有子步骤都被充分展开并且按顺序执行了。而且,由于大语言模型的自回归机制,前面步骤的输出,会自然地被作为上下文传入给后面的步骤。虽然在这个任务中,从文本处理后的输出结果上可能看不出太大差异,但在多数场景下,这样一步一步思考是会有正向收益的。除此之外,让大语言模型将“思考”过程外化出来后有一个很大的好处,就是你可以调试优化这个流程。从过程输出中你可以看到哪些步骤生成了有用的增量信息,哪些步骤是无用的。另外在调试过程中,你还可能从大语言模型的输出中发现新的灵感。然而,用Lisp版本的提示词,很难让大语言模型这么有条理地执行一个流程。

艾木:提示词编程|有必要用 Lisp 语言写提示词吗?

我们发现用Lisp编写的提示词,生成SVG图形的效果要明显优于Markdown版本。这有点反直觉。因为一般来讲,我们会认为编写提示词的目标是把任务描述清楚,即传达语义,语法应该没什么影响,即使有影响,也不太可能会这么明显。以下是我的一个直觉性解释。这跟任务的特性相关,我们这里是在让大语言模型生成SVG代码。一般的大语言模型的基础架构都是Transformer,而Transformer最早是用于做翻译的,Transformer特别擅长做翻译。翻译就是从一种语言映射到另一种语言,从一个sequence映射到另一个sequence。直觉上理解,让Transformer把Lisp语言翻译成SVG代码的效果应该要比从自然语言翻译成SVG代码的效果要好,因为Lisp和SVG都是代码,两者靠得更近。前文讲到语言的表达能力,此处我们确实受到Markdown表达能力的限制。你很难用Markdown清晰准确的描述出一张SVG卡片的设计规范、元素构成,还有各种配置参数,你需要一种更加结构化的语言。用Lisp的List结构来干这件事儿,绰绰有余。还有一点需要注意,在SVG-Card这跟函数中,Lisp更多是被作为描述性语言在使用,而不是程序性语言。这个函数是在描述一种结构或者一种配置,而不是在描述一个复杂的流程,这里不涉及交错的函数调用过程。直觉上理解,从一种结构映射到另一种结构会相对简单。从此经验中可以提炼出一条更一般性的直觉:对于大语言模型来讲,syntax matters too。在实际应用中,我可能会采用下面这种组合形式的提示词。如果你是通过Chatbot界面使用大语言模型的话,只能这样杂糅成一条提示词。不过一般情况下,我会把这个流程拆成工作流,通过多次调用大语言模型来实现。下面是Markdown+Lisp混合版本的提示词输出的结果:

Others are asking
Lisp
Lisp 是一门“古老”的编程语言,其语法核心是 List 结构或“S 表达式”,需要用一对括号把元素括起来,且 List 结构里可以嵌套 List,使得程序呈现出一对对括号嵌套的样子。Lisp 语法简洁且优美,兼具简洁性和强大的表达能力。 在提示词编程方面,用 Lisp 编写的提示词生成 SVG 图形的效果明显优于 Markdown 版本。这可能是因为对于让大语言模型生成 SVG 代码的任务,Transformer 擅长从一种语言映射到另一种语言,而 Lisp 和 SVG 都是代码,两者靠得更近。此外,Markdown 表达能力有限,难以清晰准确描述 SVG 卡片的设计规范等,而 Lisp 的 List 结构更适合。在 SVGCard 函数中,Lisp 更多作为描述性语言而非程序性语言。 在网文创作中,也有 Lisp 格式的提示词,如在帮人做世界观故事时会用到,不同版本可适用于不同的模型和需求。
2025-02-10
请问有那款ai是能通过Lisp 语言实现一些输出操作的呢?
