对于小游戏公司部署本地 AI 系统以帮助运维、运营、客服、策划和程序等方面,以下是一些建议和相关信息:
目前市面上的 AI 模型各有特点。线上 AI 具有出图速度快、不依赖本地显卡配置、无需下载大型模型以及能参考其他创作者作品等优势,但出图尺寸受限。线下部署的 AI 可以添加插件、出图质量高,但可能导致电脑宕机且对配置要求高。
在游戏领域,AI 大模型带来了诸多变化,如游戏内容辅助生成(包括文、图、3D 和音乐),可应用于游戏策划人和美术设计师。文生图和图生图能提高创作效率,动画辅助渲染可改变角色风格,游戏智能运营涵盖智能 NPC 互动、客服、攻略问答和代码脚本生成等,适用于产品经理、运营经理和社区运营经理。
Google 刚刚发布的家用版小模型 Gemma 有 2b(20 亿参数)和 7b(70 亿参数)版本。相对千亿参数的大模型,这类小模型可能不太适合处理复杂任务,但代表了模型本地化提升基础操作效率的趋势。Ollama 是一个开源的大型语言模型服务,方便部署最新版本的 GPT 模型并通过接口使用,支持热加载模型文件,且像小型的 llama 也支持本地部署。部署时,需进入 ollama.com 下载程序并安装,通过命令提示符进行操作和切换模型。2b 反应速度快但互动话题有限,7b 输出质量高但可能卡顿,且对非英文语种反馈不太稳定。
综合考虑,小游戏公司可以根据自身需求和硬件配置选择合适的 AI 模型。如果对出图质量要求高且有较好的硬件配置,可尝试线下部署;若更注重效率和便捷性,线上模型可能更适合。同时,也可以考虑像 Gemma 这样的小模型进行本地化部署以提升基础操作效率。
目前市面上有线上和线下本地部署的两种AI:线上的优势为出图速度快,不吃本地显卡的配置,且无需自己下载动辄几个G的模型,还能看其他创作者的制作的涩图,但为了节约算力成本他们只支持出最高1024X1024左右的图,制作横板、高清等图片就会受限线下部署的优势为可以自己添加插件,不卡算力,出图质量高于线上平台,但是使用期间电脑基本处于宕机状态,如果配置不高的话还会出现生成半天之后爆显存的情况,导致出图失败[heading3]所以我们这里充分发挥线上和线下平台的优势[content]线上:找参考,测试模型线下:主要的出图工具在线上绘图网站的绘图广场上发现自己想要的画风点击创作,会自动匹配创作的使用的模型lora和tag截取一小张游戏人物作为底图,目的是将线上平台有限的算力全部堆在人物身上多批次,多数量的尝试不同的画风,得出最符合游戏的一款模型+lora组合最后在C站([https://civitai.com/](https://civitai.com/))上下载对应模型到本地,加载部署后就可以开始正式生图了!
游戏内容辅助生成,生成文、生成图、生成3D以及生成音乐。应用分为两个场景,一个是游戏策划人和制作人,第二个是美术的设计师。去年开始,听的较多的是基于Stable Difussion的生成。对于工业化的游戏公司,它能够通过2D美术素材的辅助生成提高创业效率50%,降低20%-80%的成本。文生图:提示词加参数就可以形成2D的参考图,适配度是非常高的,可能一开始用SD或者其他的开源工具去做。图生图:原画师或美术会使用,用一个线稿或原画,在原画基础上加一些Prompt,加一些参数,就可以形成一个效果图和二级的素材,这种情况会越来越多的。动画辅助渲染:用Lora对角色背景、关键帧进行风格渲染。例如,用真人视频渲染成二次元风。游戏的智能运营,包括智能NPC互动、客服、攻略的问答、代码和脚本的生成。主要针对游戏的产品经理、运营经理和社区的运营经理。智能NPC:保持长期记忆;保持人物个性和对话表现形式;满足成本平衡游戏社区运营:海外Discord,国内Fanbook。让更多的玩家在游戏之外,在社群里面很好的互动,如基于游戏的美术素材二创、对于攻略的查询和智能客服。
作者:吵爷Google刚刚发布了家用版的小模型Gemma,分别为2b(20亿参数)和7b(70亿参数)版本。相对千亿参数的大模型,这种小模型可能不适合解决特别复杂的任务,但是从趋势上看应该是模型本地化提升基础操作效率的模板。类似之前国内发布的ChatGLM-6B。现在的部署环境比一年前要友好多了,首先提一下Ollama,Ollama是一个开源的大型语言模型服务,可以非常方便地部署最新版本的GPT模型并通过接口使用,支持热加载模型文件,无需重新启动即可切换不同的模型。除了Gemma,像小型的llama也支持本地部署。环境准备首先进入ollama.com,下载程序并安装(支持windows,linux和macos)查找cmd进入命令提示符,输入ollama-v检查版本,安装完成后版本应该显示0.1.26cls清空屏幕,接下来直接输入ollama run gemma运行模型(默认是2b),首次需要下载,需要等待一段时间,如果想用7b,运行ollama run gemma:7b完成以后就可以直接对话了,2个模型都安装以后,可以重复上面的指令切换。2b的反应速度非常快,但是能够互动的话题有限。7b我也试了下,能跑是能跑(我是3050显卡),但是会有明显的卡顿,输出内容的质量相对会高不少,但无论2b还是7b,对非英文语种的反馈都不是很稳定。2b测试7b测试另外模型里一些常用的内部指令/set显示设置界面可调整的设置项/show显示模型信息