Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

coze 是否可以通过LLM生成python代码运行查询excel表格信息?

Answer

在 Coze 中,可以通过以下步骤实现相关操作:

  1. 进入 Coze,点击「个人空间 - 工作流 - 创建工作流」,打开创建工作流的弹窗。
  2. 根据弹窗要求,自定义工作流信息,点击确认完成工作流的新建。
  3. 新建后的编辑视图与功能中,左侧「选择节点」模块根据子任务需要,实际用到的有:
    • 插件:提供一系列能力工具,拓展 Agent 的能力边界。如本案例中的思维导图、英文音频,无法通过 LLM 生成,需依赖插件实现。
    • 大模型:调用 LLM,实现各项文本内容的生成。如本案例中的中文翻译、英文大纲、单词注释等依赖大模型节点。
    • 代码:支持编写简单的 Python、JS 脚本,对数据进行处理。
  4. 编辑面板中的开始节点、结束节点,分别对应分解子任务流程图中的原文输入和结果输出环节。
  5. 按照流程图,在编辑面板中拖入对应的 LLM 大模型、插件、代码节点,即可完成工作流框架的搭建。

需要注意的是,因为前面需要对多维表格操作,所以要先在 http://open.feishu.cn 上建一个飞书机器人,并添加知识库或多维表格编辑权限,具体可参考飞书文档。

Content generated by AI large model, please carefully verify (powered by aily)

References

一泽Eze:万字实践教程,全面入门 Coze 工作流|用 Coze 打造 AI 精读专家智能体,复刻 10 万粉公众号的创作生产力

[title]一泽Eze:万字实践教程,全面入门Coze工作流|用Coze打造AI精读专家智能体,复刻10万粉公众号的创作生产力[heading1]Step 2:分步构建和测试Agent功能[heading2]2.1在Coze上搭建工作流框架,设定每个节点的逻辑关系首先进入Coze,点击「个人空间-工作流-创建工作流」,打开创建工作流的弹窗。根据弹窗要求,自定义工作流信息。点击确认后完成工作流的新建,可以看到整个编辑视图与功能如下:其中,左侧「选择节点」模块中,根据我们的子任务需要,实际用上的有:1.插件:提供一系列能力工具,拓展Agent的能力边界。本案例涉及的思维导图、英文音频,因为无法通过LLM生成,就需要依赖插件来实现。2.大模型:调用LLM,实现各项文本内容的生成。本案例的中文翻译、英文大纲、单词注释等都依赖大模型节点。3.代码:支持编写简单的Python、JS脚本,对数据进行处理。而编辑面板中的开始节点、结束节点,则分别对应1.2分解子任务流程图中的原文输入和结果输出环节。接下来,按照流程图,在编辑面板中拖入对应的LLM大模型、插件、代码节点,即可完成工作流框架的搭建。

一泽Eze:万字实践教程,全面入门 Coze 工作流|用 Coze 打造 AI 精读专家智能体,复刻 10 万粉公众号的创作生产力

[title]一泽Eze:万字实践教程,全面入门Coze工作流|用Coze打造AI精读专家智能体,复刻10万粉公众号的创作生产力[heading1]Step 2:分步构建和测试Agent功能[heading2]2.1在Coze上搭建工作流框架,设定每个节点的逻辑关系首先进入Coze,点击「个人空间-工作流-创建工作流」,打开创建工作流的弹窗。根据弹窗要求,自定义工作流信息。点击确认后完成工作流的新建,可以看到整个编辑视图与功能如下:其中,左侧「选择节点」模块中,根据我们的子任务需要,实际用上的有:1.插件:提供一系列能力工具,拓展Agent的能力边界。本案例涉及的思维导图、英文音频,因为无法通过LLM生成,就需要依赖插件来实现。2.大模型:调用LLM,实现各项文本内容的生成。本案例的中文翻译、英文大纲、单词注释等都依赖大模型节点。3.代码:支持编写简单的Python、JS脚本,对数据进行处理。而编辑面板中的开始节点、结束节点,则分别对应1.2分解子任务流程图中的原文输入和结果输出环节。接下来,按照流程图,在编辑面板中拖入对应的LLM大模型、插件、代码节点,即可完成工作流框架的搭建。

