Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

coze上的工作流是怎么运行的

Answer

Coze 上的工作流运行主要包括以下步骤:

  1. 梳理工作流:明确工作流的核心,如对于类似秘塔搜索的 Bot,要清楚其主要能力,包括使用搜索引擎进行搜索、对搜索内容整理成答案、给出答案中的引用等,从而形成创建 Bot 的思路。
  2. 创建工作流:
    • 任务处理阶段:将开始节点输入的用户指令配置给模型,保证指令顺利进入大模型组件中处理。
    • 最终阶段:将任务处理的输出内容配置到结束节点,结束节点将处理完的回复反馈给用户,完成工作流闭环。
    • 输出节点:注意回答模式有两种选择,一是返回变量由 Bot 生成回答,适用于复杂任务;二是直接根据设定内容进行回答,适用于一般性任务。
  3. 试运行工作流:目的是确保工作流中的所有节点按预期协同工作,输出结果准确无误。可能需要多次调整和优化工作流,包括检查数据流动、条件判断和最终输出是否符合预期。
  4. 评估并优化 Agent 效果:
    • 整体试运行 Agent,识别功能和性能的卡点。
    • 通过反复测试和迭代,优化至达到预期水平。
    • 具体操作包括试运行整个工作流,验证整体运行效果(包括响应速度、生成质量);迭代优化工作流,提升性能;在外层 bot 中封装工作流;进行外层 bot 调试;最后发布 bot。
Content generated by AI large model, please carefully verify (powered by aily)

References

大圣:我用 Coze 搓了一个乞丐版的秘塔搜索

了解Coze的小伙伴都应该知道,工作流才是真正的核心。因此在搓这个Bot之前,我们需要先将工作流梳理清楚。我们先来看下秘塔搜索的最主要的能力:使用搜索引擎进行搜索对搜索的内容整理成答案给出答案中的引用因此对于这个Bot,我们已经有了思路OK,接下来我们就开搓

蓝衣剑客:四万字长文带你通学扣子

在任务处理阶段,我们需要把开始节点输入进来的用户指令配置给模型,这样才能保证用户的指令顺利进入大模型中组件中进行处理。在工作流的最终阶段,即结束节点,我们需要将任务处理的输出内容,也就是大模型节点处理后的值配置到结束节点中。这样,结束节点就可以将处理完的回复进行反馈。这个过程确保了用户能够接收到他们所期待的输出,完成整个工作流的闭环。请注意,在工作流的输出节点,我们需要注意回答模式有两种不同的选择:1.返回变量由Bot生成回答:这种模式适用于处理一些复杂任务,当整个工作流完成后,Bot会展示文字处理环节,生成回答。这种方式适合于需要Bot进行深入处理和生成回复的情况。2.直接根据设定内容进行回答:这种模式适用于工作流处理完成后,不需要Bot进一步返回内容或进行额外处理的情况。这种方式直接使用设定的内容进行回复,适合于处理一些一般性的任务,不需要额外的模型处理。选择哪种模式取决于任务的复杂性和用户的具体需求。如果任务需要Bot进行深入分析和生成回复,那么第一种模式更为合适。如果任务较为简单,不需要额外的模型处理,那么第二种模式可以直接使用,提高效率。在Coze平台上完成工作流的创建后,接下来的是进行试运行。试运行的目的是确保工作流中的所有节点能够按预期协同工作,并且最终的输出结果准确无误。这个过程是不可或缺的,它帮助我们验证工作流的逻辑是否正确,各个组件是否正常交互,以及是否能够达到设计的目标。在试运行阶段,你可能需要多次调整和优化工作流,以修正可能出现的问题或异常。这包括检查数据流动是否顺畅、条件判断是否准确、以及最终的输出是否符合预期。

一泽Eze:万字实践教程,全面入门 Coze 工作流|用 Coze 打造 AI 精读专家智能体,复刻 10 万粉公众号的创作生产力

在获得了整个搭建好的工作流后,为了验证Agent的效果,一般需要进行如下操作:整体试运行Agent,识别功能和性能的卡点通过反复测试和迭代,优化至达到预期水平如果你还不是很了解Coze的操作,可以按照如下步骤教学,完成Agent最后的测试与封装:1.试运行整个工作流,验证整体运行效果(包括响应速度、生成质量)2.迭代优化工作流,提升性能3.在外层bot中封装工作流4.外层bot调试5.万事大吉,可以发布你的bot啦[heading3]试运行整个工作流,验证整体运行效果[content]点击「试运行」,把待精读文章输入「开始节点」的{{BOT_USER_INPUT}},发现整个流程在1分钟内运行完成,最终输出的“回答内容”也符合我们的预期。[heading3]迭代优化工作流,提升性能[content]此步骤不展开,有需要可以自行按照上文的配置思路,再进行细致优化(因为文章的配置方法,其实我已经优化过几次,效果比刚拼搭完的时候好多了~)

Others are asking
你现在是一个工作流方面的专家 我需要你用最简单的方法让我这个小白理解工作流是怎么工作的
