Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

如何权构建个人AI知识库,请提供详尽的方案,并提供相关工具应用案例。

Answer

以下是构建个人 AI 知识库的详尽方案及相关工具应用案例:

方案

  1. 知识收集:学习如何有效地收集、整理和检索信息,例如分新闻、观点、访谈、论文翻译来进行提炼。
  2. 知识管理:通过实际操作,体验工具在知识管理方面的应用。
  3. 数据处理:使用工具对数据进行转换、提取和呈现,如从图像和图形中提取数据。
  4. 内容总结:总结视频内容、翻译和改换风格等。

工具应用案例

  1. 知识收集与整理:
    • 通义听悟整理录音笔记:https://tingwu.aliyun.com
    • 用 React 实现选中即解释
    • 本机跑大语言模型工具:https://ollama.com
    • 选词翻译、解读、拓展:https://snapbox.app
    • 与各种 AI 机器人聊天:https://opencat.app 、https://chathub.gg/ 、https://www.elmo.chat/
    • 定义提示语,根据不同类型提取有用信息:https://memo.ac/zh/
  2. 数据获取与处理:
    • 下载视频:Mac 用 Downie,Windows 推荐 IDM 淘宝数码荔枝店购买
    • 开源免费屏幕录制工具 OBS:https://obsproject.com/
    • 用 losslessCut 快速切块
  3. 构建知识库:
    • 将文本转换成向量(如使用 embeddings API),先把大文本拆分成若干小文本块(chunk),将小文本块转换成 embeddings 向量并在向量储存库中保存,当用户提问时,通过比对向量提取关联度最高的文本块与问题组合成新的 prompt 发送给 GPT API。
    • 例如对于一篇包含多个文本块的文章,如“文本块 1:本文作者:越山。xxxx。”“文本块 2:公众号越山集的介绍:传播效率方法,分享 AI 应用,陪伴彼此在成长路上,共同前行。”等,当提问“此文作者是谁?”时,可通过比较 embeddings 向量找出关联度最高的文本块。
  4. 工具入门:
Content generated by AI large model, please carefully verify (powered by aily)

References

张翼然:AI引领未来课堂的探索与实践.pdf

学习如何有效地收集、整理和检索信息,打造个人知识库。知识管理通过实际操作,体验这些工具在教学准备和科研中的应用。实践演示直接让Claude⽣成可视化概念图我每天如何使⽤AI•早晚速读朋友圈的⽂章•编写⼩代码,⼩脚本•转换数据并呈现•从图像和图形中提取数据•翻译、改换⻛格•总结视频内容•私⼈导师,探究问题分新闻、观点、访谈、论文翻译来进行提炼用通义听悟整理录音笔记https://tingwu.aliyun.com用React实现选中即解释本机跑大语言模型工具https://ollama.com选词翻译、解读、拓展……https://snapbox.app与各种AI机器人聊天https://opencat.app比较多个大语言模型的回答https://chathub.gg/https://www.elmo.chat/我定义的提示语,根据不同类型提取有⽤信息https://memo.ac/zh/第一步,⽤Downie下载视频,或者⽤OBS录制视频⽂件开源免费屏幕录制⼯具OBS,下载地址https://obsproject.com/Mac⽤Downie,Windows推荐IDM淘宝数码荔枝店购买⽤losslessCut快速切块

从零开始,用GPT打造个人知识库

上面将文本转换成向量(一串数字)能大大节省空间,它不是压缩,可简单理解为索引(Index)。接下来就有意思了。比如我有一个大文本,可以先把它拆分成若干个小文本块(也叫chunk),通过embeddings API将小文本块转换成embeddings向量,这个向量是跟文本块的语义相关。在一个地方(向量储存库)中保存这些embeddings向量和文本块,作为问答的知识库。当用户提出一个问题时,该问题先通过embeddings API转换成问题向量,然后将这问题向量与向量储存库的所有文本块向量比对,查找距离最小的几个向量,把这几个向量对应的文本块提取出来,与原有问题组合成为新的prompt(问题/提示词),发送给GPT API。这样一来就不用一次会话中输入所有领域知识,而是输入了关联度最高的部分知识。一图胜千言,转一张原理图。再举一个极其简单的例子,比如有一篇万字长文,拆分成Chrunks包含:文本块1:本文作者:越山。xxxx。文本块2:公众号越山集的介绍:传播效率方法,分享AI应用,陪伴彼此在成长路上,共同前行。文本块3:《反脆弱》作者塔勒布xxxx。文本块4:“科技爱好者周刊”主编阮一峰会记录每周值得分享的科技内容,周五发布。...文本块n如果提问是”此文作者是谁?“。可以直观的看出上面的文本块1跟这个问题的关联度最高,文本块3次之。通过比较embeddings向量也可以得到这结论。那最后发送给GPT API的问题会类似于”此文作者是谁?从以下信息中获取答案:本文作者:越山。xxxx。《反脆弱》作者塔勒布xxxx。“这样一来,大语言大概率能回答上这个问题。