以下是一些能够通过 Lisp 语言实现输出操作的 AI 示例: 在“AI‘词生卡’的蝴蝶效应:从文字到视觉盛宴跨界蝶变”中提到,古早的 Lisp 语言在 Claude3.5 强大的理解力和绘图支持下焕发了新生,制造了新卡。 在“艾木:提示词编程|有必要用 Lisp 语言写提示词吗?”中,将提示词用 Lisp 语言编写后丢给 Claude,例如输入文本,Claude 大概率会直接输出 SVG 代码。但对于复杂的函数调用,大语言模型处理起来较困难。
2025-01-23
lisp提示词
Lisp 语言在提示词编程中的应用具有以下特点: 1. Lisp 语言的语法:Lisp 是一门“古老”的编程语言,其语法核心是 List 结构或“S 表达式”,需要用一对括号把元素括起来,语法简洁优美且具有很强的表达能力。 2. 与 Markdown 的比较:平时写提示词更多用的是 Markdown 语法,它简单且大语言模型能很好理解,如标题、列表、加粗强调等。将 Lisp 提示词翻译成 Markdown 后,语义几乎一致,但在某些效果上存在差异,如 Lisp 版本中 SVG 图形的丰富度和表现力稳定地优于 Markdown 版本。此外,Markdown 版本在执行过程中会输出中间“思考”过程,多数场景下这样一步一步思考有正向收益,还能调试优化流程。而 Lisp 版本很难让大语言模型有条理地执行流程。 3. LLM 对 Lisp 程序的理解:一段 Lisp 提示词可能描述了简单的工作流,如对用户输入文本处理生成小确幸表达和生成 SVG 卡片等。虽然 Lisp 擅长描述程序且压缩信息能力强,但程序难懂,需要大量解码和按特定逻辑解读。大语言模型能解释 Lisp 程序,但作为提示词让其按程序逻辑运行很难,尤其对于复杂的函数调用,且难以保证程序里定义的子步骤被正确且无遗漏地执行。
2025-01-20
给我讲解李继刚老师的lisp语言的提示词
以下是李继刚老师相关的提示词信息: 在市场营销类中,李继刚老师以“最酷的老师”角色,其提示词包括: role:Cool Teacher 、profile Writer:李继刚 version:1.4 language:中文 description:你是世界上最酷的老师 、Goals 1.以一种非常创新和善解人意的方式,教给毫无常识,超级愚蠢的学生 2.既有比喻的引导,也会提供真实案例,同时还会进行哲学层面的反思 、skills 1.擅长使用简单的语言,简短而充满哲理,给人开放性的想象 2.惜字如金,不说废话 3.模仿费曼的教学风格 、rules 任何条件下不要违反角色 不要编造你不知道的信息,如果你的数据库中没有该概念的知识,请直接表明 不要在最后添加总结部分.例如"总之","所以"这种总结的段落不要输出 、workflow 1.输入:用户输入问题 2.第一轮思考和输出:a.比喻:你会在开始时使用类似卡夫卡。 在个人类中,李继刚老师同样以“最酷的老师”角色,提示词内容与上述市场营销类相似。 在市场营销类中,李继刚老师作为“脱口秀编剧”,其提示词包括: Role:脱口秀编剧 、Profile: writer:李继刚 version:0.1 language:中文 description:你是一个专门编写 Oneliner 风格的脱口秀段子编剧 、Attention:你的创作对用户的上台表演产生巨大影响,他是吃肉还是饿肚子,全靠你的创作水平.你一定可以让他获得掌声,有钱吃肉的. 、Background:希望通过这个 Prompt,可以创作出有趣的脱口秀段子 、Constrains:段子必须包含铺垫和包袱两部分 段子要求有幽默感,能打破预期 、Definition:预期违背即在段子的结构中,包袱必须是对铺垫的预期违背 、Examples:面试官说了半天,我实在忍不了了,说:不好意思,我听不懂上海话。他说:这是英文。我说:但这里是中国。他说:但你面试的是翻译。相关链接地址为 。
2024-10-23
我现在想根据我的博士论文,想出一个国家社科基金的选题。但是我的博士论文感觉核心不是特别突出,我希望找到一个AI助手,让AI帮我读论文的PDF格式然后总结出一个最合适的选题,有没有推荐的AI工具?