AI实战:搭建信息情报官Agent

注意,因为前面需要对多维表格操作,所以我们先得在http://open.feishu.cn上建一个飞书机器人,并添加知识库或多维表格编辑权限,这个可以读读飞书文档即可实现。那么我们得到机器人的app_id和app_secret即可获得租用token:tenant_access_token来获取多维表格数据和编辑能力。[heading3]工作流一:通过微信文章链接进行文章解读成摘要报告[content]通过LLM能力,这里开源提示词如下:这时,由于Coze使用LLM和批量执行任务延时的约束,建议不要同时处理太多文章(如6篇左右)这样执行后,将多维表格的文章状态转换成“已通知”并生成简报,如:[heading3][heading3]消息情报官Bot[content]最后我们可以通过Coze,建定时任务,执行工作流二,并添加其他如分析文章和搜索文章的能力,即可变成一个消息情报官的Agent,我们即可以获得想要的领域或行业情报,也可以深入挖掘相关情报的信息(CoT)。然后发布到想要的,如:Coze商店、豆包、飞书、微信、微信公众号、微信小程序等,即可使用了。可以构建多个分身,就能收集整理不同领域和行业的情报信息了。如感兴趣欢迎联系交流合作。介绍齐码蓝智能Focusing on Technology,Life,and Truth可以试试在公众号发消息向AI学伴提问,发消息加群可交流合作加AM聊天机器人(微信号:ZiMacroQubit)文章部分内容、图片、代码由AM帮助完成阅读本文,请点击在看并感谢您的点赞鼓励