元子:WayToAGI 知识库究竟咋用?

|分类|标题|文章链接|视频链接|适用人群|简要说明||-|-|-|-|-|-||工具入门篇<br>(Prompt)|现成好用的Prompt|[1.2 Prompts(提示词)](https://waytoagi.feishu.cn/wiki/Q5mXww4rriujFFkFQOzc8uIsnah?table=tblKrq5ConWWamYX&view=vewTwmE9Yo)|暂无|完全没有AI使用经验,只下载过kimi、豆包、chatgpt一类对话软件的小白|想直接拿好用的提示词拿来用用的小伙伴,可以从这里开始,有很多可以直接复制、粘贴的优秀prompt案例,它们都有完整的结构。||工具入门篇<br>(AI Agent)|Agent工具-小白的Coze之旅|[元子:小白的Coze之旅](https://waytoagi.feishu.cn/wiki/FaTgwhczvisJVGkOYHvcX3wGnBg)|Coze之旅1.0:[【智能体搭建共学课】手把手从0开始搞一个智能体讲师:元子_哔哩哔哩_bilibili](https://www.bilibili.com/video/BV1wxBCY8ESs?spm_id_from=333.788.videopod.sections&vd_source=84aaf5d504fda49d36287bb4930a47a2)|完全没有编程基础,但对AI已有一点概念的小白|为纯粹小白补的分享AI AGENT搭建平台,为什么是它、怎么30分钟就能开始用它||工具入门篇(AI Pic)|现在主流的AI绘图工具网站|[AI绘图Prompt网站](https://waytoagi.feishu.cn/wiki/TQogw5uIziB4fykbGhSciaQfndm?table=tbl5kMFjDDdeYoAt&view=vew8AJm3cI)|暂无|完全没接触过AI出图、只是听说过的小伙伴|为纯粹的小白提供一个工具列表和扫盲|