以下是一些关于利用 AI 辅助完成您需求的建议: 1. 先拆解您的博士论文工作流程,搞清楚每个步骤的输入输出和相互关系。 2. 思考论文中的哪些环节可以引入 AI 工具来提效,一切要从业务逻辑出发,AI 是锦上添花,不能本末倒置。 3. 搭建选题库,明确论文的定位(可用 AI 辅助分析),找相关的对标论文和优秀研究。 4. 在写作环节,可用 AI 辅助拆解对标论文,提炼写作技巧,然后根据借鉴的技巧结合自身特色列出写作大纲,并使用 AI 优化大纲、查找资料、润色文章,但核心内容要自己完成,不能过度依赖 AI。 5. 起标题与配图方面,用 AI 辅助批量生成标题,再自己修改优化,评估标题是否足够吸引眼球,让 AI 分析论文提供配图建议,去免费图库搜索配图。 6. 养成习惯与总结,做每件事前都思考 AI 能提供什么帮助,把整套流程实践几次,形成肌肉记忆,不断打磨完善属于自己的 AI 辅助流程,同时警惕过度依赖,AI 只是辅助,核心能力要靠自己。 目前常见的可用于辅助您的 AI 工具如 ChatGPT 等,但具体的选择还需根据您的实际需求和使用体验来决定。
2025-02-16
我的工作是财务会计,经常需要对账,输入是2个Excel表格,但格式内容都有不少差异,哪些大模型或者工具可以帮我快速完成这个工作?
以下是一些可能有助于您快速完成对账工作的大模型或工具: 1. Coze 记账管家:它能通过大语言模型将用户输入的非结构化数据转变为结构化数据存入数据库。工作流程包括定义提示词,让大模型拆解并识别记账事项、发生时间、变动金额等,然后将这些数据存入数据库。 2. GLM4AllTools:可用于统计平台月度账单,例如您可以从平台导出月度明细数据,上传账单给沙盒,让模型统计账单数据和用量,还能分析账单数据波动。 3. 生成式 AI:在金融服务领域,它能帮助改进内部流程,如预测编写 Excel、SQL 和 BI 工具中的公式和查询,自动创建报告的文本、图表、图形等内容,为会计和税务团队提供税法和扣除项的可能答案,以及帮助采购和应付账款团队自动生成和调整合同、采购订单和发票等。
2025-02-15
有没有能帮助生成特殊格式文档的ai工具
以下是一些能帮助生成特殊格式文档的 AI 工具: 对于文章排版: Grammarly:不仅是语法和拼写检查工具,还提供排版功能,可改进文档风格和流畅性。 QuillBot:AI 驱动的写作和排版工具,能改进文本清晰度和流畅性,保持原意。 Latex:常用于学术论文排版,使用标记语言描述格式,有许多 AI 辅助的编辑器和插件简化排版。 PandaDoc:文档自动化平台,用 AI 帮助创建、格式化和自动化文档生成,适合商业和技术文档。 Wordtune:AI 写作助手,重新表述和改进文本,使其更清晰专业,保持原始意图。 Overleaf:在线 Latex 编辑器,提供丰富模板和协作工具,适合学术写作和排版。 对于论文写作: 文献管理和搜索: Zotero:结合 AI 技术,自动提取文献信息,管理和整理参考文献。 Semantic Scholar:AI 驱动的学术搜索引擎,提供文献推荐和引用分析。 内容生成和辅助写作: Grammarly:提供文本校对、语法修正和写作风格建议,提高语言质量。 Quillbot:基于 AI 的重写和摘要工具,精简和优化论文内容。 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于数据分析和可视化。 Knitro:用于数学建模和优化,帮助进行复杂的数据分析和模型构建。 论文结构和格式: LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,提供丰富模板库和协作功能,简化论文编写过程。 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:检测潜在抄袭问题。 对于制作 PPT: Gamma:在线 PPT 制作网站,通过输入文本和想法提示快速生成幻灯片,支持嵌入多媒体格式。 美图 AI PPT:通过输入简单文本描述生成专业 PPT 设计,包含丰富模板库和设计元素。 Mindshow:AI 驱动的 PPT 辅助工具,提供智能设计功能,如自动布局、图像选择和文本优化等。 讯飞智文:科大讯飞推出的 AI 辅助文档编辑工具,利用语音识别和自然语言处理技术,提供智能文本生成、语音输入、文档格式化等功能。 选择合适的工具取决于您的具体需求,如文档类型、出版标准和个人偏好。
2025-02-13
音频文件转为MP3格式的AI有哪些?是否需要付费?