Others are asking
coze平台有没有DeepSeek的mml可以调用
在 Coze 平台上,DeepSeek 是可以调用的。以下是相关的具体信息: 效果对比:用 Coze 做了个小测试,大家可以对比看看,相关视频 如何使用: 搜索 www.deepseek.com,点击“开始对话” 将装有提示词的代码发给 Deepseek 认真阅读开场白之后,正式开始对话 设计思路: 将 Agent 封装成 Prompt,将 Prompt 储存在文件,保证最低成本的人人可用的同时,减轻自己的调试负担 通过提示词文件,让 DeepSeek 实现同时使用联网功能和深度思考功能 在模型默认能力的基础上优化输出质量,并通过思考减轻 AI 味,增加可读性 照猫画虎参考大模型的 temperature 设计了阈值系统,但是可能形式大于实质,之后根据反馈可能会修改 用 XML 来进行更为规范的设定,而不是用 Lisp(对您来说有难度)和 Markdown(运行下来似乎不是很稳定) 完整提示词:v 1.3 特别鸣谢:李继刚的【思考的七把武器】在前期为提供了很多思考方向;Thinking Claude 这个项目是现在最喜欢使用的 Claude 提示词,也是设计 HiDeepSeek 的灵感来源;Claude 3.5 Sonnet 是最得力的助手。
2025-02-03
COZE相关内容
以下是关于 Coze 的相关内容: 扣子案例合集:包括智能对话科学防癌 AI 赋能肿瘤防治行动、打造私人播客助手、开发 AI chatbot 短视频爆款案例初探、制作 MidJourney 提示词专家、创建 AI 绘画助手、搓一个乞丐版的秘塔搜索、搞一个简单的安全 AI 助手、手搓英语陪练教师、为开源 AI 社区搞社群运营机器人等案例。 通俗易懂的 Coze 数据库文章:作者大圣致力于使用 AI 技术将自己打造为超级个体的程序员。本文是关于数据库概念的细化,旨在从非编程人士角度讲清数据库概念和基本使用,不会陷入传统教学讲 SQL 语法,而是通过和 Excel 对比让读者了解本质概念,从而更好利用 ChatGPT 等工具。另外作者还预告了关于 AI 时代应具备的编程基础系列大纲。 大圣的胎教级教程:Coze 是新一代一站式 AI Bot 开发平台,无论有无编程基础都可快速搭建各类问答 Bot。字节针对 Coze 部署了国内版和海外版两个站点,国内版使用字节自研的云雀大模型,国内网络可正常访问;海外版使用 GPT4、GPT3.5 等大模型,访问需突破网络限制。Bot 的开发和调试页面布局主要分为提示词和人设区块、Bot 的技能组件、插件、工作流、Bot 的记忆组件(包括知识库、变量、数据库、长记忆、文件盒子)、一些先进的配置(如触发器、开场白、自动建议、声音)等,后续会逐一讲解每个组件的能力及使用方式。
2025-02-02
coze的学习知识库
以下是关于 Coze 的学习知识库的相关内容: 一、引言 作者大圣是致力于使用 AI 技术将自己打造为超级个体的程序员。本文是关于使用 Coze 打造企业级知识库教程中数据库概念的细化,适合正在学习 Coze 且对数据库节点有困惑的人。在学习 AI Agent 过程中,有经典公式:AI Agent = LLM(大模型)+Planning(规划)+Memory(记忆)+Tools(工具),其中记忆离不开数据库组件。本文从非编程人士角度讲清数据库概念和基本使用,通过和 Excel 对比帮助理解,以更好利用 ChatGPT 等工具辅助学习。另外,作者正在规划一个关于 AI 时代应具备编程基础的系列,包括数据库、知识库、变量、JSON、API、操作系统与服务器、Docker 等内容。 二、大圣:胎教级教程:万字长文带你使用 Coze 打造企业级知识库 1. 2024.06.05 更新:为帮助非编程人士理解数据库概念,补充额外教程,如有疑惑可读。 2. 2024.06.08 更新:为帮助非编程人士理解知识库概念,补充额外教程,建议阅读。 3. 2024.06.10 更新:为帮助非编程人士理解变量概念,补充额外教程,。 4. 2024.06.12 更新:B站 对应的视频链接:https://www.bilibili.com/video/BV1YM4m167zP/?spm_id_from=333.999.0.0 。读完本文可收获 AI Agent 的概念及核心公式、字节初代 AI Agent 产品 Coze 的详细教程、使用一个知识库的例子及 Coze 的使用方法。 三、胎教级教程:万字长文带你理解 RAG 全流程 关于新知识学习,作者推荐 Claude + Coze 的方法。Claude 是目前最强的 AI 大模型,Coze 是一款 AI Agent 的衍生产品,其最大价值在于跟进 AI Agent 工具发展情况和做产品 Demo。在学习 RAG 过程中,作者首先通过 Claude 了解细节概念,再通过 Coze 搭建 Demo,并创建了 4 个 Bot,包括产品资料问答机器人(利用 Coze 的知识库能力演示知识库在企业中的应用)和 Query 改写助手学习 Bot。相关资料参考。
