大模型和小模型的区别主要体现在以下几个方面:
关于大模型存在幻觉而小模型没有的原因:
[heading2]总结大语言模型的介绍与原理国内大模型的分类:国内大模型有通用模型如文心一言、讯飞星火等,处理自然语言;还有垂直模型,专注特定领域如小语种交流、临床医学、AI蛋白质结构预测等。大模型的体验:以‘为什么我爸妈结婚的时候没有邀请我参加婚礼’和‘今天我坐在凳子上’为例,体验了Kimi、通义千问、豆包等大模型的回答和续写能力,发现回复有差异,且大模型基于统计模型预测生成内容。大语言模型的工作原理:大语言模型工作原理包括训练数据、算力、模型参数,在训练数据一致情况下,模型参数越大能力越强,参数用b链形容大小。Transformer架构:Transformer是大语言模型训练架构,17年出现用于翻译,具备自我注意力机制能理解上下文和文本关联,其工作原理是单词预测,通过嵌入、位置编码、自注意力机制生成内容,模型调教中有控制输出的temperature。关于大语言模型的原理、应用及相关概念Transformer模型原理:通过不断检索和匹配来寻找依赖关系,处理词和词之间的位置组合,预测下一个词的概率,是一个偏向概率预测的统计模型。大模型幻觉:大模型通过训练数据猜测下一个输出结果,可能因错误数据导致给出错误答案,优质数据集对其很重要。Prompt的分类和法则:分为system prompt、user prompt和assistant prompt,写好prompt的法则包括清晰说明、指定角色、使用分隔符、提供样本等,核心是与模型好好沟通。Fine tuning微调:基于通用大模型,针对特定领域任务提供数据进行学习和调整,以适应特定领域的需求。RAG概念:未对RAG的具体内容进行详细阐述,仅提出了这个概念。
大语言模型技术的本质导致了大模型的输出结果具有不可预测性,此外,静态的训练数据导致了大模型所掌握的知识存在截止日期,无法即时掌握最新信息。因此,当我们将大模型应用于实际业务场景时会发现,通用的基础大模型无法满足我们的实际业务需求。主要存在以下原因:知识的局限性:模型自身的知识完全源于它的训练数据,而现有的主流大模型(ChatGPT、文心一言、通义千问…)的训练集基本都是抓取网络公开的数据用于训练,对于一些实时性的、非公开的或离线的数据是无法获取到的,这部分知识也就无从具备。幻觉问题:大模型的底层原理是基于数学概率的文字预测,即文字接龙。因此大模型存在幻觉问题,会在没有答案的情况下提供虚假信息,提供过时或通用的信息,从可信度低非权威来源的资料中提供结果等。数据安全性:对于企业来说,数据安全至关重要,没有企业愿意承担数据泄露的风险,将自身的私域数据上传第三方平台进行训练。因此如何大模型落地应用时如何保障企业内部数据安全是一个重要问题。而RAG是解决上述问题的一套有效方案。它可以让大模型从权威的、预先确定的知识来源中检索、组织相关信息,更好地控制大模型生成的文本输出,并且用户可以深入了解LLM如何生成最终的结果。并且,RAG可以和微调结合使用,两者并不冲突。RAG类似于为模型提供教科书,允许它基于特定查询检索信息。这该方法适用于模型需要回答特定的询问或解决特定的信息检索任务。然而,RAG不适合教模型来理解广泛的领域或学习新的语言,格式或样式。微调类似于让学生通过广泛的学习内化知识。这种方法当模型需要复制特定的结构、样式或格式时非常有用。以下是RAG与微调从维度方面的比较:参考资料:《Retrieval-Augmented Generation for Large Language Models:A Survey》(https://arxiv.org/pdf/2312.10997.pdf)
学会的太多了......而且这个思维链也是足够复杂的!我大概的看了一下,这里有CoT嵌套、反思、有多项示例、似乎还有混合了决策树的逻辑在里边....对于这部分,碍于篇幅,我会单独开一篇内容和大家单独讨论。不过,想去尝鲜学习的朋友直接跳转传送门:https://openai.com/index/learning-to-reason-with-llms/好了,让我们继续。我们都知道,模型是一个黑盒,这不是字面上的,而是真切的、现实的。在大模型诞生初期,它让我们既兴奋又害怕,而害怕的其中原因就来自于它对结果生产的不确定性。专业一点我们叫它”幻觉“。而让模型展现思维链路的最主要价值就是:能够让我们观察到模型的完整推理过程,从而更好、更稳健的推理出最终结果。不管从哪个方面来说,这都是目前最可行且最有效的对齐策略。而OpenAI这次同样也抓住了机会,将模型安全性拉上了一个新的台阶,请看下图整体来看,o1-preview在各种安全测试项目中都优于4o模型,尤其是在越狱测试中大幅度领先。如果你做过越狱攻击就会知道,一般的越狱指令一般都是给模型一个大的前提假设(比如让其认为自己身处的不是现实世界),然后再通过一系列在“虚幻世界”的模拟假设来达到攻破其安全防御的目的。但显然,有更高级的CoT加入,模型的逻辑思维变得更强,对这种“金蝉脱壳”的技术更加有辨别能力。所以它能够更好抵御越狱攻击也是理所应当的事情。不过,硬币总有两面。首先,这种CoT技术目前并不十分成熟,出于安全的考虑,在实际使用中,OpenAI隐藏了模型的思考过程,他们也在新Page中阐明了这个观点:“不希望用户看到错误的或不完整的思考链路,但努力在答复中复现一些关键过程,以提高用户的体验”。