目前市面上将音频文件转为 MP3 格式的 AI 工具较多,常见的有格式工厂、迅捷音频转换器等。这些工具部分提供免费服务,但也有一些功能或高级版本需要付费。具体的付费情况会因工具的不同而有所差异。
2025-02-13
如何构建一个检查word文档格式的智能体
构建一个检查 word 文档格式的智能体可以参考以下步骤: 1. 考虑到对照精读环节适合批处理形式,使用“分段输入正文”将正文分割,用 LLM 节点批处理每一段的对照精读,最终“拼合精读结果”以输出完整文本。 2. 用户输入原文时,在 AI 对话窗口中通过开场白提示用户按格式输入文章,用“”符标记标题句。 3. 用 Python 脚本去掉标题句,并把剩下内容按照段落的换行逐段输出为 Array<String>格式。附上相关 Python 代码。 4. 试运行以验证节点是否按预期运作,分次输出每一段原文。 此外,在创建智能体的知识库方面: 1. 手动清洗数据可提高准确性,如创建画小二课程的 FAQ 知识库,飞书在线文档中每个问题和答案以“”分割。 2. 对于本地 word 文件,注意不能一股脑将所有内容放入训练,应先放入大的章节名称内容,再按固定方式人工标注和处理章节内详细内容。 3. 完成后点击发布,确保在 Bot 商店中能搜到,否则无法获取 API。
2025-02-10
能够模仿产品经理,把我的需求描述整理成格式化的PRD的工具有什么
以下是一些能够模仿产品经理,把您的需求描述整理成格式化 PRD 的工具: 1. 用户研究、反馈分析:Kraftful(kraftful.com) 2. 脑图:Whimsical(whimsical.com/aimindmaps)、Xmind(https://xmind.ai) 3. 画原型:Uizard(https://uizard.io/autodesigner/) 4. 项目管理:Taskade(taskade.com) 5. 写邮件:Hypertype(https://www.hypertype.co/) 6. 会议信息:AskFred(http://fireflies.ai/apps) 7. 团队知识库:Sense(https://www.senseapp.ai/) 8. 需求文档:WriteMyPRD(writemyprd.com) 9. 敏捷开发助理:Standuply(standuply.com) 10. 数据决策:Ellie AI(https://www.ellie.ai/) 11. 企业自动化:Moveworks(moveworks.com)
2025-02-09
视频拍摄中如何用更准确的提示词
在视频拍摄中,以下是一些更准确的提示词使用技巧: 1. 清晰定义动作:如果想让视频中包含角色的动作,用具体的动词和副词来描述,如奔跑、飞翔、游泳或跳舞,并包含动作的速度,如缓慢、快速或逐渐。示例提示词:“一只狗欢快地在海滩上冲刺,跃起接住空中的球。” 2. 使用描述性形容词:准确传达视频的氛围至关重要,使用能唤起想要传达的感觉的形容词,如宁静、神秘或充满活力。示例提示词:“海滩上一个宁静、雾蒙蒙的早晨,柔和的阳光透过沙滩椅洒下。” 3. 提供背景故事或上下文:对于更复杂的视频项目,融入特定的情节元素或角色,提供背景或上下文有助于生成连贯且引人入胜的视频序列。 4. 使用相机角度和运动:Firefly 通常可以模拟真实世界的摄像工作,通过指定希望相机采用的角度或运动,如推镜头、拉镜头、平移、倾斜、固定镜头,为视频增添个性化的触感。 不同的视频模型和工具在提示词方面也有各自的特点: 1. Vidu 模型:其 Prompt 基本构成包括主体/场景、场景描述、环境描述、艺术风格/媒介。要调整句式和语序,避免主体物过多/复杂、主体物分散的句式描述,避免模糊的术语表达,使用更加流畅准确的口语化措辞,丰富、准确和完整的描述才能生成特定艺术风格、满足需求的视频。 2. 星流一站式 AI 设计工具:在其 prompt 输入框中可以输入提示词、使用图生图功能辅助创作。提示词用于描绘想要的画面,输入语言方面,星流通用大模型与基础模型 F.1、基础模型 XL 使用自然语言,基础模型 1.5 使用单个词组,支持中英文输入。写好提示词要做到内容准确,包含人物主体、风格、场景特点、环境光照、画面构图、画质等。还可以调整负面提示词,利用“加权重”功能让 AI 明白重点内容,使用辅助功能如翻译、删除所有提示词、会员加速等。