工作流是一种通过可视化方式对插件、大语言模型、代码块等功能进行组合,以实现复杂、稳定业务流程编排的方法。 工作流由多个节点构成,节点是基本单元,包括大语言模型 LLM、自定义代码、判断逻辑等。默认包含 Start 节点(工作起始,可包含用户输入信息)和 End 节点(工作末尾,返回运行结果)。 不同节点可能需要不同输入参数,分为引用前面节点的参数值和自定义的参数值。扣子提供了基础节点,还可添加插件节点或其他工作流。 例如,在角色设计变体生成工作流中,在不改变角色某些特定样式的基础上仅改变设计,能防止提示词外流,还可使用图片引导特定部分的风格和样式。 在智能体“竖起耳朵听”的编排中,插件像工具箱,工作流像可视化拼图游戏,将各种功能组合,满足多步骤、高要求的任务。
2025-01-16
智能体与工作流是同一个概念吗
智能体和工作流不是同一个概念。 智能体是一个能够执行特定任务、具有一定自主性和智能的实体。例如,在扣子平台上,可以通过添加插件和设置工作流等方式让智能体变得更强大,以完成各种复杂的任务。 工作流则像是一个可视化的拼图游戏,由多个小块块(节点)组成,如插件、大语言模型、代码块等,这些小块块可以像拼图一样组合在一起,从而创造出复杂但稳定的业务流程。当面对多步骤、对结果要求严格的任务时,工作流最为适用。工作流有开始和结束的小块块,不同小块块可能需要不同的信息才能工作。 在构建稳定可用的 AI 智能体时,通常会先测试单条 Prompt 或 Prompt Chain 的执行质量和稳定性,然后根据实际情况逐步拆解子任务,对于场景多样、结构复杂、对输出格式要求严格的任务,基本可以预见到需要将其拆解为工作流。此外,如果涉及生成多媒体内容或从网络自主获取额外信息等能力,也必然需要通过工作流来调用相应的插件。
2024-12-26
AI中的工作流是什么?
AI 工作流是在一般工作流的基础上引入了 AI 工具。 一般工作流指的是将一项工作拆分成多个明确步骤,每个步骤都有特定的输入和产出,且步骤之间环环相扣。比如写公众号文章,要经过选题、列大纲写初稿、改稿、写标题、排版、发布等固定步骤。 而 AI 工作流则是将 AI 工具融入到这些工作环节中以提高效率。例如在写作的各个环节使用相应的 AI 工具。搭建 AI 工作流需要具备三层能力: 1. 了解各种 AI 工具的特点和用途。 2. 学会写提示词,以便向 AI 清晰地描述任务。 3. 搭建 AI 智能体,使多个 AI 工具协同工作,自动完成任务。 同时,AI 工作流还在信息获取、处理和表达等方面带来了变革。如重塑了获取信息的方式,颠覆了传统搜索引擎;辅助高效处理信息,如智能摘要能帮助快速筛选;让信息表达更简便。
2024-09-29
Coze教程
以下是关于 Coze 的教程: 一泽 Eze 的教程: 可能是全网最好的 Coze 教程之一,能一次性带您入门 Coze 工作流。 即使是非技术出身的爱好者也能上手跟学,一站式学会 AI Agent 从设计到落地的全流程方法论。 阅读指南:长文预警,请视情况收藏保存。 核心看点:通过实际案例逐步演示,用 Coze 工作流构建能稳定按模板要求生成结构化内容的 AI Agent;开源 AI Agent 的设计到落地的全过程思路;10+项常用的 Coze 工作流的配置细节、常见问题与解决方法。 适合人群:任何玩过 AI 对话产品的一般用户(若没用过,可先找个国内大模型耍耍);希望深入学习 AI 应用开发平台(如 Coze、Dify),对 AI Agent 工作流配置感兴趣的爱好者。 注:本文不单独讲解案例所涉及 Prompt 的撰写方法。文末「拓展阅读」中,附有相关 Prompt 通用入门教程、Coze 其他使用技巧等内容,以供前置或拓展学习。 大圣的教程: Coze 概述:字节的官方解释为 Coze 是新一代一站式 AI Bot 开发平台,无论是否有编程基础,都可在其上快速搭建基于 AI 模型的各类问答 Bot,从解决简单问答到处理复杂逻辑对话,并能将搭建的 Bot 发布到各类社交平台和通讯软件上互动。个人认为 Coze 是字节针对 AI Agent 领域的初代产品,在 Coze 中称 AI Agent 为 Bot。字节针对 Coze 部署了国内版和海外版两个站点。 国内版:网址为 https://www.coze.cn ,官方文档教程为 https://www.coze.cn/docs/guides/welcome ,使用字节自研的云雀大模型,国内网络可正常访问。 海外版:网址为 https://www.coze.com ,官方文档教程为 https://www.coze.com/docs/guides/welcome ,使用 GPT4、GPT3.5 等大模型(可参考文档白嫖 ChatGPT4),访问需要突破网络限制的工具,参考文档:https://www.coze.com/docs/zh_cn/welcome.html 。 AI Agent 的开发流程:Bot 的开发和调试页面布局主要分为提示词和人设的区块、Bot 的技能组件、插件、工作流、Bot 的记忆组件、知识库、变量、数据库、长记忆、文件盒子、一些先进的配置、触发器(例如定时发送早报)、开场白(用户和 Bot 初次对话时,Bot 的招呼话语)、自动建议(每当和 Bot 一轮对话完成后,Bot 给出的问题建议)、声音(和 Bot 对话时,Bot 读对话内容的音色),下面会逐一讲解每个组件的能力以及使用方式。
