Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

AI客服案例

Answer

以下是为您整理的一些 AI 客服相关案例:

  • 扣子案例合集:包括保姆级教程教您用扣子搭建免费好用的“图片转表格”AI 客服(附实操过程+效果)、前端智能化中扣子能做的事、如何用扣子搭建“赛事活动 AI 客服”机器人等。
  • SOP + AI 案例:X 公司客服团队引入 SOP 和 AI 助手后,工作效率显著提升。引入 SOP 前工作流程混乱,引入后标准化操作提高了效率,进一步引入 AI 助手实现自动化,如自动回复常见问题、处理简单请求等,最终工作效率提升 30%以上,客户满意度提高。
  • 阿里云百炼案例:订票平台需具备结构清晰、全面的 FAQ 库,可基于用户信息提前呈现可能问题及解答,并动态更新。还提到可通过百炼的 Assistant API 构建 Multi-Agent 架构的大模型应用实现智能导购。此外,企业可通过内部规章制度等文档构建知识库,借助 RAG 智能体实现内部知识问答功能,该功能已灰度上线,需提供 UID 并通过白名单开启。
Content generated by AI large model, please carefully verify (powered by aily)

References

扣子案例合集-社区内容分享

[heading3]Bot分享[保姆级教程!教你如何用扣子搭建一个免费好用的“图片转表格”AI客服(附实操过程+效果)](https://mp.weixin.qq.com/s/FOcAaARTnTp50D49ZKPZow)[前端智能化,扣子(](https://mp.weixin.qq.com/s/tiolzTwPKPZF4b8zZbvYpA)[coze.cn](https://mp.weixin.qq.com/s/tiolzTwPKPZF4b8zZbvYpA)[)能做什么?](https://mp.weixin.qq.com/s/tiolzTwPKPZF4b8zZbvYpA)[【AI学习】如何用扣子搭建“赛事活动AI客服”机器人?亲测效果好](https://www.toutiao.com/article/7367384038752977417)[重磅!浙师版ChatGPT,上线!](https://mp.weixin.qq.com/s/ltLcAbKUv08Ym08FKCpcEw)[字节最新发布的Coze太好用了,我也不想取代合规老师的工作啊!](https://mp.weixin.qq.com/s/dgr9GhWatREfOR61s0iucg)[从0到1|使用coze国内版部署飞书bot机器人、豆包智能体](https://mp.weixin.qq.com/s/suaawdGz453LaRX6kAcAcA)[Coze+爬虫=周末去哪不用愁!!](https://mp.weixin.qq.com/s/OfN3ndVfye9p_0wIeuQWng)

SOP + AI:打造职场高效能人士的秘密武器

我们来看看一个具体的案例。X公司的客服团队在引入SOP和AI助手后,工作效率得到了显著提升。在引入SOP之前,客服团队的工作流程非常混乱,每个客服人员都有自己的一套工作方法,导致工作效率低下,客户满意度不高。后来,公司决定引入SOP,对客服流程进行标准化。通过详细记录和标准化操作,客服团队的工作效率大大提高。但这还不够,公司进一步引入了AI助手,利用AI助手对客服流程进行自动化。比如,AI助手可以自动回复一些常见问题,处理简单的客户请求,减少了客服人员的工作量。通过实时监控和反馈,AI助手还能及时发现客服流程中的问题,帮助团队进行优化。结果,这家公司客服团队的工作效率提升了30%以上,客户满意度也得到了显著提高。通过以上内容,相信大家已经对SOP有了更深入的了解。SOP不仅能提升工作效率,还能减少失误,促进团队协作。而借助AI助手,SOP的制定和优化将变得更加高效和智能。如果你希望在职场中脱颖而出,提升自己的工作能力,不妨尝试制定自己的SOP,并借助AI助手进行优化。相信你会发现,工作变得更加轻松高效,职业生涯也将迎来新的突破。欢迎关注JessieZTalk,获取更多职场提升技巧与AI应用案例!

DAY2 - 更好用的文本知识库应用跟学,快速上手阿里云百炼

AI客服vs.人工客服:优劣势对比要想高效解决用户问题,客服系统必须具备一个结构清晰、全面的FAQ库。例如,在订票平台中,基于用户的账号信息或购票路径,提前呈现用户可能遇到的问题及对应解答,这比等待用户逐一选择问题更为高效。FAQ库不仅需要覆盖常见问题,还应根据实际场景进行动态更新,确保系统的响应能力。下面列举订票平台搭建FAQ的几种视角(内容不全,抛砖引玉)原文可以参考:https://www.woshipm.com/ai/6131879.html回顾一下我们昨天的工作流:您的商城有顾客来购买冰箱,下面是一个常规流程:1.前台会询问顾客希望购买什么,并将顾客带到商店售卖冰箱区域,并有对应商品导购来服务。2.导购向顾客询问想要什么样的冰箱,以及相关预算。3.导购根据信息将合适的冰箱推荐给顾客,并促成购买。类似的,您可以通过百炼的Assistant API构建一个Multi-Agent架构的大模型应用,实现与用户主动提问,搜集必要信息的智能导购。[heading3]企业客户实践案例[heading3]内部业务助手[content]通过企业内部规章制度、部门结构、产品介绍等文档构建知识库,并借助RAG智能体实现内部知识问答功能。系统支持多源异构数据,并通过复杂文档解析和视觉增强技术,提升文档理解的准确性与深度。目前该功能已灰度上线,需提供UID并通过白名单进行开启。阿里云内部产品助手:

Others are asking
目前网上AI是如何分类的?