2025-01-31
coze教程
以下是关于 Coze 教程的相关内容: 可能是全网最好的 Coze 教程之一,能一次性带您入门 Coze 工作流。即使是非技术出身的爱好者也能上手跟学,一站式学会 AI Agent 从设计到落地的全流程方法论。 阅读指南: 长文预警,请视情况收藏保存。 核心看点: 通过实际案例逐步演示,用 Coze 工作流构建能够稳定按照模板要求生成结构化内容的 AI Agent。 开源 AI Agent 的设计到落地的全过程思路。 10+项常用的 Coze 工作流的配置细节、常见问题与解决方法。 适合人群: 任何玩过 AI 对话产品的一般用户(如果没用过,可以先找个国内大模型耍耍)。 希望深入学习 AI 应用开发平台(如 Coze、Dify),对 AI Agent 工作流配置感兴趣的爱好者。 注:本文不单独讲解案例所涉及 Prompt 的撰写方法。文末「拓展阅读」中,附有相关 Prompt 通用入门教程、Coze 其他使用技巧等内容,以供前置或拓展学习。 Coze 概述: 字节的官方解释:Coze 是新一代一站式 AI Bot 开发平台。无论是否有编程基础,都可在 Coze 平台上快速搭建基于 AI 模型的各类问答 Bot,从解决简单的问答到处理复杂逻辑的对话。并且,可以将搭建的 Bot 发布到各类社交平台和通讯软件上,与这些平台/软件上的用户互动。 个人认为:Coze 是字节针对 AI Agent 这一领域的初代产品,在 Coze 中将 AI Agent 称之为 Bot。 字节针对 Coze 这个产品部署了两个站点,分别是国内版和海外版。 国内版: 网址:https://www.coze.cn 官方文档教程:https://www.coze.cn/docs/guides/welcome 大模型:使用的是字节自研的云雀大模型,国内网络即可正常访问。 海外版: 网址:https://www.coze.com 官方文档教程:https://www.coze.com/docs/guides/welcome 大模型:GPT4、GPT3.5 等大模型(可以在这里白嫖 ChatGPT4,具体参考文档:),访问需要突破网络限制的工具。 参考文档:https://www.coze.com/docs/zh_cn/welcome.html AI Agent 的开发流程: Bot 的开发和调试页面布局主要分为如下几个区块: 提示词和人设的区块。 Bot 的技能组件。 插件。 工作流。 Bot 的记忆组件。 知识库。 变量。 数据库。 长记忆。 文件盒子。 一些先进的配置,如触发器(例如定时发送早报)、开场白(用户和 Bot 初次对话时,Bot 的招呼话语)、自动建议(每当和 Bot 一轮对话完成后,Bot 给出的问题建议)、声音(和 Bot 对话时,Bot 读对话内容的音色)。下面会逐一讲解每个组件的能力以及使用方式。
2025-01-28
Coze + 飞书 + 飞书多维表格:通过飞书机器人与 Coze 搭建的智能体进行对话,在聊天窗口中完成链接输入和阅读计划输出。由 Coze 调用大模型、插件完成内容的整理、推荐,利用飞书多维表格存储和管理稍后读数据,无需开发任何插件、APP,能实现跨平台的稍后读收集与智能阅读计划的推荐。其设计思路包括简化“收集”,实现跨平台收集和通过输入 URL 完成收集;自动化“整理入库”,自动整理关键信息并支持跨平台查看;智能“选择”推荐,根据收藏记录和用户兴趣生成阅读计划——这个方法具体如何操作?
以下是关于通过飞书机器人与 Coze 搭建的智能体进行对话,并利用飞书多维表格存储和管理稍后读数据,实现跨平台的稍后读收集与智能阅读计划推荐的具体操作方法: 前期准备: 1. 简化“收集”: 实现跨平台收集功能,支持电脑(web 端)、安卓、iOS 多端操作。 输入一个 URL 即可完成收集,借鉴微信文件传输助手的方式,通过聊天窗口完成收集输入。 2. 自动化“整理入库”: 系统在入库时自动整理每条内容的关键信息,包括标题、摘要、作者、发布平台、发布日期、收集时间和阅读状态。 阅读清单支持跨平台查看。 3. 智能“选择”推荐: 根据当前收藏记录和用户阅读兴趣进行相关性匹配,生成阅读计划。 使用飞书·稍后读助手: 1. 设置稍后读存储地址: 首次使用,访问。 点击「更多创建副本」,复制新表格的分享链接。 将新链接发送到智能体对话中。 还可以发送“查询存储位置”、“修改存储位置”来更换飞书多维表格链接,调整稍后读存储位置。 2. 收藏待阅读的页面链接: 在对话中输入需要收藏的页面链接,第一次使用会要求授权共享数据,授权通过后再次输入即可完成收藏。但目前部分页面链接可能小概率保存失败。 3. 智能推荐想看的内容: 在对话中发送“我想看 xx”、“xx 内容”,即可按个人兴趣推荐阅读计划。 至此,专属 AI 稍后读智能体大功告成,您可以尽情享受相关服务。