2025-02-26
图片的提示词的精准度
以下是关于图片提示词精准度的相关内容: 画面精度提示词: high detail(高细节) hyper quality(高品质) high resolution(高分辨率) FHD, 1080P, 2K, 4K, 8K 8k smooth(8K 流畅) 渲染效果提示词: Unreal Engine(虚幻引擎) octane render(渲染器) Maxon Cinema 4D 渲染器 architectural visualisation(建筑渲染) Corona Render(室内渲染) Quixel Megascans Render(真实感) VRay(V 射线) Behance C4D 3D blender surreal photography(超现实摄影) realistic 3D(真实 3D) zbrush 在描述图片提示词时,通常的逻辑包括:人物及主体特征(服饰、发型发色、五官、表情、动作),场景特征(室内室外、大场景、小细节),环境光照(白天黑夜、特定时段、光、天空),画幅视角(距离、人物比例、观察视角、镜头类型),画质(高画质、高分辨率),画风(插画、二次元、写实)。通过这些详细的提示词,能更精确地控制绘图。 对于新手而言,有以下辅助书写提示词的方法和网站: 下次作图时,先选择模板,点击倒数第二个按钮快速输入标准提示词。 功能型辅助网站,如:http://www.atoolbox.net/,通过选项卡方式快速填写关键词信息。 https://ai.dawnmark.cn/,每种参数有缩略图参考,方便直观选择提示词。 去 C 站(https://civitai.com/)抄作业,每一张图都有详细参数,可点击复制数据按钮,粘贴到正向提示词栏,Stable Diffusion 会自动匹配参数,但要注意图像作者使用的大模型和 LORA,不然即使参数一样,生成的图也会不同。也可以只取其中较好的描述词,如人物描写、背景描述、小元素或画面质感等。 提示词所做的工作是缩小模型出图的解空间,即缩小生成内容时在模型数据里的检索范围,而非直接指定作画结果。提示词的效果受模型影响,不同模型对自然语言、单词标签等语言风格的反应不同。 提示词中可以填写以下内容: 自然语言:可以使用描述物体的句子作为提示词,大多数情况下英文有效,也可用中文,避免复杂语法。 单词标签:使用逗号隔开的单词作为提示词,一般使用普通常见单词,单词风格要和图像整体风格搭配,避免拼写错误,可参考 Emoji、颜文字:Emoji 表情符号准确且在语义准确度上表现良好,对构图有影响。关于 emoji 确切含义,可参考。对于使用 Danbooru 数据的模型,西式颜文字可在一定程度上控制出图的表情。
2025-02-26
怎么学习提示词 prompt
以下是关于如何学习提示词(prompt)的全面指导: 一、理解提示词的作用 提示词向模型提供上下文和指示,其质量直接影响模型输出的质量,能让模型更准确地理解并完成所需任务。 二、学习提示词的构建技巧 1. 明确任务目标,用简洁准确的语言描述。 2. 给予足够的背景信息和示例,帮助模型理解语境。 3. 使用清晰的指令,如“解释”“总结”“创作”等。 4. 对特殊要求应给予明确指示,如输出格式、字数限制等。 三、参考优秀案例 研究和学习已有的优秀提示词案例,可在领域社区、Github 等资源中找到大量案例。 四、实践、迭代、优化 多与语言模型互动,根据输出提高提示词质量。尝试各种变体,比较分析输出差异,持续优化提示词构建。 五、活用提示工程工具 目前已有一些提示工程工具可供使用,如 Anthropic 的 Constitutional AI。 六、跟上前沿研究 提示工程是当前最前沿的研究领域之一,持续关注最新的研究成果和方法论。 七、具体学习步骤 1. 拥有一个大模型帐号,并熟悉与之对话的方式。推荐 ChatGPT4 及国产平替:。 2. 阅读 OpenAI 的官方文档:。 精心设计的提示词能最大限度发挥语言模型的潜力,多实践、多学习、多总结,终可掌握窍门。请注意,内容由 AI 大模型生成,请仔细甄别。