目前网上对 AI 的分类方式主要有以下几种: 1. 根据 a16z 榜单重新整理的分类: 生产力(文档、ppt、会议、脑爆、数据处理、搜索、浏览、email、文件) 社交(真实、虚拟) 教育(早教、语言学习、公司教育、父母教育、学生工具、学校工具) 创意内容(视频、音乐、声音、个人图像、图像) 2. 编程工具分类: AI IDE(AI 集成开发环境):本身是单独的软件开发工具,在原有软件开发工具基础上通过代码魔改具备 AI 功能,如 Cursor、Windsurf、Trae 等。 AI Extensions(AI 插件):必须被集成进对应的开发环境中才能使用,如阿里的“通义灵码”、百度的“文心快码”、字节跳动的“MarsCode”、科大讯飞的“iFlyCode”、GitHub 的“Copilot”等。 3. 以生成方式划分的 AIGC 分类: 音视频生成类: 视频生成:当前视频生成可分为文生视频、图生视频与视频生视频,主流生成模型为扩散模型。视频生成可用于娱乐、体育分析和自动驾驶等领域,经常与语音生成一起使用。 语音生成:用于文本到语音的转换、虚拟助手和语音克隆等,常用模型由 Transformers 提供,常用技术包括循环神经网络、长短时记忆网络、WaveNet 等。 一些具有代表性的海外项目: Sora(OpenAI):以扩散 Transformer 模型为核心,能生成长达一分钟的高保真视频,支持多种生成方式,在文本理解方面表现出色。 Genie(Google):采用 STtransformer 架构,包括潜在动作模型、视频分词器与动力学模型,拥有 110 亿参数。 WaveNet(DeepMind):一种生成模型,可生成逼真的人类语音。 MuseNet(OpenAI):一种生成音乐的 AI 模型,可在多种风格和乐器之间组合。 Multilingual v2(ElevenLabs):一种语音生成模型,支持 28 种语言的语音合成服务。
2025-03-08
有没有视频转换拍摄脚本的AI工具
以下是一些可以将视频转换为拍摄脚本的 AI 工具: 1. ChatGPT + 剪映:ChatGPT 可生成视频小说脚本,剪映能根据脚本自动分析出视频所需场景、角色、镜头等要素,并生成对应素材和文本框架,实现从文字到画面的快速转化。 2. PixVerse AI:在线 AI 视频生成工具,支持将多模态输入(如图像、文本、音频)转化为视频。 3. Pictory:AI 视频生成器,允许用户提供文本描述来生成相应视频内容,无需视频编辑或设计经验。 4. VEED.IO:提供 AI 图像生成器和 AI 脚本生成器,帮助用户从图像制作视频,并规划视频内容。 5. Runway:AI 视频创作工具,能将文本转化为风格化的视频内容,适用于多种场景。 6. 艺映 AI:专注于人工智能视频领域,提供文生视频、图生视频、视频转漫等服务,可根据文本脚本生成视频。 如果您想用 AI 把小说做成视频,大致的制作流程如下: 1. 小说内容分析:使用 AI 工具(如 ChatGPT)分析小说内容,提取关键场景、角色和情节。 2. 生成角色与场景描述:根据小说内容,使用工具(如 Stable Diffusion 或 Midjourney)生成角色和场景的视觉描述。 3. 图像生成:使用 AI 图像生成工具根据描述创建角色和场景的图像。 4. 视频脚本制作:将提取的关键点和生成的图像组合成视频脚本。 5. 音频制作:利用 AI 配音工具(如 Adobe Firefly)将小说文本转换为语音,添加背景音乐和音效。 6. 视频编辑与合成:使用视频编辑软件(如 Clipfly 或 VEED.IO)将图像、音频和文字合成为视频。 7. 后期处理:对生成的视频进行剪辑、添加特效和转场,以提高视频质量。 8. 审阅与调整:观看生成的视频,根据需要进行调整,比如重新编辑某些场景或调整音频。 9. 输出与分享:完成所有编辑后,输出最终视频,并在所需平台上分享。 请注意,具体的操作步骤和所需工具可能会根据项目的具体需求和个人偏好有所不同。此外,AI 工具的可用性和功能也可能会随时间而变化,建议直接访问上述提供的工具网址获取最新信息和使用指南。
2025-03-08
我这边想学习AI动画