2025-02-07
coze
Coze 是由字节跳动推出的具有以下特点的产品: 1. 是一个 AI 聊天机器人和应用程序编辑开发平台,旨在简化 AI 机器人的开发过程,让开发者和非技术用户都能快速搭建基于 AI 模型的各类问答 Bot,处理从简单问答到复杂逻辑对话的任务。 2. 字节跳动旗下的子公司推出的 AI Agent 构建工具,允许用户在无编程知识的基础上,使用自然语言和拖拽等方式构建 Agent。 3. 目前可以白嫖海量的大模型免费使用,有丰富的插件生态。 4. 多语言模型支持,如使用 GPT48K 和 GPT4128K 及云雀语言模型等。 5. 拥有插件系统,集成超过 60 款插件,涵盖资讯阅读、旅游出行、效率办公、图片理解等功能,同时支持用户创建自定义插件。 6. 具备知识库功能,允许用户上传和管理多种格式的数据,并支持 Bot 与用户数据交互。 7. 提供数据库和记忆能力,允许 Bot 访问会话内存和上下文,持久记住用户对话中的重要参数或内容。 8. 支持工作流设计,用户可通过拖拉拽方式搭建工作流,处理复杂任务流,提供大量灵活可组合的节点。 9. 具有多代理模式,一个机器人中可运行多个任务,允许添加多个代理。 10. 对用户完全免费,且易于发布和分享,用户可将搭建的 Bot 发布到各类社交平台和通讯软件上。 此外,Coze 可以接入抖音评论区,帮用户自动回复评论。还有基于 Coze 平台能力搭建的记账管家应用,用户可直接和 Coze 说收入或支出情况,Coze 会自动记账并计算账户余额,且不会丢失记账记录。 如果您想了解更多关于 Coze 的内容,可参考以下文章:
2025-02-07
coze
Coze 是由字节跳动推出的: 1. 是一个 AI 聊天机器人和应用程序编辑开发平台,专为开发下一代 AI 聊天机器人而设计,旨在简化开发过程,让开发者和非技术用户都能快速搭建基于 AI 模型的各类问答 Bot,处理从简单问答到复杂逻辑对话的任务。 2. 字节跳动旗下子公司推出的 AI Agent 构建工具,允许用户在无编程知识的基础上,使用自然语言和拖拽等方式构建 Agent,目前可以白嫖海量的大模型免费使用,有丰富的插件生态。 3. 其特点包括: 多语言模型支持,如 GPT48K 和 GPT4128K,并提供云雀语言模型等。 集成超过 60 款插件,涵盖资讯阅读、旅游出行、效率办公、图片理解等功能,支持用户创建自定义插件。 具有知识库功能,允许用户上传和管理多种格式的数据,并支持 Bot 与用户数据交互。 提供数据库功能,允许 Bot 访问会话内存和上下文,持久记住用户对话中的重要参数或内容。 支持通过拖拉拽的方式快速搭建工作流,处理逻辑复杂的任务流,提供大量灵活可组合的节点。 具有多代理模式,在一个机器人中可以运行多个任务,允许添加多个代理。 对用户完全免费。 易于发布和分享,用户可以将搭建的 Bot 发布到各类社交平台和通讯软件上。 Coze 还可以接入抖音评论区,帮用户自动回复评论。此外,基于 Coze 平台的能力搭建了记账管家应用,用户可以直接和 coze 说收入或支出情况,coze 会自动记账并计算账户余额,且每一笔记账记录都不会丢失。 如果您还想了解更多关于 Coze 的信息,可以参考: 。
2025-02-07
coze插件
以下是关于 coze 插件的相关内容: 通过已有服务 api 创建: 进入 coze,在个人空间中选择插件,新建一个插件并命名(如 api_1),在插件的 URL 部分填入 ngrok 随机生成的 https 链接地址。注意服务不能关闭,按照 coze 的指引配置输出参数,测试后发布插件。 完成插件创建后可手捏简单的 bot,将创建的插件接入,在 prompt 里设置调用插件,即可大功告成。 通过 Coze API 打造强大的微信图片助手: 先安装 COW 插件(),目前版本只针对图片处理。 在服务器后台找到 plugins/coze_wrapper/config.json.template 文件,复制粘贴相同目录下并改名为 config.json,根据自己 Coze 实现的功能和插件配置修改里面的配置项(开关、提示词等)。 重新启动 COW,扫码登录,发送一张图片测试各个功能。 使用 Coze IDE 创建插件: 登录,在左侧导航栏的工作区区域选择进入指定团队。 在页面顶部进入插件页面,或者在某一 Bot 的编排页面,找到插件区域并单击“+”图标,单击创建插件。 在新建插件对话框,完成插件图标(可选)、插件名称、插件描述、插件工具创建方式、IDE 运行时等配置并单击确认。 在插件详情页,单击在 IDE 中创建工具,在弹出的创建工具对话框设置工具名称和介绍,确定后跳转到 Coze IDE 页面进行编码。 (可选)在 IDE 左上角工具列表区域单击“+”图标添加更多工具,还可在左下角依赖包区域管理依赖包。 需要注意的是,本案例中使用的是 coze 国内版,整体过程仅为说明 coze 的插件指引好用。在生产环境中,如果已有准备好的 https 的 api,可直接接入。同时,ngrok 在本案例中仅供娱乐,生产环境中勿用。
2025-02-07
如何在coze上做deepseek?