Others are asking
我是一个文科生,并且是AI方面的小白,请问如何在这学习AI
对于文科背景且是 AI 小白的您,以下是学习 AI 的建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的定义、主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,您将找到一系列为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 此外,以下是一些关于 AI 技术原理和框架的通俗易懂的内容: 1. 视频一主要回答了什么是 AI 大模型,原理是什么。 生成式 AI 生成的内容,叫做 AIGC。 相关技术名词: AI 即人工智能。 机器学习包括监督学习、无监督学习、强化学习。监督学习是有标签的训练数据,算法学习输入和输出之间的映射关系,包括分类和回归。无监督学习是学习的数据没有标签,算法自主发现规律,经典任务包括聚类。强化学习是从反馈里学习,最大化奖励或最小化损失,类似训小狗。 深度学习是一种参照人脑有神经网络和神经元的方法。神经网络可以用于监督学习、无监督学习、强化学习。 生成式 AI 可以生成文本、图片、音频、视频等内容形式。 LLM 即大语言模型。对于生成式 AI,其中生成图像的扩散模型就不是大语言模型;对于大语言模型,生成只是其中一个处理任务,比如谷歌的 BERT 模型,可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类。 技术里程碑:2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它完全基于自注意力机制(SelfAttention)来处理序列数据,而不需要依赖于循环神经网络(RNN)或卷积神经网络(CNN)。
2025-02-22
我是一位德语老师,我想用ai帮我备课生成教案,可以用什么工具
以下为您推荐一款可用于生成教案的工具——COZE 应用: 1. 访问地址:https://www.coze.cn/s/iDsBwYLF/ 2. 首页说明:启动页面有相关说明。 3. 生成教案:进入设计教案页面,等待执行完成后即可看到教案,教案是以下三个功能的基础,所有功能都以教案为中心。 4. 趣味课堂:进入趣味课堂,可根据课文内容设计课堂问答卡和针对性的教学活动,采用寓教于乐的方式激发孩子学习兴趣,比如通过 5 个问题贯穿全文与故事主线,还有课堂互动游戏。 5. 课后作业:基于教学大纲和课本重点内容设计题目,包括生字词运用、阅读理解、写作。 6. 教案 PPT:PPT 内容基于前面生成的教学大纲,您需要手动进行少许内容修正。如果对大纲内容不满意,可以重新生成大纲和 PPT。首先复制大纲内容,打开 kimi,选择 PPT;然后复制教案,在对话框粘贴,KIMI 会帮您优化大纲。点击进去后,选择喜欢的模版生成。但友情提醒,下载需要充值。
2025-02-22
雪梅100天学AI
以下是关于雪梅 100 天学 AI 的相关内容: 作者介绍: 适合纯 AI 小白:若您还在观望 AI 不知如何入手,可参考此日记。日记已近 100 天,作者从一开始的到处看到走在学习 AI 的轨道上。 学习模式:输入→模仿→自发创造。若对费曼学习法没自信,可尝试此模式。 学习内容:日记中的学习内容可能不适用,因 AI 节奏快,可去 waytoAGI 社区找感兴趣的最新内容。 学习时间:半年多时间跨度中有 100 天学习 AI,并非每天依次进行,有空时学习。 学习状态:作者 2024 年学习状态好,不仅学 AI 还看了 33 本书。若觉得 100 天难做到,能学多少算多少。 费用:学习资源免费开源。 第十一阶段:寻找继续坚持下去的动力 作者从 24 年 5 月到 25 年 2 月学完 100 天,仍觉未找到明确深耕方向,学习中易遇瓶颈,需找正反馈,开源学习日记获加油,101 天后还需更好的正反馈方式。 2024 年 12 月 31 日历史更新(归档) 雪梅 100 天学 AI 日记,分为三个阶段,适合新人参考借鉴。 Meta 首席 AI 科学家 LeCun 访谈,指出当前 AI 局限,阐述不同技术路径。 少卿的《AI 帮你赢》,强调将 AI 视为方法,提供实用应用框架。
2025-02-22
ai绘画中的模型是什么意思
在 AI 绘画中,模型具有以下含义和特点: 1. 大模型如同主菜或主食,是生成图片的基础框架,决定了图片的基本风格和内容。 2. 小模型(Lora)如同佐料或调料包,能够帮助快速实现特定风格或角色的绘制,比如改变人物形象、画风,添加模型中原本没有的元素,如绘制特定的国内节日元素。 3. 模型的选择与搭配很重要,大模型和 Lora 要基于同一个基础模型才能搭配使用,以生成各种风格的图片。 4. 常用的模型网站有:。 5. 下载模型后需要将之放置在指定的目录下,不同类型的模型放置位置不同。例如,大模型(Ckpt)放入 models\\Stablediffusion;VAE 模型放置在 models\\Stablediffusion 或 models\\VAE 目录,然后在 webui 的设置栏目选择;Lora/LoHA/LoCon 模型放入 extensions\\sdwebuiadditionalnetworks\\models\\lora,也可以在 models/Lora 目录;Embedding 模型放入 embeddings 目录。模型的类型可以通过检测。