以下是关于学习 AI 动画的相关信息: 有一门推荐的 AI 课程,其内容包括预习周课程(如 AI 绘画电脑配置要求、高效 AIGC 创意者的数字人工具包、SD 插件安装方法、画静为动的 AIGC 视频制作讲解等)、基础操作课(涵盖 AI 绘画通识课、AI 摄影虚拟的真实、AI 电影 穿越的大门等)、核心范式课程(涉及词汇的纸牌屋、核心范式应用、控制随机性等)、SD WebUi 体系课程(包括 SD 基础部署、SD 文生图、图生图、局部重绘等)、ChatGPT 体系课程(有 ChatGPT 基础、核心 文风、格式、思维模型等)、ComfyUI 与 AI 动画课程(包含部署和基本概念、基础工作流搭建、动画工作流搭建等)、应对 SORA 的视听语言课程(涉及通识 欢迎参加电影的葬礼、影像赏析、基础戏剧影视文学等)。如果想要免费获得这门课程,可以参与 video battle,获胜者有不同的奖励,包括课程和门票。扫码添加菩萨老师助理,可了解更多课程信息。 作为小白参与制作 AI 动画短片的经验分享:在项目中负责“刺猬菠萝”角色的图片和视频制作,在他人指导下掌握基本技巧并使用 MJ 和 RunWayAI 工具。为完成任务,学习入门资料、参与团队讨论并向有经验的人请教。对于想要了解 AI 生成图像和生成视频的朋友,建议多看教程多实践、积极参与社群交流、保持好奇心和探索精神。AI 技术发展迅速,对视频内容创作产生深远影响,提高制作效率、降低制作成本,为设计小白提供机会。
2025-03-08
我是一个小白,但是想学习AI相关的知识,你有什么推荐吗,我需要注意什么,有什么技术学习路线
对于想学习 AI 的小白,以下是一些推荐和需要注意的方面,以及技术学习路线: 一、基础知识 1. 了解 AI 基本概念 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 数学基础 学习线性代数、概率论、优化理论等。 3. 编程基础 掌握 Python、C++等编程语言。 二、学习路径 1. 偏向技术研究方向 机器学习基础:监督学习、无监督学习、强化学习等。 深度学习:神经网络、卷积网络、递归网络、注意力机制等。 自然语言处理:语言模型、文本分类、机器翻译等。 计算机视觉:图像分类、目标检测、语义分割等。 前沿领域:大模型、多模态 AI、自监督学习、小样本学习等。 科研实践:论文阅读、模型实现、实验设计等。 2. 偏向应用方向 机器学习基础:监督学习、无监督学习等。 深度学习框架:TensorFlow、PyTorch 等。 应用领域:自然语言处理、计算机视觉、推荐系统等。 数据处理:数据采集、清洗、特征工程等。 模型部署:模型优化、模型服务等。 行业实践:项目实战、案例分析等。 三、深入学习和实践 1. 选择感兴趣的模块深入学习 AI 领域广泛(比如图像、音乐、视频等),根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 2. 实践和尝试 理论学习之后,通过实践巩固知识,尝试使用各种产品做出自己的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 3. 体验 AI 产品 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 无论是技术研究还是应用实践,数学和编程基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-03-08
我需要一个AI给我匹配口型
以下为一些可以为您匹配口型的 AI 工具及相关信息: 1. 即梦 AI: 对口型功能是其“视频生成”中的二次编辑功能,现支持中文、英文配音。主要针对写实/偏真实风格化人物的口型及配音生成。 操作流程:可上传包含完整人物面容的图片,进行视频生成,待视频生成完成后,点击预览视频下的“对口型”(嘴唇)按钮,输入台词并选择音色,或上传配音文件进行对口型效果生成。 技巧:上传写实/近写实的人物单人图片,目前不支持多人物图片对口型;输入 prompt,选择参数,点击生成视频,尽量确保人物无形变等扭曲效果;确保人物生成的情绪与希望匹配的口型内容匹配;在生成的视频下方,点击【对口型】;输入或上传需要配音的内容,注意视频生成时长和配音试听时长尽量对齐,点击生成;先对口型,再超分补帧。 目前支持语言:中文(全部音色),英文(推荐“超拟真”内的音色)。 2. HenGen AI:近期公布了 AI 切换视频内语言的能力,并且能够将 Avatar 口型与视频相匹配。 3. PixVerse V3: Lipsync 可以为视频配音配口型,生成视频最长可达 30s,目前只支持对 PixVerse 生成的视频进行口型适配。 优点:支持多种语言(英语、汉语、法语、日语等等皆可适配)。 操作流程:选择一张带有人脸的图片上传,写好提示词,点击生成视频。为保证最佳生成效果,建议使用单人图片。点击生成的视频,在生成的视频下方找到“Lipsync”并点击。之后,您可以输入文案,从右边的预设声音中选择合适的声音,或者点击“Upload Audio”上传一段音频,最后点击“create”生成视频。 注意:生成视频的长度取决于您文案或音频的长度,最长为 30s。例如,5s 视频+3s 音频=3s 语音视频,5s 视频+30s 音频=30s 语音视频。
2025-03-08
现在ai最前沿的发展趋势是什么