2025-02-26
如何让推理大模型回答的更准确,使用什么样的提示词
要让推理大模型回答得更准确,可以通过以下提示词相关的设置和方法: 1. 参数设置: Temperature:参数值越小,模型返回结果越确定;调高参数值,可能带来更多随机、多样化或具创造性的产出。对于质量保障等任务,设置更低值以促使模型基于事实返回真实简洁结果;对于诗歌生成等创造性任务,可适当调高。 Top_p:与 Temperature 类似,用于控制模型返回结果的真实性。需要准确和事实的答案时,调低参数值;想要更多样化答案时,调高参数值。一般建议改变其中一个参数即可。 Max Length:通过调整控制大模型生成的 token 数,有助于防止生成冗长或不相关的响应并控制成本。 Stop Sequences:指定字符串来阻止模型生成 token,是控制响应长度和结构的方法之一。 Frequency Penalty:对下一个生成的 token 进行惩罚,与 token 在响应和提示中出现次数成比例,减少响应中单词的重复。 2. 提示词示例: 对于推理任务,目前已有一些涉及数学能力的改进。执行推理任务可能有难度,需要更高级的提示词工程技术,后续会介绍相关高级技术。 可以通过示例给模型说明,可能获得更准确结果,后面章节会介绍更多常见应用示例。 3. 调教方法: 像打字和写作一样,不断尝试和大模型交互是最佳方法,方法论不是关键。 可以在提示词里设定规则,也可临时更改,交互时无需遵循规则,重点是是否达成目的,未达成可重新尝试或更换模型。 用 Markdown 格式清晰表达问题,具有结构清晰、格式化强调、适用性广等优点,有助于模型更好地理解用户意图。
2025-02-26
文章风格提示词逆向工程
文章风格提示词逆向工程是指通过分析和检查现有文章,了解其设计和创作方式,从而生成更优提示词的过程。 利用 ChatGPT 进行逆向工程的步骤包括: 1. 利用 ChatGPT 对指定文章进行改写。 2. 对改写后的版本进行原创性检验。 3. 根据检验结果,指导 ChatGPT 进行进一步优化。 4. 重复上述过程,直至满足高度原创的标准。 5. 采用逆向工程的方法,梳理 ChatGPT 的改写策略。 6. 整合这些策略,形成一套提高文章原创性的高效提示词。 在进行逆向提示词工程时,需要注意以下几点: 1. 检测原创度的大多是机器,不能仅凭肉眼判断改写效果。 2. 对相同提示词多次改写或从元提示词中挑选部分深入改写,可有效提升文章质量。 3. 逆向提示词要提炼文章的语气、写作风格、用词、句式等各种写作要素,包括修辞手法、文章布局、论点和证据、段落长度和句子节奏等多个维度。 4. 不同领域的逆向分析需要相应的专业知识,如文学作品和编程领域。 这种逆向工程方法在营销、商业分析、心理学等领域均适用,能够在智能写作等领域持续产生可商用的提示词。但也需注意,掌握逆向分析技术可能导致一些 AI 创业公司被替代。
2025-02-25
如何更好的创建提示词