2025-02-22
学习AI大模型
以下是关于学习 AI 大模型的相关知识: 1. 概念 生成式 AI 生成的内容称为 AIGC。 2. 概念与关系 AI 即人工智能。 机器学习是电脑找规律学习,包括监督学习、无监督学习、强化学习。 监督学习:使用有标签的训练数据,算法目标是学习输入和输出之间的映射关系,包括分类和回归。 无监督学习:学习的数据没有标签,算法自主发现规律,经典任务如聚类,例如让模型将一堆新闻文章根据主题或内容特征分成相似特征的组。 强化学习:从反馈中学习,以最大化奖励或最小化损失,类似训小狗。 深度学习是一种参照人脑有神经网络和神经元(因有很多层所以叫深度)的方法,神经网络可用于监督学习、无监督学习、强化学习。 生成式 AI 可以生成文本、图片、音频、视频等内容形式。 LLM 是大语言模型,对于生成式 AI,生成图像的扩散模型不是大语言模型;对于大语言模型,生成只是其中一个处理任务,如谷歌的 BERT 模型可用于语义理解(不擅长文本生成),像上下文理解、情感分析、文本分类。 3. 技术里程碑 2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出 Transformer 模型,它完全基于自注意力机制(SelfAttention)处理序列数据,不依赖于循环神经网络(RNN)或卷积神经网络(CNN)。
2025-02-22
AI在国企的应用
AI 在国企的应用场景广泛,以下为您列举一些常见的应用领域: 1. 医疗保健方面: 医学影像分析:辅助诊断疾病。 药物研发:加速研发过程,识别潜在药物候选物和设计新治疗方法。 个性化医疗:为患者提供个性化治疗方案。 机器人辅助手术:提高手术精度和安全性。 2. 金融服务方面: 风控和反欺诈:降低金融机构风险。 信用评估:帮助做出更好的贷款决策。 投资分析:辅助投资者做出明智决策。 客户服务:提供 24/7 服务,回答常见问题。 3. 零售和电子商务方面: 产品推荐:根据客户数据推荐可能感兴趣的产品。 搜索和个性化:改善搜索结果,提供个性化购物体验。 动态定价:根据市场需求调整产品价格。 聊天机器人:回答客户问题并解决问题。 4. 制造业方面: 预测性维护:预测机器故障,避免停机。 质量控制:检测产品缺陷,提高产品质量。 供应链管理:优化供应链,提高效率和降低成本。 机器人自动化:控制工业机器人,提高生产效率。 此外,在国企中,AI 还可以应用于工作流程自动化、提高运营效率、优化资源配置等方面。随着技术的不断发展,未来有望看到更多创新的应用场景和解决方案。
2025-02-22
与dify类似的知识库有那些?哪个更适合商用?
以下是一些与 Dify 类似的知识库: 1. Notion:功能强大,支持多种格式和复杂的结构,适用于各种类型的知识管理。 2. Confluence:常用于团队协作和企业知识共享。 3. Evernote:方便记录和整理各种类型的信息。 至于哪个更适合商用,这取决于具体的需求和使用场景。如果对可视化的知识库管理工具、简单易用且能快速集成到应用中有较高需求,Dify 是不错的选择。Notion 则在灵活性和扩展性方面表现出色,适合对知识结构有复杂要求的商业场景。Confluence 更侧重于团队协作和企业级的知识共享。 使用 Dify 构建知识库的具体步骤如下: 1. 准备数据:收集需要纳入知识库的文本数据,包括文档、表格等格式。对数据进行清洗、分段等预处理,确保数据质量。 2. 创建数据集:在 Dify 中创建一个新的数据集,并将准备好的文档上传至该数据集。为数据集编写良好的描述,描述清楚数据集包含的内容和特点。 3. 配置索引方式:Dify 提供了三种索引方式供选择,包括高质量模式、经济模式和 Q&A 分段模式。根据实际需求选择合适的索引方式,如需要更高准确度可选高质量模式。 4. 集成至应用:将创建好的数据集集成到 Dify 的对话型应用中,作为应用的上下文知识库使用。在应用设置中,可以配置数据集的使用方式,如是否允许跨数据集搜索等。 5. 持续优化:收集用户反馈,对知识库内容和索引方式进行持续优化和迭代。定期更新知识库,增加新的内容以保持知识库的时效性。 Dify 有两种使用方式: 1. 云服务版本。直接在官网 dify.ai 上注册账号使用。 2. 部署社区版。开源,可商用,但是不能作为多租户服务使用。对个人使用完全无限制。 部署前提条件:2 核 4G 云服务器一台(约 159 元)。
2025-02-22
coze知识库是否稳定且保密
Coze 知识库目前存在一些不稳定的情况。例如,在国内版中,某些官方和第三方插件的 API 调用及返回结果不太稳定,可能导致部分信息无法完全显示。但对于以问答为主的客服场景,其表现相对稳定。同时,目前存在不稳定版本,需要不断调试完善。关于保密方面,文中未提及相关内容。