AI 技术的发展历程和前沿趋势如下: 发展历程: 1. 早期阶段(1950s 1960s):包括专家系统、博弈论、机器学习初步理论。 2. 知识驱动时期(1970s 1980s):有专家系统、知识表示、自动推理。 3. 统计学习时期(1990s 2000s):出现机器学习算法如决策树、支持向量机、贝叶斯方法等。 4. 深度学习时期(2010s 至今):深度神经网络、卷积神经网络、循环神经网络等得到广泛应用。 当前前沿技术点: 1. 大模型(Large Language Models):如 GPT、PaLM 等。 2. 多模态 AI:包括视觉 语言模型(CLIP、Stable Diffusion)、多模态融合。 3. 自监督学习:如自监督预训练、对比学习、掩码语言模型等。 4. 小样本学习:例如元学习、一次学习、提示学习等。 5. 可解释 AI:涉及模型可解释性、因果推理、符号推理等。 6. 机器人学:涵盖强化学习、运动规划、人机交互等。 7. 量子 AI:包含量子机器学习、量子神经网络等。 8. AI 芯片和硬件加速。 在学习路径方面: 偏向技术研究方向: 1. 具备数学基础,如线性代数、概率论、优化理论等。 2. 掌握机器学习基础,包括监督学习、无监督学习、强化学习等。 3. 深入学习深度学习,如神经网络、卷积网络、递归网络、注意力机制等。 4. 熟悉自然语言处理,如语言模型、文本分类、机器翻译等。 5. 了解计算机视觉,如图像分类、目标检测、语义分割等。 6. 跟进前沿领域,如大模型、多模态 AI、自监督学习、小样本学习等。 7. 进行科研实践,包括论文阅读、模型实现、实验设计等。 偏向应用方向: 1. 掌握编程基础,如 Python、C++等。 2. 熟悉机器学习基础,如监督学习、无监督学习等。 3. 熟练使用深度学习框架,如 TensorFlow、PyTorch 等。 4. 应用于自然语言处理、计算机视觉、推荐系统等领域。 5. 做好数据处理,包括数据采集、清洗、特征工程等。 6. 进行模型部署,如模型优化、模型服务等。 7. 参与行业实践,如项目实战、案例分析等。 无论是技术研究还是应用实践,数学和编程基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。 此外,去年生成式 AI 从不引人注意走到了 AI 50 强榜单的前列。今年,随着企业用户和消费者的 AI 生产力大幅提高,其成为前沿和中心。尽管 2023 年美国的大部分 AI 风投流向了基础设施领域,应用公司仍在 AI 50 强榜单中占据主导地位。如今,许多公司正将 AI 融入其工作流程,以此来快速达成 KPI。不远的将来,我们有望看到 UX 和 UI 围绕 AI 的功能进行重新设计。
2025-03-08
如何搭建AI智能客服
搭建 AI 智能客服可以参考以下步骤: 1. 明确核心构思:利用企业已有的知识积累,结合大模型的强大能力,为用户提供准确且简洁的答案。创建企业私有知识库,收录企业过去的问答记录和资料,再利用大模型对用户咨询的问题进行处理,确保回答的准确性和一致性,还能在必要时提供原回答的完整版,以满足用户的深度需求。同时对接人工客服,在智能助手无法解决用户问题时,用户可以快速转接到人工客服,确保问题的及时解决。这种人机结合的模式,有助于提升整体服务质量和客户满意度。 2. 具体操作步骤: 10 分钟在网站上增加一个 AI 助手: 创建大模型问答应用:通过百炼创建一个大模型应用,并获取调用大模型应用 API 的相关凭证。 搭建示例网站:通过函数计算,来快速搭建一个网站,模拟您的企业官网或者其他站点。 引入 AI 助手:通过修改几行代码,实现在网站中引入一个 AI 助手。 增加私有知识:准备一些私有知识,让 AI 助手能回答原本无法准确回答的问题,帮助您更好的应对客户咨询。 零成本、零代码搭建一个智能微信客服: 找到高级下开场白,点击展开,填写开场白文案、开场白预置问题。 勾选用户问题建议:在 Bot 回复后,根据 Prompt 提供最多 3 条用户提问建议。 添加语音选择:让其不仅会写,还会通过语音跟您交流。 点击“发布”,选择发布平台,如 Bot Store、豆包、飞书、微信客服、微信公众号(服务号)、微信公众号(订阅号)、掘金等。
2025-03-06
有没有一款智能客服软件,支持同时接入抖音、天猫、淘宝、京东、拼多多、得物等主流平台的售前售后咨询问题,并根据客户关键字自动回复
目前已知以下智能客服算法: 天猫小蜜智能客服算法:由浙江天猫网络有限公司提供,应用于手机天猫(APP)的在线智能客服场景,能识别文字或语音问题,结合智能客服知识库生成回答。 钉钉智能客服算法:由钉钉科技有限公司提供,应用于钉钉(APP)的在线智能客服场景,能根据用户咨询内容结合知识库生成多种形式的回答。 淘票票小蜜智能客服算法:由上海淘票票影视文化有限公司提供,应用于淘票票(APP)的在线智能客服场景,能根据用户咨询生成文本或语音智能回答。 1688 阿牛智能客服算法:由杭州阿里巴巴广告有限公司提供,应用于 1688 工业品(APP)、阿里巴巴(APP、网站)的在线智能客服场景,能结合知识库生成多种形式的回答。 但尚未有一款明确表明能同时接入抖音、天猫、淘宝、京东、拼多多、得物等主流平台售前售后咨询问题,并根据客户关键字自动回复的智能客服软件。