在 Coze 上做 DeepSeek 的步骤如下: 1. 搜索 www.deepseek.com,点击“开始对话”。 2. 将装有提示词的代码发给 DeepSeek。 3. 认真阅读开场白之后,正式开始对话。 此外,关于 DeepSeek 还有以下相关内容: 设计思路: 将 Agent 封装成 Prompt,将 Prompt 储存在文件,保证最低成本的人人可用的同时,减轻自己的调试负担。 通过提示词文件,让 DeepSeek 实现同时使用联网功能和深度思考功能。 在模型默认能力的基础上优化输出质量,并通过思考减轻 AI 味,增加可读性。 照猫画虎参考大模型的 temperature 设计了阈值系统,但是可能形式大于实质,之后根据反馈可能会修改。 用 XML 来进行更为规范的设定,而不是用 Lisp(对作者有难度)和 Markdown(运行下来似乎不是很稳定)。 完整提示词:v 1.3 特别鸣谢:李继刚的【思考的七把武器】在前期为作者提供了很多思考方向;Thinking Claude 是作者现在最喜欢使用的 Claude 提示词,也是设计 HiDeepSeek 的灵感来源;Claude 3.5 Sonnet 是最得力的助手。 如果官网的搜索不能用,一直崩溃,可以用火山的满血版,在相关视频的最后 10 分钟左右有手把手教程。 同时,还有以下相关的历史更新: 2024 年 7 月 18 日: 《》来自艾木老师,深入研究了 Coze 的多 Agent 模式机制,针对多 Agent 跳转不可靠的现象,分析了 Coze 提供的三种节点跳转模式,包括使用对话模型、独立模型以及自定义模型。通过对《谁是卧底》游戏的节点跳转实例进行解析,揭示了每种模式的应用场景和不足之处。 《》来自暗涌,DeepSeek 是一家低调却引人关注的大模型公司,以独特的技术创新在市上崭露头角。他们发布了价格颠覆性的源模型 DeepSeek V2,引发了中国大模型战。与其他公司不同,DeepSeek 重模型架创新,成功降低成本,受到业内关注。始人梁文锋是技术理想主义者,坚持只做研究探索,希望将中国公司带入全技术创新的浪潮中。 《》来自海外独角兽,各大公司争建设 10 万集群,投入巨大,但建涉及技术挑和运营问题。文章详细分析数据中心的力问题、并行计算方式、网络、可靠性、成本计算等方面,展示 10 万 GPU 集的算力和效率。同时,也出了数据中心设计和网络拓扑结构对于型 AI 训练集的重要性。
2025-02-07
我想要搭建一个能够帮我阅读并总结提炼,同时能在我提出问题时,随时在我给他提供的知识库中检索的AI Agent,如何用Coze搭建?