2025-02-22
如何生成企业自己的知识库
生成企业自己的知识库可以参考以下内容: 理论基础: 大模型训练数据有截止日期,当需要依靠不在训练集中的数据时,可通过检索增强生成 RAG(Retrieval Augmented Generation)实现。 RAG 应用包括文档加载(从多种来源加载文档,如 PDF 等非结构化数据、SQL 等结构化数据及代码)、文本分割(把文档切分为指定大小的块)、存储(将切分好的文档块嵌入转换成向量形式并存储到向量数据库)、检索(通过检索算法找到与输入问题相似的嵌入片)、输出(把问题及检索出的嵌入片提交给 LLM 生成答案)。 使用 Coze 知识库: 海外官方文档:https://www.coze.com/docs/zh_cn/knowledge.html 国内官方文档:https://www.coze.cn/docs/guides/use_knowledge Coze 实操 徒手捏 Bot: 搭建流程: 用户输入问题。 大模型通过知识库搜索答案。 大模型根据知识库的内容生成答案。 数据库将用户问题和答案进行存储。 将答案展示给用户。 创建工作流: Start 节点:默认节点,定义输入变量“question”,由 Bot 从外部获取信息传递过来。 知识库节点:输入为用户的查询,输出为从知识库中查询出来的匹配片段。注意查询策略包括混合查询、语义查询和全文索引。 变量节点:有设置变量给 Bot 和从 Bot 中获取变量的能力。 此外,您还可以参考以下作业: 5 月 7 号:创建 https://www.coze.com 账号、创建 https://www.coze.cn 账号、加入共学的 team(看备注)、有精力的话提前阅读、尝试创建自己的第一个 Bot 用来免费使用 GPT4。 5 月 10 日罗文:认领一个插件制作插件说明,可参考。 上述两个作业在 5 月 8 号分享结束之后就可以上手进行了,5 月 9 号会针对工作流和多 Agent 模式进行进一步的讲解。大家制作的 Bot 都可以在飞书群中进行投稿,然后会有专门的同学记录到 Bot 收集板。
2025-02-22
deepseek本地部署知识库
以下是关于 DeepSeek 本地部署知识库的相关信息: 您可以参考以下链接获取更多详细内容: DeepSeek 资料库:照着做可直接上手🔗 需要注意的是,日报中提到本地部署并不适合普通用户,纳米 AI 搜索是目前较为稳定的第三方替代方案,其满血版推理能力接近官方但速度较慢,高速版速度快、体验流畅但推理能力稍弱。体验地址:🔗或下载纳米 AI 搜索 APP 。
2025-02-21
waytoagi 的飞书知识库智能问答机器人是怎么做的
waytoagi 的飞书知识库智能问答机器人是基于飞书 aily 搭建的。在飞书 5000 人大群里内置了名为「waytoAGI 知识库智能问答」的智能机器人,它会根据通往 AGI 之路的文档及知识进行回答。 其具有以下功能和特点: 1. 自动问答:自动回答用户关于 AGI 知识库内涉及的问题,可以对多文档进行总结、提炼。 2. 知识搜索:在内置的「waytoAGI」知识库中搜索特定的信息和数据,快速返回相关内容。 3. 文档引用:提供与用户查询相关的文档部分或引用,帮助用户获取更深入的理解。 4. 互动教学:通过互动式的问答,帮助群成员学习和理解 AI 相关的复杂概念。 5. 最新动态更新:分享有关 AGI 领域的最新研究成果、新闻和趋势。 6. 社区互动:促进群内讨论,提问和回答,增强社区的互动性和参与度。 7. 资源共享:提供访问和下载 AI 相关研究论文、书籍、课程和其他资源的链接。 8. 多语言支持:支持多语言问答,满足不同背景用户的需求。 使用方法: 1. 在飞书群里发起话题时即可,它会根据 waytoAGI 知识库的内容进行总结和回答。 2. 可以在 WaytoAGI 飞书知识库首页找到加入飞书群的链接(二维码需在获取),然后点击加入,直接@机器人即可。 3. 也可以在 WaytoAGI.com 的网站首页,直接输入问题,即可得到回答。 搭建问答机器人的相关情况: 1. 2024 年 2 月 22 日的会议介绍了 WaytoAGI 社区的成立愿景和目标,以及其在飞书平台上的知识库和社区的情况。 2. 讨论了利用 AI 技术帮助用户更好地检索知识库中的内容,引入了 RAG 技术,通过机器人来帮助用户快速检索内容。 3. 介绍了基于飞书的知识库智能问答技术的应用场景和实现方法,可以快速地给大模型补充新鲜的知识,提供大量新的内容。 4. 讨论了如何使用飞书的智能伙伴功能来搭建 FAQ 机器人,以及智能助理的原理和使用方法。 5. 飞书智能伙伴创建平台(英文名:Aily)是飞书团队旗下的企业级 AI 应用开发平台,提供了一个简单、安全且高效的环境,帮助企业轻松构建和发布 AI 应用,推动业务创新和效率提升。为企业探索大语言模型应用新篇章、迎接企业智能化未来提供理想选择。
2025-02-20
如何搭建自己的知识库