2025-01-27
COZE 是基于什么框架
Coze 基于以下框架构成: 1. 提示词:使用了结构化提示词的框架,通过提示要求大模型根据不同的行为调用不同的工作流。 2. 数据库:能够记录不同用户历史记账记录,工作流里会用到。 3. 工作流:增加记账调用 add_accounting_record 工作流;查询账户余额调用 query_accounting_balance 工作流;删除所有记账记录调用 init_accounting_records 。 此外,还有关于 Coze 的其他信息: Coze 是由字节跳动推出的 AI 聊天机器人和应用程序编辑开发平台,专为开发下一代 AI 聊天机器人而设计。 具有多语言模型支持、插件系统、知识库功能、数据库和记忆能力、工作流设计、多代理模式等特点。 目前对用户完全免费,且易于发布和分享。
2025-01-26
python现在能和ai软件怎么结合应用
Python 与 AI 软件可以通过以下方式结合应用: 1. 安装编程助手插件,如 FittenAI 编程助手或灵码 AI 编程助手: 安装 Python 的运行环境,可参考 。 对于 FittenAI 编程助手,安装步骤为点击左上角的 FileSettingsPluginsMarketplace,安装完成后左侧会出现插件图标,注册登录后即可开始使用。使用时,按下 Tab 键接受所有补全建议,按下 Ctrl+→键接收单个词补全建议;通过点击左上角工具栏中的 Fitten Code–开始新对话打开对话窗口进行 AI 问答;在 Fitten Code 工具栏中选择“Fitten Code生成代码”,然后在输入框中输入指令即可自动生成代码;选中需要进行翻译的代码段,右键选择“Fitten Code–编辑代码”,然后在输入框中输入需求即可完成代码转换;Fitten Code 能够根据代码自动生成相关注释。 对于灵码 AI 编程助手,安装步骤为点击左上角的 FileSettingsPluginsMarketplace,安装完成插件会提示登录,按要求注册登录即可,使用上和 Fitten 差不多。 2. 如果希望更深入地结合应用,最好体系化地了解编程以及 AI 知识,至少熟悉以下内容: Python 基础:包括基本语法(如变量命名、缩进等)、数据类型(如字符串、整数、浮点数、列表、元组、字典等)、控制流(如条件语句、循环语句)、函数(定义和调用函数、参数和返回值、作用域和命名空间)、模块和包(导入模块、使用包)、面向对象编程(类和对象、属性和方法、继承和多态)、异常处理(理解异常、异常处理)、文件操作(文件读写、文件与路径操作)。
2025-01-25
你觉得作为一个普通不懂得程序的人来说,在面对未来的AI时代,需要学习编程的基础知识吗?系统性的学习Python或者你觉得学习Python哪些主要知识注音对了。
对于普通不懂得程序的人来说,在面对未来的 AI 时代,学习编程的基础知识是有一定必要的。如果想系统性地学习 Python,以下是一些需要重点关注的主要知识: 1. Python 基础: 基本语法:了解 Python 的基本语法规则,如变量命名、缩进等。 数据类型:熟悉字符串(String)、整数(Integer)、浮点数(Float)、列表(List)、元组(Tuple)、字典(Dictionary)等基本数据类型。 控制流:学会使用条件语句(if)、循环语句(for 和 while)来控制程序执行流程。 2. 函数: 定义和调用函数:学习如何定义自己的函数以及调用现有的函数。 参数和返回值:理解函数接收参数和返回结果的方式。 作用域和命名空间:了解局部变量和全局变量的概念及工作方式。 3. 模块和包: 导入模块:学习如何导入 Python 标准库中的模块或第三方库。 使用包:理解如何安装和使用 Python 包来扩展程序功能。 4. 面向对象编程(OOP): 类和对象:了解类的定义和实例化等基本概念。 属性和方法:学习为类定义属性和方法,并通过对象调用。 继承和多态:了解类之间的继承关系及实现多态的方法。 