搭建能够阅读、总结提炼并在给定知识库中检索的 AI Agent 可以使用 Coze 按照以下步骤进行: 1. 规划 制定任务的关键方法。 总结任务目标与执行形式。 将任务分解为可管理的子任务,确立逻辑顺序和依赖关系。 设计每个子任务的执行方法。 2. 实施 在 Coze 上搭建工作流框架,设定每个节点的逻辑关系。 详细配置子任务节点,并验证每个子任务的可用性。 3. 完善 整体试运行 Agent,识别功能和性能的卡点。 通过反复测试和迭代,优化至达到预期水平。 关于一些其他问题: 1. 如何判断自己的任务/Prompt 是否需要拆解为工作流? 构建稳定可用的 AI Agent 是一个需要不断调试和迭代的过程。通常先从当前性能最强的 LLM(如 ChatGPT4 和 Claude 3.5 sonnet)着手,先用单条 Prompt 或 Prompt Chain 来测试任务的执行质量和稳定性。然后,根据实际执行情况、最终投产使用的 LLM,逐步拆解子任务,降低 LLM 执行单任务的难度,直到达成工程目标。一般对于场景多样、结构复杂、对输出格式要求严格的内容,基本可以预见到需要将其拆解为工作流。此外,如果涉及生成多媒体内容或从网络自主获取额外信息等能力,必然需要通过工作流来调用相应的插件。 2. 只用了一段 Prompt 的 Agent,还算 AI Agent 吗? 算。详见
2025-02-06
有什么AI代码工具,能直接在浏览器端运行
以下是一些能在浏览器端运行的 AI 代码工具: 1. Bolt․new:这是一款终极写代码工具,AI 能帮您自动写代码、自动运行并自动部署,全部在浏览器中完成。您只需撰写简单提示,它就能自动编写代码,并支持一键编辑、运行和自动部署复杂的全栈应用。它依托于 WebContainers 技术,支持现代开发工具链,如 npm、Vite 和 Next.js。但需注意,该功能处于 alpha 测试阶段,可能会有问题,目前仅支持小到中型仓库,且不支持分叉或提交。您可以通过在 GitHub URL 前添加 2. 对于处理文档和数据: 对于数据(以及您对代码的任何奇思妙想):代码解释器。 对于大型文档或同时处理多个文档:Claude 2。 对于较小的文档和网页:Bing 侧边栏(Edge 浏览器的一部分,可以“查看”浏览器中的内容,让 Bing 处理该信息,尽管上下文窗口的大小有限)。
2025-01-13
我想用AI完成一个编程项目,帮我从零到一完成一个个人介绍网站,我现在使用vo.dev完成了一个网站,但是不可以供我使用我上传github后再vercel运行发现会出现404请问我该怎么办
很抱歉,暂时没有关于您所描述问题的相关内容。出现 404 错误通常是由于页面未找到导致的。您可以先检查一下以下几个方面: 1. 确认您在 GitHub 上的代码上传是否完整且正确,包括相关的配置文件和依赖项。 2. 检查 Vercel 的部署设置,确保配置正确,例如域名绑定、环境变量等。 3. 查看服务器的日志,以获取更详细的错误信息,从而确定问题的具体原因。 希望这些建议能对您有所帮助,如果问题仍未解决,建议您进一步查阅相关的技术文档或向技术社区寻求帮助。
2024-12-19
Coze代码测试成功,运行示例时报错
关于您提到的 Coze 代码测试成功但运行示例时报错的问题,以下是相关的信息和可能的解决办法: 图片生成方面:理想生成图片只实现了一次,其他几次生成文字加链接,链接需点进去查看且图片需渲染或加载,无互动趣味性,增加等待时间。因为默认返回的是 markdown 格式,微信不支持 markdown 格式,可在 github 上搜索 nicecoze 插件,基于 cow,把 markdown 转换为图片消息。 模型配置方面:Coze 里面模型配置用的 GPT4o,程序运行调用的是 GPT3.5 Turno。这是因为没有查询到 4o 的 token 计算方式,所以采用 3.5 的,但依然使用的是 GPT4o,只是 token 计算方式用的 3.5。 插件功能方面:Coze 加入了插件 Data Analysia(数据分析)、Browser 和 GPT4v 互动过程无法实现功能。这需要在 coze 里进行鼓捣,和 cow 的 config 无关。 外层 bot 方面:在外层 bot 进行运行时容易出现报错,暂时无法确定原因,猜测可能是外层 bot 的并发不够稳定,不如直接在工作流编辑面板中获取精度结果。如果自行实验时多次报错且无法定位问题原因,不要急着怪自己,相关 bug 已提交给 Coze 团队,希望能加紧优化。
2024-11-19
如何在Mac上运行comfyUI
在 Mac 上运行 ComfyUI 的步骤如下: 1. 电脑配置:MacBook Pro,M1 芯片,16G 内存,Sonoma 14.6.1 系统版本。 2. 部署 ComfyUI: 安装依赖:在终端中输入“pip3 install r requirements.txt”安装 ComfyUI 的依赖文件。终端提示需要特定版本的 numpy 时,输入“Y”卸载当前版本,然后输入“pip3 install numpy==1.26.4”安装指定版本。 启动 ComfyUI:在终端中输入“pwd”查看 ComfyUI 的文件路径,复制文件路径,替换启动命令中的相应部分,然后将命令“source cf/bin/activate && cd /Users/vina/Documents/ComfyUI && python main.py autolaunch listen dontupcastattention outputdirectory ~/Desktop”复制到终端。启动成功后,浏览器会自动跳转,但网页地址可能不对,直接在浏览器打开“http://localhost:8188/”即可使用。 3. 管理器和资源占用插件:官方的 ComfyUI 安装包不带管理器和资源占用视图,需要从 GitHub 下载。管理器插件下载地址:https://github.com/ltdrdata/ComfyUIManager 。资源占用视图插件装不装均可,下载地址:https://github.com/crystian/ComfyUICrystools 。 此外,还有一种搭建自己第一个 ComfyUI 的方法(熟手推荐 自定义创建): 1. 创建工作空间:进入工作空间,点击自定义创建,按照以下内容配置,点击立即创建。镜像选择 lanruicomfyui 镜像;网盘默认挂载;数据集默认挂载 sdbase;启动方式默认选择手动启动。待实例状态由启动中变为运行中后,稍等一会,点击进入 JupyterLab,选择 terminal 终端。 2. 启动 ComfyUI:进入终端后,先参考配置学术加速。运行如下启动命令后按回车键,等待 1 分钟左右。(每次启动都需要输入启动命令)如果想要长时间持续运行任务,请用 nonhup 启动:启动命令“nohup bash /home/user/start.sh > comfy.log 2>&1 &”;查看启动/出图进度命令“tail fn 500 comfy.log”;停止命令“pkill 9 f '27777'”。当页面显示“To see the GUI go to:http://0.0.0.0:27777”,说明已启动成功。 3. 访问 ComfyUI 界面:返回工作空间,点击实例右侧的「打开调试地址」到浏览器,就可以使用 ComfyUI 啦。 需要注意的是,在 Mac 上使用 ComfyUI 存在一些难点: 1. 生图慢,因为 Mac M 只有 CPU,没有 GPU。 2. 生图的大模型在 CPU 环境中不一定适配、好用。 3. 用 Mac 生图的人少,能一起讨论的人也少,解决方案也少,需要自己摸索。 4. 大神们在 Windows 系统里做的一键包,在 Mac 中不能用。 5. 大神们的工作流也要做适配 Mac 的修改,需要一点点代码阅读和修改的能力。
2024-11-15
本地运行Llama3需要的电脑是什么配置的?