搭建自己的知识库可以参考以下步骤: 1. 了解 RAG 技术: 利用大模型的能力搭建知识库是 RAG 技术的应用。 大模型训练数据有截止日期,当需要依靠不在训练集中的数据时,可通过检索增强生成 RAG 实现。 RAG 应用包括文档加载、文本分割、存储、检索和输出 5 个过程。 文档加载:从多种来源加载文档,如 PDF 等非结构化数据、SQL 等结构化数据及代码。 文本分割:把文档切分为指定大小的块。 存储:包括将切分好的文档块嵌入转换成向量形式,并将向量数据存储到向量数据库。 检索:通过检索算法找到与输入问题相似的嵌入片。 输出:把问题及检索出来的嵌入片提交给 LLM 生成答案。 2. 文本加载器:将用户提供的文本加载到内存中,便于后续处理。 3. 基于 GPT API 搭建: 涉及给 GPT 输入定制化知识,但 GPT3.5 一次交互支持的 Token 有限。 OpenAI 提供了 embedding API 解决方案,embeddings 是浮点数字的向量,向量间距离衡量关联性,小距离表示高关联度。 4. 本地知识库进阶: 可使用额外软件 AnythingLLM,其包含 Open WebUI 的能力,并支持选择文本嵌入模型和向量数据库。 安装地址:https://useanything.com/download 。安装完成后进入配置页面,主要分为三步:选择大模型、选择文本嵌入模型、选择向量数据库。 在 AnythingLLM 中创建 Workspace 构建本地知识库,包括创建工作空间、上传文档并进行文本嵌入、选择对话模式(Chat 模式综合给出答案,Query 模式仅依靠文档数据给出答案),最后进行测试对话。 总之,搭建知识库需要不断实践和探索,“看十遍不如实操一遍,实操十遍不如分享一遍”。
2025-02-20
给我总结一下不同的AI工具在写作时可以提供什么样的帮助,他们的优势是什么
以下是不同的 AI 工具在写作时所能提供的帮助及其优势: 邮件写作: Grammarly:提供语法检查、拼写纠正、风格建议和语气调整等功能。易于使用,支持多种平台,适用于多种语言。 Hemingway Editor:简化句子结构,提高可读性,标记复杂句和冗长句。界面简洁,重点突出,适用于改善写作风格和简洁性。 ProWritingAid:全面的语法和风格检查,提供详细的写作报告和建议。功能强大,支持多种平台和集成,特别适合专业写作者。 Writesonic:基于 AI 生成各种类型的文本,包括电子邮件、博客文章、广告文案等。生成速度快,适合需要快速创作和灵感的用户。 Lavender:专注于邮件写作优化,提供个性化建议和模板,帮助用户提高邮件打开率和回复率。 论文写作: 文献管理和搜索: Zotero:结合 AI 技术,自动提取文献信息,帮助管理和整理参考文献。 Semantic Scholar:AI 驱动的学术搜索引擎,提供文献推荐和引用分析。 内容生成和辅助写作: Grammarly:提供文本校对、语法修正和写作风格建议,提高语言质量。 Quillbot:基于 AI 的重写和摘要工具,精简和优化论文内容。 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于进行数据分析和可视化。 Knitro:用于数学建模和优化,进行复杂的数据分析和模型构建。 论文结构和格式: LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,提供丰富模板库和协作功能,简化编写过程。 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:检测潜在抄袭问题。 文章润色: Wordvice AI:集校对、改写转述和翻译等功能于一体,基于大型语言模型提供全面的英文论文润色服务。 ChatGPT:由 OpenAI 开发的大型语言模型,可用于多方面写作辅助。 Quillbot:人工智能文本摘要和改写工具,可快速筛选和改写文献资料。 HyperWrite:基于 AI 的写作助手和大纲生成器,帮助写作前进行头脑风暴和大纲规划。 Wordtune:AI 驱动的文本改写和润色工具,优化文章语言表达。 Smodin:提供 AI 驱动的论文撰写功能,根据输入生成符合要求的学术论文。 总之,这些 AI 工具在写作的不同方面发挥作用,涵盖了校对、改写、大纲生成、内容生成等环节,可有效提高写作效率和质量。用户应根据自身需求选择合适的工具。但使用时需注意仔细甄别内容。
2025-02-20
哪一款AI 可以实现参考一张柱状图,使用我提供的数据,生成同样的柱状图
以下两款 AI 可以实现参考一张柱状图,使用您提供的数据生成同样的柱状图: 1. PandasAI:这是让 Pandas DataFrame“学会说人话”的工具,在 GitHub 已收获 5.4k+星。它并非 Pandas 的替代品,而是将 Pandas 转换为“聊天机器人”,用户可以以 Pandas DataFrame 的形式提出有关数据的问题,它会以自然语言、表格或者图表等形式进行回答。目前仅支持 GPT 模型,OpenAI API key 需自备。例如,输入“pandas_ai.run”,即可生成相关柱状图。链接:https://github.com/gventuri/pandasai 2. DataSquirrel:这是一款自动进行数据清理并可视化执行过程的数据分析工具,能帮助用户在无需公式、宏或代码的情况下快速将原始数据转化为可使用的分析/报告。目前平台提供的用例涵盖了 B2B 电子商务、人力资源、财务会计和调查数据分析行业。平台符合 GDPR/PDPA 标准。链接:https://datasquirrel.ai/