5. 异常处理: 理解异常:了解异常的概念及在 Python 中的工作原理。 异常处理:学会使用 try 和 except 语句处理程序中可能出现的错误。 6. 文件操作: 文件读写:学习如何打开文件、读取文件内容和写入文件。 文件与路径操作:理解如何使用 Python 处理文件路径及列举目录下的文件。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习:可以从 Python、JavaScript 等编程语言开始,学习编程语法、数据结构、算法等基础知识。 2. 尝试使用 AI 工具和平台:使用 ChatGPT、Midjourney 等 AI 生成工具体验应用场景,探索如百度的“文心智能体平台”、Coze 智能体平台等面向中学生的教育平台。 3. 学习 AI 基础知识:了解 AI 的基本概念、发展历程、主要技术(如机器学习、深度学习),学习其在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目:参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动,尝试利用 AI 技术解决实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态:关注权威媒体和学者,了解最新进展,思考 AI 技术对未来社会的影响,培养思考和判断能力。 总之,中学生可以从编程基础、工具体验、知识学习、实践项目等多方面入手,全面系统地学习 AI 知识和技能,为未来的 AI 发展做好准备。但需注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-01-24
Python机器学习基础教程
很抱歉,目前知识库中没有关于“Python 机器学习基础教程”的具体内容。但我可以为您提供一个大致的指导方向。 首先,学习 Python 机器学习需要掌握 Python 编程语言的基础知识,包括数据类型、控制结构、函数等。 其次,了解常见的机器学习概念和算法,如线性回归、逻辑回归、决策树、聚类等。 然后,学习使用相关的 Python 库,如 Scikitlearn,它提供了丰富的机器学习工具和函数。 您可以通过在线课程、书籍、官方文档等多种资源来深入学习 Python 机器学习。
2025-01-23
我想学习使用python
Python 是一种高级编程语言,具有以下特点和优势: 特点:简单易学、功能强大、库丰富。可以想象成一个拥有多种工具的工具箱,能帮助完成画画、计算、整理东西等各种任务。 起源:1989 年由 Guido van Rossum 在荷兰的 Centrum Wiskunde&Informatica(CWI)开始开发,1991 年发布第一个公开发行版 Python 0.9.0,之后不断发展,2020 年 1 月 1 日 Python 2 正式停止支持。 为什么使用:环境部署简单,下载两个软件并点击安装即可;语法简单且可读性强,适合小白;应用广泛,可用于做网站、开发游戏、分析数据、自动化任务等。 如果您想深入学习 Python,至少需要熟悉以下内容: Python 基础:包括基本语法(如变量命名、缩进)、数据类型(如字符串、整数、浮点数、列表、元组、字典)、控制流(如条件语句、循环语句)。 函数:定义和调用函数,理解参数和返回值,以及作用域和命名空间。 模块和包:学会导入模块和使用包来扩展程序功能。 面向对象编程(OOP):了解类和对象、属性和方法、继承和多态。 异常处理:理解异常以及如何使用 try 和 except 语句处理错误。 文件操作:掌握文件读写和文件与路径操作。 在学习 Python 的课程中,比如“和 Cursor AI 一起学 Python 编程”的第一节,会介绍 Python 是什么、Cursor 使用、notebook 远程编程。包括 Python 的简介、发展历史和特点,在数据分析和人工智能等领域的优势及应用案例,还会介绍 Cursor 编程环境,它是结合了 AI 功能的编程编辑器,具有 AI 辅助代码补全和生成、实时语法和错误检查等功能和优势,以及 Bohrium 在线编程平台,它是 AI for Science 的科研学习平台,利用其 Jupyter Notebook 进行远程编程具有无需本地环境配置、内置丰富功能、适合团队协作和教学场景等优势。
2025-01-13
如何检查Python程序的对错