本地运行 Llama3 所需电脑配置的相关信息如下: 1. 安装 Docker Desktop: 点击/复制到浏览器下载:https://docs.docker.com/desktop/install/windowsinstall/ 。 下载后,双击下载项目,出现相关界面点击 ok 开始加载文件。注意下载相对较快,完成后不要点击“close and restart”,以免导致 llama3 下载中断。等待终端的模型下载完成后再点击重启。 重启后,点击“Accept”,选择第一个,点击“Finish”。 然后会提示注册账号,若打不开网页,可能需要科学上网。按照正常流程注册账号并登录 Docker 即可。 2. 下载 Llama3 模型: 打开终端。如果是 Windows 电脑,点击 win+R,输入 cmd 点击回车;如果是 Mac 电脑,按下 Command(⌘)+ Space 键打开 Spotlight 搜索,输入“Terminal”或“终端”,然后从搜索结果中选择“终端”应用程序。 复制相关命令行,粘贴进入并回车,会开始自动下载,文件下载较慢,可同时进行安装 Docker 的步骤。 3. 下载 Open WebUI: 回到桌面,再打开一个新的终端窗口。如果是 Windows 电脑,点击 win+R,输入 cmd 点击回车;如果是 Mac 电脑,按下 Command(⌘)+ Space 键打开 Spotlight 搜索,输入“Terminal”或“终端”,然后从搜索结果中选择“终端”应用程序。 将相关命令输入,等待下载。 点击或复制相关地址进入浏览器,进行注册登录。 登入后,点击顶部的 Model,选择“llama3:8b”。 需要注意的是,模型的回复速度取决于您电脑的配置。另外,您还可以参考开源项目 。同时,有教程提到可以通过购买算力解决本地电脑配置不够的问题,但需要充值 50 元。
2024-11-14
coze 是否可以通过LLM生成python代码运行查询excel表格信息?
在 Coze 中,可以通过以下步骤实现相关操作: 1. 进入 Coze,点击「个人空间 工作流 创建工作流」,打开创建工作流的弹窗。 2. 根据弹窗要求,自定义工作流信息,点击确认完成工作流的新建。 3. 新建后的编辑视图与功能中,左侧「选择节点」模块根据子任务需要,实际用到的有: 插件:提供一系列能力工具,拓展 Agent 的能力边界。如本案例中的思维导图、英文音频,无法通过 LLM 生成,需依赖插件实现。 大模型:调用 LLM,实现各项文本内容的生成。如本案例中的中文翻译、英文大纲、单词注释等依赖大模型节点。 代码:支持编写简单的 Python、JS 脚本,对数据进行处理。 4. 编辑面板中的开始节点、结束节点,分别对应分解子任务流程图中的原文输入和结果输出环节。 5. 按照流程图,在编辑面板中拖入对应的 LLM 大模型、插件、代码节点,即可完成工作流框架的搭建。 需要注意的是,因为前面需要对多维表格操作,所以要先在 http://open.feishu.cn 上建一个飞书机器人,并添加知识库或多维表格编辑权限,具体可参考飞书文档。
2024-10-16
我的工作需要根据元数据表在本地查询大量数据,并把匹配的数据参数复制到元数据表,有没有智能体可以做这个工作
智能体可以帮助您完成根据元数据表在本地查询大量数据,并把匹配的数据参数复制到元数据表的工作。 智能体可以根据其复杂性和功能分为以下几种类型: 1. 简单反应型智能体:根据当前的感知输入直接采取行动,不维护内部状态,也不考虑历史信息。例如温控器,它根据温度传感器的输入直接打开或关闭加热器。 2. 基于模型的智能体:维护内部状态,对当前和历史感知输入进行建模,能够推理未来的状态变化,并根据推理结果采取行动。比如自动驾驶汽车,它不仅感知当前环境,还维护和更新周围环境的模型。 3. 目标导向型智能体:除了感知和行动外,还具有明确的目标,能够根据目标评估不同的行动方案,并选择最优的行动。例如机器人导航系统,它有明确的目的地,并计划路线以避免障碍。 4. 效用型智能体:不仅有目标,还能量化不同状态的效用值,选择效用最大化的行动,评估行动的优劣,权衡利弊。比如金融交易智能体,根据不同市场条件选择最优的交易策略。 5. 学习型智能体:能够通过与环境的交互不断改进其性能,学习模型、行为策略以及目标函数。例如强化学习智能体,通过与环境互动不断学习最优策略。 在实际应用中,多智能体 AI 搜索引擎的方案如下: 1. 第一步,快速搜索补充参考信息:根据用户的任务,使用搜索工具补充更多的信息,例如使用工具 API WebSearchPro。 2. 第二步,用模型规划和分解子任务:使用大模型把用户问题拆分成若干子搜索任务,并转换为 JSON 格式。 3. 第三步,用搜索智能体完成子任务:AI 搜索智能体具备联网搜索的能力,还能够自主分析并进行多轮搜索任务。 4. 第四步,总结子任务生成思维导图:智能体能调用各种插件,如思维导图、流程图、PPT 工具等。 此外,生物医药小助手智能体是由 1 个工作流和 6 个数据库实现的。工作流相对简单,而数据库包括公众号文章、执业药师教材、执业医师讲义、药监局新药审评报告、中国医药企业融资动态、药物对外授权动态、全球药物销售额等。在医疗领域,为保证回答的准确性,提示词约定回答只能来自于知识库。其商业化场景包括医药企业研发立项、科研机构临床转化评估、投资机构评估标的公司等。