以下是关于如何更好创建提示词的相关内容: 创建提示词是一个关键步骤,决定了 AI 模型如何理解并生成文本。以下是一些建议: 1. 明确任务:清晰定义任务,如写故事时包含背景、角色和主要情节。 2. 提供上下文:若任务需特定背景知识,提供足够信息。 3. 使用清晰语言:用简单、清晰的语言描述,避免模糊或歧义词汇。 4. 给出具体要求:如有特定格式或风格,在提示词中明确指出。 5. 使用示例:提供期望结果的示例,帮助 AI 模型理解需求。 6. 保持简洁:简洁明了,避免过多信息导致模型困惑。 7. 使用关键词和标签:有助于模型理解任务主题和类型。 8. 测试和调整:生成文本后检查结果,根据需要调整提示词,可能需多次迭代。 此外,不同的工具和场景中创建提示词还有一些特定要点: 在星流一站式 AI 设计工具中: 输入语言方面,通用大模型与部分基础模型使用自然语言,部分基础模型使用单个词组,支持中英文输入。 写好提示词要做到内容准确,包含人物主体、风格、场景特点、环境光照、画面构图、画质等。 可调整负面提示词,帮助 AI 理解不想生成的内容。 利用“加权重”功能让 AI 明白重点内容,还可使用预设词组、辅助功能如翻译、删除所有提示词、会员加速等。 在文本补全(Text completion)中: 遵循展示和告诉、提供高质量数据、检查设置这三个基本准则。 故障排除时,需明确生成的预期结果、提供足够示例、检查示例有无错误、正确使用温度和 top_p。 希望这些内容能帮助您更好地创建提示词。
2025-02-25
我如何有效使用waytoagi的能力,请告诉我实现路线
以下是有效使用 WaytoAGI 能力的实现路线: 1. 加入飞书群:您可以在 WaytoAGI 飞书知识库首页找到加入飞书群的链接(最新二维码请在获取),然后点击加入,直接@机器人即可。 2. 在网站首页提问:您也可以在 WaytoAGI.com 的网站首页,直接输入您的问题,即可得到回答。 对于知识库的使用,您可以参考以下内容: 1. 从 Agent 板块开始:以 Agent 板块为例,链接: 。使用方法为从下往上看,一个一个点进去,都有视频。共学都有视频,都是手把手从注册开始的教学,不会就多看几遍,基本保障一个工具能调通、一个 Agent 能搭好。注意事项:内容较多,点进去看看哪个工具您听过就从哪个工具开始,不然太累。 2. 看精选文章:链接: 。使用方法为看了一些视频之后,根据需求找到导航,想看哪里点哪里。备注:智能千帆、阿里云百炼都是有视频的,其余没有视频。注意事项:内容较多,要考虑聚焦,先挑一个,开始手把手一起做起来,只要开始用起来,这事儿就成啦! 此外,推荐您采用布鲁姆分类法学习路径: 1. 应用方面:深入 。 2. 分析方面:大量阅读,理解各知识之间的关系。
2025-02-26
如何更好的使用ai
以下是关于如何更好地使用 AI 的一些建议: 数据分析方面: 将数据清洗、提取、模型选择、训练和结果解释等环节分开处理,针对每个环节优化 AI 性能,便于发现和修正问题。 提问方式方面: 对于复杂问题,采用逐步深化和细化的方式提问。先提出宽泛问题,再根据回答进一步细化或深化。 提供学习内容方面: 为 AI 系统提供大量高质量的数据和示例,包括详细的操作指南、行业最佳实践、案例研究等。编写详细的流程和知识(knowhow),帮助 AI 更好地理解任务,也为人类用户提供指导。 利用专业术语方面: 在 Prompt 中使用专业领域术语引导 AI 的回答方向,使其更精准地提供所需信息。 验证与反馈方面: 大模型的语料存在滞后性,使用 AI 回答后要进行交叉验证,结合自身专业知识筛选和判断,确保信息准确且符合相关要求。 教师使用方面: 把大模型当作大学生,“实习生”只能执行任务,需要指明方向,拆解任务,教其一步一步操作,像导演一样编排具体流程,检查结果,修改流程,反复迭代。 提示语的核心是逻辑,要将复杂任务拆分成科学合理的步骤,让前一步的结果成为后一步的基础。 很多 AI 网站可以创建“智能体”,配置提示词、知识库、能力等,设置“常用语”“小助手”“bot”,以实现多次使用和逐步调整优化。 写作方面: 可以让 AI 草拟任何东西的初稿,如博客文章、论文等。 提高提示质量,与系统互动,让写作更出色。 让 AI 改进文本内容,提供更好的建议,以不同风格创建草稿。 把 AI 当作实习生,让其完成写邮件、创建销售模板等任务。 利用 AI 让自己在任务中保持动力。
2025-02-26
如何最大程度的利用自己的PPT,然后使用AI 来优化它?