2025-03-05
有没有那款智能客服软件,具备接入全渠道平台的客户咨询能力
以下是为您推荐的一些具备接入全渠道平台客户咨询能力的智能客服软件: 1. 阿里云百炼:可以在几分钟内构建一个 AI 助手,并发布到网站、钉钉或微信公众号中。适用于有企业官网、钉钉、微信等渠道,期望为客户提供产品咨询服务,且缺少技术人员开发大模型问答应用的情况。其智能体应用基于大模型,通过集成特定的外部能力,能够弥补大模型的不足,例如回答私有领域问题、获取最新信息等。典型场景包括私有领域知识问答、个性化聊天机器人、智能助手等。 2. COW 框架:是基于大模型搭建的 Chat 机器人框架,可以实现打造属于自己的 ChatBot,包括文本对话、文件总结、链接访问、联网搜索、图片识别、AI 画图等功能,支持多平台接入(微信、企业微信、公众号、飞书、钉钉等)、多模型选择(GPT3.5/GPT4.0/Claude/文心一言/讯飞星火/通义千问/Gemini/GLM4/LinkAI 等等)、多消息类型支持(能处理文本、语音和图片,以及基于自有知识库进行定制的企业智能客服功能)和多部署方法(本地运行、服务器运行、Docker 的方式)。但需要注意的是,使用此框架接入大模型 API 需单独付费,且微信端使用可能存在封号危险,操作时需依法合规。 此外,利用 AI 聊天机器人实现客户服务自动化也是常见的做法。通过部署 AI 聊天机器人处理常见的客户咨询,将其集成到企业的网站、社交媒体平台和其他客户服务渠道,能够提高客户服务的效率和可及性。同时,通过机器人提供 24/7 客户支持,定期监控其性能并根据反馈进行优化,能够提升响应速度和服务质量。
2025-03-05
有没有适合美妆行业,具备接入全渠道的智能客服软件/AI工具
目前在美妆行业,具备接入全渠道的智能客服软件/AI 工具相对较少。一些常见的智能客服解决方案提供商可能会提供相关服务,但需要您进一步调研和评估其是否满足您的具体需求。例如,一些知名的客服软件平台可能会具备一定的全渠道接入能力,但在美妆行业的针对性优化方面可能各有差异。建议您在选择时,重点考虑其对美妆行业常见问题的理解和处理能力、与现有业务系统的集成便捷性以及用户体验等方面。
2025-03-05
小公司, 想部署一个本地ai系统,希望它能够, 对运维, 运营, 客服, 美术, 策划, 程序都能够有很大的帮助, 目前市面上那款 ai 模型比较合适
对于小公司想要部署一个能对运维、运营、客服、美术、策划、程序都有帮助的本地 AI 系统,以下是一些相关信息: 线上和线下本地部署的 AI 特点: 线上部署的优势在于出图速度快,不依赖本地显卡配置,无需下载大型模型,还能参考其他创作者的作品,但出图尺寸受限。线下部署的优势是可添加插件,出图质量高,但使用时电脑可能宕机,配置不高可能爆显存导致出图失败。建议线上用于找参考、测试模型,线下作为主要出图工具。 Ollama: 支持多种大型语言模型,包括通义千问、Llama 2、Mistral 和 Gemma 等,适用于不同场景。 易于使用,适用于 macOS、Windows 和 Linux 系统,支持 CPU 和 GPU。 提供模型库,用户可从中下载不同模型,满足不同需求和硬件条件。 支持自定义模型,可调整参数。 提供 REST API 用于运行和管理模型,以及与其他应用集成。 社区贡献丰富,有多种集成插件和界面。 Google Gemma: 是 Google 发布的家用版小模型,有 2b(20 亿参数)和 7b(70 亿参数)版本。小模型可能不适合复杂任务,但适合提升基础操作效率。部署环境友好,可通过 ollama 方便部署,支持热加载模型文件。2b 反应速度快但互动话题有限,7b 输出质量高但可能卡顿,对非英文语种反馈不稳定。 综合考虑,如果您的公司对出图质量要求较高,且有较好的硬件配置,可以选择线下部署结合线上测试的方式。在语言模型方面,Ollama 具有较多优势,可根据具体需求选择合适的模型进行部署。
2025-03-04
小游戏公司, 想部署一个本地ai系统,希望它能够, 对运维, 运营, 客服, 策划, 程序都能够有很大的帮助, 目前市面上那款 ai 模型比较合适