2025-02-07
AI如何应用到供应链工作中
AI 在供应链工作中的应用主要包括以下几个方面: 1. 预测性维护:通过分析设备运行数据,预测机器故障,帮助避免供应链中的生产停机。 2. 质量控制:检测产品缺陷,提高供应链中产品的质量。 3. 采购计划和库存预测:根据历史数据和市场变化,自动生成采购计划和库存预测,优化供应链的资源配置。 4. 物流优化:对物流环节进行优化,提高运输效率,降低成本。 5. 风险管理:利用工具如保证技术和技术标准,支持供应链风险管理,建立对系统的信任,让用户相信关键的 AI 相关风险已被识别、解决和减轻。 6. 责任评估与分配:评估法律责任在 AI 供应链中的有效和公平分配,持续收集各方证据,监测框架对不同参与者的影响,关注基础模型带来的潜在挑战,评估是否需要进一步干预 AI 责任。
2025-02-07
一、学习内容 1. AI工具的操作:了解并掌握至少一种AI工具的基本操作,如智能代码、流程管理、智能报表、数据分析、图像识别、文字生成等。 2. AI工具在本职工作的应用:思考并提出AI工具如何帮助你更高效地完成本职工作,包括但不限于提高工作效率、优化工作流程、节约成本、提升交付质量等。 3. AI工具在非本职工作的潜力推演:探索AI工具如何在你的非本职工作领域发挥作用,比如在公司管理、团队领导、跨部门合作、团队发展以及市场研究等方面。提出这些工具如何被有效利用,以及它们可能带来的改
以下是关于学习 AI 的相关内容: 一、AI 工具的操作 要了解并掌握至少一种 AI 工具的基本操作,如智能代码、流程管理、智能报表、数据分析、图像识别、文字生成等。 二、AI 工具在本职工作的应用 思考并提出 AI 工具如何帮助更高效地完成本职工作,包括但不限于提高工作效率、优化工作流程、节约成本、提升交付质量等。 三、AI 工具在非本职工作的潜力推演 探索 AI 工具在非本职工作领域,如公司管理、团队领导、跨部门合作、团队发展以及市场研究等方面的作用,思考如何有效利用这些工具以及它们可能带来的改变。 四、学习路径 1. 对于不会代码的学习者: 20 分钟上手 Python+AI,在 AI 的帮助下可以完成很多基础的编程工作。若想深入,需体系化了解编程及 AI,至少熟悉 Python 基础,包括基本语法(如变量命名、缩进等)、数据类型(如字符串、整数、浮点数、列表、元组、字典等)、控制流(如条件语句、循环语句)、函数(定义和调用函数、参数和返回值、作用域和命名空间)、模块和包(导入模块、使用包)、面向对象编程(类和对象、属性和方法、继承和多态)、异常处理(理解异常、异常处理)、文件操作(文件读写、文件与路径操作)。 2. 新手学习 AI: 了解 AI 基本概念,建议阅读「」部分,熟悉术语和基础概念,浏览入门文章。 开始 AI 学习之旅,在「」中找到为初学者设计的课程,推荐李宏毅老师的课程,也可通过在线教育平台(如 Coursera、edX、Udacity)按自己节奏学习并获证书。 选择感兴趣的模块深入学习,掌握提示词技巧。 实践和尝试,理论学习后通过实践巩固知识,在知识库分享实践作品和文章。 体验 AI 产品,如 ChatGPT、Kimi Chat、智谱、文心一言等聊天机器人,了解其工作原理和交互方式。 五、工具推荐 1. Kimi 智能助手:ChatGPT 的国产平替,上手体验好,适合新手入门学习和体验 AI。不用科学网、不用付费、支持实时联网,是国内最早支持 20 万字无损上下文的 AI,对长文理解做得好,能一次搜索几十个数据来源,无广告,能定向指定搜索源(如小红书、学术搜索)。 PC 端: 移动端(Android/ios): 2. 飞书:汇集各类 AI 优质知识库、AI 工具使用实践的效率工具,助力人人成为效率高手。
2025-02-07
企业管理咨询顾问应用AI辅助工作的最佳实践