以下是最大程度利用自己的 PPT 并使用 AI 来优化的方法: 1. AI 生成 PPT 的主要思路: 以爱设计为例,导入大纲到工具生成 PPT。其他工具操作方式大同小异,都是基于 Markdown 语法的内容来完成 PPT 的生成。具体步骤可移步到 MindShow、闪击、爱设计等章节。 优化整体结构,按照公司要求自行优化字体、图片等元素。针对下载后的 PPT,可以删改内容以达到心理预期。 2. 参考案例:卓 sir 利用 AI 完成 PPT 作业,虽然探索写 prompt 花了不少时间,但最终成功完成,包括大纲内容、排版、动画等,感觉良好。 3. 好用的 AI PPT 工具: Gamma:在线 PPT 制作网站,通过输入文本和想法提示快速生成幻灯片,支持嵌入多媒体格式。https://gamma.app/ 美图 AI PPT:由美图秀秀开发团队推出,输入简单文本描述生成专业 PPT 设计,包含丰富模板库和设计元素。https://www.xdesign.com/ppt/ Mindshow:AI 驱动的 PPT 辅助工具,提供自动布局、图像选择和文本优化等智能设计功能。https://www.mindshow.fun/ 讯飞智文:科大讯飞推出的 AI 辅助文档编辑工具,利用语音识别和自然语言处理技术优势,提供智能文本生成、语音输入、文档格式化等功能。https://zhiwen.xfyun.cn/
2025-02-26
在国内,怎样能够使用ChatGPT
在国内使用 ChatGPT 可以参考以下步骤: 1. 引言:ChatGPT 是由 OpenAI 开发的基于 GPT 架构的人工智能模型,是先进的自然语言处理工具,能理解和生成接近人类水平的文本。目前官网有 GPT3.5 和 GPT4 两个版本,GPT3.5 免费但智能程度不如 GPT4,GPT4 的 PLUS 套餐收费 20 美金/月,还有团队版和企业版,功能更多但费用更贵,一般推荐 PLUS 套餐。 2. 注册准备:在注册 ChatGPT 账号前,先注册一个谷歌账号,因为国外很多软件支持谷歌账号一键登录,目前注册谷歌账号支持国内手机号码和国内邮箱验证。 3. 苹果系统安装、订阅 GPT4 教程: 在 AppleStore 下载 chatgpt,中国区正常下载不了,需切换到美区。美区 AppleID 注册教程可参考知乎链接:,最终在 AppleStore 搜到 chatgpt 下载安装,注意别下错。 支付宝购买苹果礼品卡:打开支付,地区切换到美区任意区,往下滑,找到【品牌精选折扣礼品卡】,点击进去,看到【大牌礼品卡】,往下滑找到【App Store&iTunes US】礼品卡,按需要的金额购买,建议先买 20 刀。 操作步骤:支付宝购买礼品卡;在 apple store 中兑换礼品卡;在 chatgpt 中购买订阅 gpt plus,中途不想继续订阅可到订阅列表中取消订阅。完成后即可开始使用 ChatGPT 4。
2025-02-26
关于使用deepseek的创业思路有什么
以下是一些关于使用 DeepSeek 的创业思路: 1. 将 Agent 封装成 Prompt,并将 Prompt 储存在文件中,以保证最低成本的人人可用,同时减轻调试负担。 2. 通过提示词文件,让 DeepSeek 实现同时使用联网功能和深度思考功能。 3. 在模型默认能力的基础上优化输出质量,并通过思考减轻 AI 味,增加可读性。 4. 照猫画虎参考大模型的 temperature 设计阈值系统,后续根据反馈可能会修改。 5. 用 XML 来进行更为规范的设定,而非 Lisp(有难度)和 Markdown(运行不稳定)。 用户对 DeepSeek 的使用场景包括但不限于: 1. 脑爆活动方案。 2. 生成会议纪要和方案,稍加修改即可呈现高质量的会议总结。 3. 本地搭建超级 AI 助手。 4. 与飞书结合批量处理客户评论。 5. 分析总结复盘内容。 6. 生成专业专用软件详细使用过程。 7. 写课程方案、做产品最小 MVP、做创业想法梳理。 8. 检索资料搜索。 9. 编程,推荐装机硬件。 10. 写小说大纲和细纲,系统查资料,评估买车等。 11. 做雷达算法框架、自媒体公众号文章。 12. 批处理,完成原型设计,产品深度思考,勾画 MVP 关键点,评估。 13. 做项目工作。 14. 教小朋友学英语。 15. 学习量化交易。 16. AI 咨询,为企业赋能。 17. 自动提醒团队形成。 18. 结合飞书多维表格+DeepSeek 搭建创业软件小助手,一句话生成软件落地方案。 19. 解决数学建模的解题思路。 20. 问诊推荐感冒中成药。
2025-02-26