2025-02-18
给我提供一份标准的 DeepSeek R1大模型的 prompt 提示词模板
以下是一份关于 DeepSeek R1 大模型的 prompt 提示词模板: 一、核心原理认知 1. AI 特性定位 多模态理解:支持文本/代码/数学公式混合输入 动态上下文:对话式连续记忆(约 4K tokens 上下文窗口,换算成汉字是 8000 字左右) 任务适应性:可切换创意生成/逻辑推理/数据分析模式 2. 系统响应机制 采用意图识别+内容生成双通道 自动检测 prompt 中的:任务类型/输出格式/知识范围 反馈敏感度:对位置权重(开头/结尾)、符号强调敏感 二、基础指令框架 1. 四要素模板 2. 格式控制语法 强制结构:使用```包裹格式要求 占位符标记:用{{}}标注需填充内容 优先级符号:>表示关键要求,!表示禁止项 三、进阶控制技巧 1. 思维链引导 分步标记法:请逐步思考:1.问题分析→2.方案设计→3.风险评估 苏格拉底式追问:在得出最终结论前,请先列举三个可能存在的认知偏差 2. 知识库调用 领域限定指令:基于 2023 版中国药典,说明头孢类药物的配伍禁忌 文献引用模式:以 Nature 2022 年发表的论文为参考,解释 CRISPRCas9 最新突破 3. 多模态输出 此外,还有关于创建 DeepSeek 联网版工作流的相关内容: 1. 创建工作流 创建一个对话流,命名为 r1_with_net 开始节点,直接使用默认的 大模型分析关键词设置 模型:豆包通用模型lite 输入:直接使用开始节点的 USER_INPUT 作为大模型的输入 系统提示词:你是关键词提炼专家 用户提示词:根据用户输入`{{input}}`提炼出用户问题的关键词用于相关内容的搜索 bingWebSearch搜索 插件:BingWebSearch 参数:使用上一个节点,大模型分析输出的关键词作为 query 的参数 结果:data 下的 webPages 是网页搜索结果,将在下一个节点使用 大模型R1 参考搜索结果回答 这里需要在输入区域开启“对话历史” 模型:韦恩 AI 专用 DeepSeek 输入:搜索结果,选择搜索节点 data 下的 webPages;选择开始节点的 USER_INPUT;开启对话历史,设置 10 轮,默认不开启对话历史,开启后默认是 3 轮 系统提示词:这里不需要输入 用户提示词: 结束节点设置 输出变量选择大模型R1 参考搜索结果回答的输出 回答内容里直接输出:{{output}} 测试并发布工作流 输入你的测试问题,测试完成后,直接发布工作流 关于 HiDeepSeek 的相关内容: 1. 效果对比 用 Coze 做了个小测试,大家可以对比看看 2. 如何使用? Step1:搜索 www.deepseek.com,点击“开始对话” Step2:将装有提示词的代码发给 Deepseek Step3:认真阅读开场白之后,正式开始对话 3. 设计思路 将 Agent 封装成 Prompt,将 Prompt 储存在文件,保证最低成本的人人可用的同时,减轻自己的调试负担 通过提示词文件,让 DeepSeek 实现:同时使用联网功能和深度思考功能 在模型默认能力的基础上优化输出质量,并通过思考减轻 AI 味,增加可读性 照猫画虎参考大模型的 temperature 设计了阈值系统,但是可能形式大于实质,之后根据反馈可能会修改 用 XML 来进行更为规范的设定,而不是用 Lisp(对我来说有难度)和 Markdown(运行下来似乎不是很稳定) 4. 完整提示词 v 1.3 5. 特别鸣谢 李继刚:【思考的七把武器】在前期为我提供了很多思考方向 Thinking Claude:这个项目是我现在最喜欢使用的 Claude 提示词,也是我设计 HiDeepSeek 的灵感来源 Claude 3.5 Sonnet:最得力的助手
2025-02-16
我需要在飞书上构建一个企业每日利润表分析与汇报助手,该选定哪种prompt框架,提供下prompt样例