对于小游戏公司部署本地 AI 系统以帮助运维、运营、客服、策划和程序等方面,以下是一些建议和相关信息: 目前市面上的 AI 模型各有特点。线上 AI 具有出图速度快、不依赖本地显卡配置、无需下载大型模型以及能参考其他创作者作品等优势,但出图尺寸受限。线下部署的 AI 可以添加插件、出图质量高,但可能导致电脑宕机且对配置要求高。 在游戏领域,AI 大模型带来了诸多变化,如游戏内容辅助生成(包括文、图、3D 和音乐),可应用于游戏策划人和美术设计师。文生图和图生图能提高创作效率,动画辅助渲染可改变角色风格,游戏智能运营涵盖智能 NPC 互动、客服、攻略问答和代码脚本生成等,适用于产品经理、运营经理和社区运营经理。 Google 刚刚发布的家用版小模型 Gemma 有 2b(20 亿参数)和 7b(70 亿参数)版本。相对千亿参数的大模型,这类小模型可能不太适合处理复杂任务,但代表了模型本地化提升基础操作效率的趋势。Ollama 是一个开源的大型语言模型服务,方便部署最新版本的 GPT 模型并通过接口使用,支持热加载模型文件,且像小型的 llama 也支持本地部署。部署时,需进入 ollama.com 下载程序并安装,通过命令提示符进行操作和切换模型。2b 反应速度快但互动话题有限,7b 输出质量高但可能卡顿,且对非英文语种反馈不太稳定。 综合考虑,小游戏公司可以根据自身需求和硬件配置选择合适的 AI 模型。如果对出图质量要求高且有较好的硬件配置,可尝试线下部署;若更注重效率和便捷性,线上模型可能更适合。同时,也可以考虑像 Gemma 这样的小模型进行本地化部署以提升基础操作效率。
2025-03-04
AI办公提效案例
以下是一些 AI 办公提效的案例: 案例二:【调研达人秘籍】 效益:通过清晰的 AI 工作流,能在短时间内完成深度调研,为决策提供有力支持。 AI 赋能调研工作流: 启动智库引擎:问 AI 怎么理解问题。 搭建信息骨架:问 AI 怎么汇报内容。 精准信息挖掘:问“秘塔 AI”定向搜索。 信息融合与分析:问“Kimichat”综合分析。 汇报成果精炼:整合分析结果,制作报告,分享实用调研工具。详情可查看链接:https://m.okjike.com/originalPosts/65 案例六:【AI 听播客音频,获取信息提速 20 倍】 操作步骤: 点开小宇宙播客分享链接。 打开微信通义听悟小程序。 可以直接在通义听悟看概括总结(2h 播客可以在 4min 左右分析完);也可一键转录解析导出 txt 文字版,丢到 kimi 自定义分析;(kimi 也可以读取播客链接进行音频解析,但是目前好像无法进行逐字稿)。视频解说看这里,播客速读 ai 工作流.mp4 可通过链接下载:https://bytedance.feishu.cn/space/api/box/stream/download/all/HXDcb9dNHoJH0bxeK9ecPEA6nYd?allow_redirect=1 案例:最近被《》种草,5h 时长的播客,用上述工作流 15min 内搞定所有精华信息,提效 20 倍。 宝玉日报 2 月 23 日: 管理经验加持 AI 应用:沟通明确,善于提供上下文,让 AI 更有效地执行任务;明晰 AI 能力边界,善于合理授权并监督检查;擅长任务拆解和整合,提升 AI 协作效率。详情链接:https://x.com/dotey/status/1893538744671641649 医保严禁 AI 自动开处方:DeepSeek、Grok 等 AI 工具看病仅需几十秒,引发关注。湖南省医保局正式表态,明确禁止使用人工智能生成医疗处方。详情链接:https://x.com/dotey/status/1893533370535051528 Coinbase 全面推动 AI 应用:所有工程师均使用 Cursor AI 工具进行编程,显著提高效率。AI 技术广泛应用于欺诈预防、客户支持、风险评分、设计等领域。下一步将实现从 Jira 或 Linear 工单到 PR 代码的 AI 自动生成,助力需求自动化落地。微信全文链接:https://mp.weixin.qq.com/s/dXodWGaPQgcOoMqwi7U_lQ ;详情链接:https://x.com/dotey/status/1893071537835557363
2025-03-07
企业场景AI办公案例