以下是企业管理咨询顾问应用 AI 辅助工作的一些最佳实践: 对于企业管理者: 1. AI 辅助决策:在小规模决策中运用 AI 分析工具,如利用其分析客户反馈或市场趋势数据,以此作为决策参考。 2. 员工培训计划:制定 AI 工具使用的培训计划,助力团队成员在日常工作中有效利用 AI。 3. 流程优化:识别公司内可能受益于 AI 自动化的重复性任务,先从一个小流程开始测试 AI 解决方案的效果。 4. AI 伦理和政策:着手制定公司的 AI 使用政策,确保 AI 的应用符合伦理标准和法律要求。 对于商业顾问: 1. 工具服务小型企业:生成式 AI 对于小型企业是一个重要的应用场景,如 Sameday 可接电话并预约,Truelark 能处理短信、电子邮件和聊天等。 2. 特定类型企业的垂直化工具:出现了为特定类型企业工作流定制的工具,如 Harvey 和 Spellbook 帮助法律团队自动化任务,Interior AI 和 Zuma 在房地产行业发挥作用。 无论您属于哪个群体,与 AI 协作是一个学习过程。应从小处着手,保持好奇心和开放态度,将 AI 视为强大的工具而非完全依赖的解决方案。同时,始终保持批判性思维,您会发现 AI 不仅能提高工作效率,还能激发创造力,开拓新的可能性。
2025-02-06
我想学习AI,但是不知道如何入门,希望你可以帮我梳理出AI的各个应用方向,要求要有具体的实操方法和必坑指南,能应用于生活和工作中,适合新手学习
以下是为您梳理的适合新手学习 AI 的应用方向、实操方法和避坑指南: 一、了解 AI 基本概念 1. 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的定义、主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 2. 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 二、开始 AI 学习之旅 1. 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 2. 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 三、选择感兴趣的模块深入学习 1. AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。 2. 掌握提示词的技巧,它上手容易且很有用。 四、实践和尝试 1. 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 2. 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 五、体验 AI 产品 1. 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 六、如果希望继续精进 1. AI 背景知识 基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。 历史发展:简要回顾 AI 的发展历程和重要里程碑。 2. 数学基础 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等线性代数基本概念。 概率论:基础的概率论知识,如条件概率、贝叶斯定理。 3. 算法和模型 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:简介强化学习的基本概念。 4. 评估和调优 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:学习如何使用网格搜索等技术优化模型参数。 5. 神经网络基础 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。 避坑指南: 1. 不要急于求成,AI 学习需要逐步积累。 2. 注重理论与实践结合,避免只学习理论而不进行实际操作。 3. 对于复杂的概念和算法,要多花时间理解,不要一知半解。 4. 在选择学习资源时,要注意其质量和适用性。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-02-06
扣子智能体搭建工作流
扣子智能体的搭建工作流主要包括以下内容: 1. 插件:扣子平台上有多种类型的插件,如看新闻、规划旅行、提高办公效率、理解图片内容的 API 等,还可自定义插件添加所需 API,使智能体更强大。 2. 工作流: 工作流如同可视化拼图游戏,可将插件、大语言模型、代码块等功能组合,创建复杂稳定的业务流程。 工作流由多个小块块(节点)组成,包括开始和结束的小块块,不同小块块可能需要引用前面小块块的信息或自行设定的信息。 例如“竖起耳朵听”的智能体中用到 5 个小块块,能回答带有图片口语的结果。 生物医药小助手智能体由 1 个工作流和 6 个数据库实现,工作流设计简单,包括 input、对接知识库、搭载豆包 function call 大模型和 output,相对有难度的是收集和校对知识库资料。 在落地应用方面,如通过扣子工作流用代码模块进行 HTTP 访问实现 0 token 脱离扣子模型使用 Groq 作为 LLM,还可适配到 APP 产品填 APIKEY 调用的场景,或接入手机类 APP 如 Siri 等。但扣子工作流的搭建细节需自行移步 WaytoAGI 自学。
2025-02-05