构建一个智能体通常包括以下步骤:
需要注意的是,构建智能体时,对于工作流中涉及个人 token 的部分,不能直接发布,可将其作为输入由用户自行购买和输入后再发布。
创建一个智能体,输入人设等信息,放上刚才创建的2个工作流。配置完成后,就可以测试了~[heading1]千万不要直接发布!!![content]工作流2中【所有视频片段拼接】节点使用的插件api_token填的是你的token,其他人调用这个工作流会直接消耗你的money,所以不能直接发布。你可以将api_token作为工作流2最开始的输入,用户自己购买后,输入api_token就可以使用,然后再发布。看到这里,说明你离做出来就差一步行动了,期待看到你的成果!我是五津:C端新闻、视频产品经理,2025 AI春晚节目统筹&共创者,我的微信是:wdwxhs0100,欢迎来聊~我的公众号是【宝藏智能体club】
工具使用或函数调用通常被视为从RAG到主动行为的第一个半步,为现代人工智能栈增加了一个新的层。这些工具,本质上是预先编写的代码组件,执行特定的操作。流行的原语如网页浏览([Browserbase](https://www.browserbase.com/)、[Tiny Fish](https://www.tinyfish.io/))、代码解释([E2B](https://e2b.dev/))和授权+认证([Anon](https://www.anon.com/))已经出现。它们使LLMs能够导航网络、与外部软件(如CRM、ERP)交互并运行自定义代码。该系统向LLM呈现可用的工具,后者然后选择一个工具,构建必要的结构化JSON输入,并触发API执行以产生最终操作。Omni的[计算AI](https://omni.co/blog/introducing-calculations-ai)功能体现了这种方法。它利用LLM直接输出适当的Excel函数到电子表格中,然后执行计算并自动生成复杂查询供用户使用。就此而言,工具的使用是强大的,但仅凭自身并不能被视为"主动性"。逻辑控制流程仍然由应用程序预先定义。我们将在即将到来的设计中探索的真正智能体人,使LLMs能够动态地编写全部或部分自己的逻辑。
按照上一章节所描述的品牌卖点提炼的步骤,为了提炼出合理的卖点,我们需要按照市场营销的逻辑组织智能体的结构。[heading2]3.3搭建完整智能体[content]在这个工作流中,我们确定了以品牌卖点提炼六步法为核心的流程,而为了最终能够到达第六步应用,我们需要将其他的分析助手加入工作流中,为我们找到更有效的结论,所以这些结构包括:1.品牌卖点定义与分类助手:让智能体理解独特性卖点、通用性卖点、保障性卖点在我们的营销场景中的定义,用提问的方式帮助我们先划定品牌所处的生态位。1.品牌卖点提炼六步法:按照我们所提出的六步法,将探索、排列、抽取、收敛、确认、应用流程提供给智能体。2.STP市场分析助手:让智能体回到市场洞察中,使用STP营销分析对应的市场细分、目标市场和定位。1.用户画像分析助手:目标用户是品牌卖点的核心,如果公司对用户画像没有进行过细致的分析,可以借助智能体去获得精准的用户画像。2.触点收集助手:协助卖点在线上、线下、人员等不同场景中的触点,协助卖点的应用落地。同时还包括一些结构中没有体现,但是在我们后续的品牌卖点应用过程中有效的分析工具:1.用户需求分析的KANO助手:详细分析顾客需求所属的类型,KANO模型将用户需求划分为基本型需求(Must-be Attributes)、期望型需求(Performance Attributes)、魅力型需求(Attractive Attributes)、无差异型需求(Indifferent Attributes)、反向型需求(Reverse Attributes)。2.营销六层转化漏斗分析:曝光层面、点击层面、访问层面、咨询层面、成交层面、复购层面。3.超级转化率六要素:互惠、承诺与兑现、信任状、畅销好评、痛点刺激、稀缺。