以下是为您整理的企业场景 AI 办公案例: 社区 AI 讲师招募 招募要求: 具有丰富的企业端 AI 实践经验,包括以下场景(具备其中一个或多个场景的实践能力沉淀): AI 生成爆款内容:利用 AI 分析挖掘同品类爆款内容,借助 AI 工具生成电商商品图、小红书图文内容、种草短视频内容等。 公域阵地场景:基于视频号、抖音、小红书、公众号等平台搭建企业营销推广能力,包括矩阵号和 IP 号,通过短视频、直播等方式获取 leads,涉及矩阵号工具、内容抓取分析、脚本创作、AI 剪辑、自动回复评论、无人直播工具等。 私域阵地场景:朋友圈、小红书、社群、个人 IP 的获客转化,使用销售企微 SCRM 工具、企业智能体进行 AI 内容抓取和自动回复。 服务自动化工具,数据监控和预警,流程优化,自动运营等。 快速搭建数据分析看板。 跨境电商场景:tiktok 视频制作及投放、电商图片设计、精准营销、语言翻译、AI 独立站建设、社媒私域、批量混剪、海外达人直播、无人直播(数字人直播)等。 具备良好的表达能力,能清晰条理地阐述在技术和业务方面的沉淀。 招募流程:对感兴趣的小伙伴,提交个人简历(包括基本信息介绍、学历、专业、工作经验,以及 AI 企业端的案例),填写问卷,预约电话面谈,面谈通过后进行公开课试讲。 AI 决策背后的黑箱:企业如何避免陷入智能陷阱,重塑决策流程 创新与效率的平衡:AI 时代的人类创新力 AI 效率的优势与创新力的挑战:AI 的核心优势在于高效处理复杂数据任务、快速发现规律并生成解决方案,显著提升企业日常运营效率,如生产制造流程优化、客户服务自动化、财务数据分析精准化等。但随着 AI 深入应用,需反思效率提升是否抑制企业创新潜力。 企业的创新挑战:企业中,AI 可提升工作效率,但过度依赖可能导致员工失去主动创新空间,如市场部依赖 AI 生成广告创意。企业需在使用 AI 时确保员工有创新空间,如设计跨部门合作项目。 案例场景:在一家科技公司中,AI 系统接管日常决策工作,起初减轻负担,但员工逐渐依赖 AI 生成的“最佳方案”,不再主动提出想法,导致团队自主创新能力削弱,失去探索新市场和开发创新产品的动力,揭示了过度依赖 AI 的潜在风险,即缺乏情境理解与直觉性创造,长期依赖可能导致员工丧失提出突破性想法的勇气和能力,阻碍企业未来创新发展。
2025-03-07
AI应用案例有哪些
以下是一些 AI 的应用案例: 1. 在大淘宝设计部: 品牌超级符号映射:根据品牌符号的模型训练和结构控制,用户输入关键词可快速完成准确的超级符号主视觉,如双 11 AI 创作赢红包、双 11 联合传播猫头海报&花车大巡游、超级品类日 品牌符号系列海报等案例。 品牌 IP 形象 AI 生成:训练特定的天猫/淘宝/营销 IP 公仔模型,稳定输出定制化 IP 形象,如天猫 AI 玩行动 品牌联合海报、天猫双 11 出游主题喵卡、淘宝天猫一起冲亚、天猫 U 先公仔三视图生成及应用等案例。 传播&投放:如双 11 超级发布 品牌联合海报、媒介投放开屏海报等案例。 2. 在汽车行业: 自动驾驶技术:利用 AI 进行图像识别、传感器数据分析和决策制定,如特斯拉、Waymo 和 Cruise 等公司的开发和测试。 车辆安全系统:用于增强车辆的安全性能,如自动紧急制动、车道保持辅助和盲点检测系统。 个性化用户体验:根据驾驶员的偏好和习惯调整车辆设置。 预测性维护:通过分析车辆实时数据预测潜在故障和维护需求。 生产自动化:用于汽车制造过程中的自动化生产线。 销售和市场分析:分析市场趋势、消费者行为和销售数据。 电动化和能源管理:在电动汽车的电池管理和充电策略中发挥作用。 共享出行服务:优化路线规划、调度车辆和定价策略。 语音助手和车载娱乐:如 Amazon Alexa Auto 和 Google Assistant 等。 车辆远程监控和诊断:远程监控车辆状态,提供实时诊断和支持。 3. 在活动策划中: 活动主题及内容生成:根据活动目标、参与者背景等信息生成合适的主题和内容框架建议。 邀请函和宣传文案生成:基于活动信息生成吸引人的邀请函和宣传文案。 现场活动管理:利用计算机视觉、语音识别等辅助管理活动现场的人流、秩序等。 虚拟助手:AI 对话系统作为虚拟活动助手,为参与者提供信息查询、问题咨询等服务。 活动反馈分析:自动分析活动反馈,总结关键观点和改进建议。 活动营销优化:基于参与者行为数据优化营销策略,实现个性化营销。
2025-03-06
RAG架构图和实现案例
以下是关于 RAG 架构图和实现案例的相关内容: RAG 是当今大多数现代人工智能应用程序的标准架构。以 Sana 的企业搜索用例为例,其工作原理如下: 1. 应用程序加载和转换无结构文件(如 PDF、幻灯片、文本文件),跨越企业数据孤岛(如 Google Drive 和 Notion),通过数据预处理引擎(如 Unstructured)转换为 LLM 可查询格式。 2. 这些文件被“分块”成更小的文本块,以实现更精确的检索,并作为向量嵌入存储在数据库(如 Pinecone)中。 3. 当用户提出问题时,系统检索语义上最相关的上下文块,并将其折叠到“元提示”中,与检索到的信息一起馈送给 LLM。LLM 从检索到的上下文中合成答复返回给用户。 在生产中,AI 应用程序具有更复杂的流程,包含数十甚至数百个检索步骤,通常具有“提示链”,不同类型的任务并行执行多个“提示链”,然后将结果综合在一起生成最终输出。 随着 RAG 的发展,出现了自适应的检索(也被称作主动检索),其核心思想与 LLM Agent 相似。