以下是几种适用于在飞书上构建企业每日利润表分析与汇报助手的 prompt 框架及样例: 1. ICIO 框架: 指令:明确执行的具体任务,如“分析企业每日利润表并生成详细报告”。 背景信息:提供执行任务的背景信息,如“企业近期业务拓展,成本有所增加”。 输入信息:大模型需要用到的一些信息,如“利润表的各项数据”。 输出信息:明确输出的具体信息的要求,如“报告以表格形式呈现,包含各项利润数据的同比和环比变化,并给出简要分析”。 2. BROKE 框架: 背景:说明背景,如“公司处于业务增长阶段,需要密切关注利润情况”。 角色:设定特定的角色,如“利润表分析专家”。 目标:明确任务的目标,如“准确分析每日利润表,为管理层提供决策支持”。 关键结果:明确可以衡量的结果,如“报告中的分析结论能帮助管理层制定有效的成本控制策略”。 调整:根据具体的情况,来调整具体的结果,如“根据市场变化调整利润分析的重点”。 3. CRISPIE 框架: 能力和角色:期望大模型扮演的角色洞察,如“专业的财务分析师”,提供幕后洞察力、背景信息和上下文。 声明:简洁明了的说明希望完成的任务,如“对每日利润表进行全面深入分析”。 个性:回应的风格、个性或者方式,如“以简洁明了、数据准确为特点”。 实验:提供多个回答的示例。 4. 情境框架: 情境:描述当前的情况,如“企业面临市场竞争,利润波动较大”。 任务:明确要完成的任务,如“分析每日利润表,找出利润波动的原因”。 行动:说明采取的行动,如“对各项收入和成本进行详细比对”。 结果:阐述期望得到的结果,如“生成包含原因分析和建议的报告”。
2025-02-14
有什么帮助查找论文,提供论文引用文献和被引用文献的AI
以下是一些能够帮助查找论文、提供论文引用文献和被引用文献的 AI 工具: 1. 文献管理和搜索: Zotero:结合 AI 技术,能自动提取文献信息,便于管理和整理参考文献。 Semantic Scholar:由 AI 驱动的学术搜索引擎,可提供文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:通过 AI 技术进行文本校对、语法修正和写作风格建议,提升论文语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化论文内容。 3. 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,方便进行数据分析和可视化。 Knitro:用于数学建模和优化的软件,有助于进行复杂的数据分析和模型构建。 4. 论文结构和格式: LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,有丰富模板库和协作功能,简化论文编写。 5. 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:检测潜在抄袭问题。 此外,还有以下相关的 AI 工具和网站: 1. TXYZ 网站: 帮助搜索、查询专业文献并进行对话的 AI 工具,提供一站式服务。 是唯一和预印本文库 arxiv.org 官方合作的 AI 工具,ArXiv 的每篇论文下有直达 TXYZ 的按钮。 用户可上传 PDF 论文或链接,迅速找到所需答案和内容,在对话中提供论文参考和可信背书。 2. 一些 GPTs 工具: Consensus:AI 研究助手,可搜索 2 亿篇学术论文,获取基于科学的答案并带有准确引用的内容草稿。 AskYourPDF Research Assistant:增强研究,可与多个文件聊天,生成带引文的文章,分析和生成论文参考文献等。 Best Custom GPTs:在一个地方搜索所有公开 GPT,找到适合需求的自定义 ChatGPT。 AutoExpert:自动组建动态专家团队,回答、辩论和探讨问题。 ResearchGPT:人工智能研究助手,帮助从大量文章中发现最新和相关论文,并提供引文支持的答案。 The Glibatree Art Designer:根据提示和要求生成艺术设计作品。 使用这些工具时,要结合自身写作风格和需求,选择最合适的辅助工具。请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-02-10
介绍几款能对YOUTUBE视频实时同声传译的AI工具,并提供使用教程,适合新手小白学习使用
以下为您介绍几款能对 YouTube 视频实时同声传译的 AI 工具及使用教程: 1. 沉浸式翻译: 主打在所有网页双语翻译、PDF 文档对照阅读。 可以一键开启网页中 YouTube 视频的双语字幕,解决了 YouTube 自带字幕翻译点击路径长的问题。 插件安装地址:https://immersivetranslate.com/ 2. 微软 Stream 中的 Copilot: 可以帮助您理解视频内容,询问并跳转到对应时间点。 此外,Youtube 还更新了五款针对创作者的 AI 工具,虽然并非完全是实时同声传译工具,但也可能对您有所帮助: 1. Dream Screen:将 AI 生成的图像或视频背景添加到 YouTube Shorts 中。 2. YouTube Create:使用新的编辑和制作应用程序编辑手机中的视频。 3. AI Insights:根据观众已在 YouTube 上观看的内容获取视频创意和大纲建议。 4. Aloud:使用自动配音工具轻松创建更多语言的内容。 5. 创作者音乐中的辅助搜索:使用这款人工智能辅助搜索工具为您的视频找到完美的配乐。 详细介绍:https://blog.google/products/youtube/youtubenewcreatortools2023/
2025-02-09