根据判断依据可分为 Promptbase 和 Tuningbase: 1. Promptbase:通过 Prompt Engineering 的方式让 LLM 对流程进行控制。典型实现案例是 FLARE,其核心思想是 LM 仅在缺乏所需知识时进行检索,以避免被动检索增强的 LM 中出现不必要或不适当的检索。FLARE 迭代地生成下一个临时句子,并检查是否包含低概率标记。如果是这样,系统将检索相关文档并重新生成句子。 2. Tuningbase:对 LLM 进行微调使其生成特殊的 token,以此来触发检索或生成。典型案例是 SelfRAG,具体步骤包括:给定输入提示和前面的生成结果,首先预测特殊 token“Retrieve”判断是否通过检索段落对继续的生成进行增强是有帮助;如果有帮助,调用检索模型,模型会生成一个 critique token 来评估检索段的相关性、下一个响应片段和一个批判令牌来评估响应片段中的信息是否得到了检索段的支持;最后,一个新的批判令牌评估响应的整体效用。模型会并行处理这些内容,并选择最佳结果作为最终的输出。 此外,系统的内存是 LMM 的上下文窗口,存在架构限制,窗口越大推理越慢,同时模型会失焦,降低推理的准确度。前沿模型研发团队都力争做到吞吐量、速度还有准确度的最佳平衡。大模型应用领域常用的方法是 RAG,例如 Perplexity、面向企业知识库的 Glean 以及面向个人知识库的 Maimo 等应用。
2025-03-05
有没有具体的案例供参考呢?
以下为您提供一些 AI 应用的具体案例供参考: 即梦的智能参考功能: 模特图方面,可实现变装、换发型、换脸、换发色和调整人物姿势等,例如将模特衣服换成婚纱、将图片背景换成橙色等。 产品图方面,能改变产品材质和调整画面背景,比如将沙发材质换成布或毛绒等。 电商海报方面,支持随意更改背景、元素以适应不同营销主题,例如把图片背景改成居家风格。 基础操作包括打开即梦官网 https://jimeng.jianying.com/ ,选择图片生成,然后选择导入参考图并点击智能参考。 原文链接:https://mp.weixin.qq.com/s/sD0RFMqnFZ6Bj9ZcyFuZNA AIGC 落地应用案例推荐: 部分案例取自以下来源:AIGC 交流群工具沉淀.by 向阳、通往 AGI 之路、No.1 关于 AI 的 107 个人,61 个工具和 28 个通讯.by 赛博禅心、Chat GPT Plugins 全面测评.by 捡到一束光、https://www.futurepedia.io/aitools/funtools 等。 周三【workshop】一起写 Prompts 成果展示: 小组 1 中,一个 prompt 主要用于输入主题为老师生成 PPT,使用者为教师(生成)和学生(阅读)。目前的最好解决方案包括提炼教学内容核心概念确定主题、增加提纲、对提纲进行关键词描述、根据关键词书写提纲下的摘要,并让用户确认生成的课件提纲和内容是否需要修改。成熟的案例参考:step 1(根据 PPT 大纲助手 GPTs 生成 PPT 大纲):https://chat.openai.com/g/gOKorMBxxUpptdagangzhushou ;step 2(根据输入文本生成 PPT 内容 GPTs 生成 PPT 内容):https://chat.openai.com/g/gYJs9jxVBHshuruwenbenshengchengpptneirong ;step 3(将生成的内容复制到 Marp Web 渲染简洁的 PPT):https://web.marp.app/
2025-02-28
土木建筑类AI案例
以下是一些能够帮助建筑设计师审核规划平面图的 AI 工具: 1. HDAidMaster:这是一款云端工具,建筑师能在平台上使用主流的 AIGC 功能进行有趣的集卡式方案创作,在建筑、室内和景观设计领域表现出色,平台搭载自主训练的建筑大模型 ArchiMaster,软件 UI 和设计成果颜值在线。 2. Maket.ai:主要面向住宅行业,在户型和室内软装设计方面有 AI 技术探索,设计师输入房间面积需求和土地约束,软件能自动生成户型图并查看详细设计结果。 3. ARCHITEChTURES:AI 驱动的三维建筑设计软件,提供全新设计模式,在住宅设计早期可引入标准和规范约束 AI 生成的设计结果,保证合规性。 4. Fast AI 人工智能审图平台:形成全自动智能审图流程,从住宅设计图构件开始,集自动导入、区域划分、构件识别、强条审查和自动导出结果于一体,为建筑信息自动建模打下基础,实现建筑全寿命周期内信息集成和数据汇总管理。 每个工具都有特定应用场景和功能,建议根据具体需求选择合适的工具。但需注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-02-28