以下是一些检查 Python 程序对错的方法: 1. 使用 Fitten Code 编程助手: 解释代码:选中代码段然后右键选择“Fitten Code–解释代码”。 自动生成测试:选中代码段后右键选择“Fitten Code–生成单元测试”。 检查 BUG:选中对应代码段,然后右键选择“Fitten Code 查找 Bug”。 编辑代码:选中代码段右键选择“Fitten Code–编辑代码”。 2. 基础报错副本处理: 遇到报错可尝试使用 ZHO 的 ChatGPT 的机器人,网址:https://chatgpt.com/g/gB3qi2zKGBcomfyuiassistant 。 紫色框报错:模型错误(没有下载到模型)。 红色框报错:节点错误(没有正确安装好节点)节点丢失。 安装完成后启动报错: 问题排查一:检查环境,是否为 python 3.10.9,安装,选个目录,勾选上 path。然后安装 git 再装环境,拉代码,干净的 comfyui。 问题排查二:检查魔法是否开启,pip install torch torchvision torchaudio extraindexurlxformers,这一步,里面有一个 2.xg 的文件下载和安装,魔法不好,中途断了,很可能导致安装不成功,需要多试。 问题排查三:在 comfyUI 的文件夹里 shift+右键启动 powershall 。 Error occurred when executing TranslateTextNode:问题原因是魔法节点不稳定,翻译用的是谷歌翻译,解决办法是更改魔法或者更换翻译。 输入 Python main.py 命令行的时候出问题:运行 python.exe m pip install upgrade pip 然后再重新按手记安装依赖环境。 3. 对于特定的 main.py 脚本: 运行诗歌相机脚本:$python main.py 。 设置一个 cron 作业以在启动时运行 python 脚本: 首先,crontab 使用默认编辑器打开文件:$crontab e 。 然后将以下行添加到您的 crontab,以在启动计算机时运行该脚本:@reboot python /home/pi/poetrycamerarpi/main.py >> /home/pi/poetrycamerarpi/errors.txt 2>&1 。 将 {...}errors.txt 2>&1 任何错误消息写入以 errors.txt 进行调试。常见的故障模式是找不到文件。确保所有文件路径都是绝对文件路径并且具有正确的用户名和目录名。 重新启动系统以使此生效:sudo reboot 。 尝试单击快门和电源按钮以确保它们在重新启动后正常工作。如果它们不起作用,请检查您的 errors.txt 文件。
2025-01-04
python实现网页爬虫
以下是使用 Python 实现网页爬虫的详细步骤: 首先,在 Colab 中抓取网页的正文内容,需要使用 Python 的 requests 库来获取网页的 HTML 源代码,然后使用 BeautifulSoup 库来解析 HTML 并提取所需的正文部分。 在开始之前,要确保已经在 Colab 环境中安装了 beautifulsoup4 和 requests 库。如果没有安装,可以使用以下命令安装: ``` !pip install beautifulsoup4 requests ``` 然后,使用以下代码抓取并解析指定的网页内容: ```python import requests from bs4 import BeautifulSoup def get_webpage_content: response = requests.get soup = BeautifulSoup 这里根据实际网页结构调整提取正文的部分 例如:content = soup.find return content url = 'https://mp.weixin.qq.com/s/KUnXlDlgRs_6D5RFpQbnQ' print ``` 请注意,由于网页的结构随时可能发生变化,所以提取正文内容的部分(即 soup.find 那一行)可能需要根据实际的 HTML 结构进行调整。如果文章有反爬虫机制,可能还需要进一步的处理,比如设置请求头模拟浏览器访问等。 在和 AI 配合写代码的过程中,如果遇到了 Bug,可以直接将问题报给 ChatGPT,然后再把 ChatGPT 给出的结果粘贴回去(如果还不行,就反复调试)。 另外,Python 在自动化方面应用广泛,例如办公软件自动化(pythondocx 用于 Word 文档、openpyxl 或 xlsxwriter 用于 Excel 文件、pythonpptx 用于 PPT、PyPDF2 用于 PDF)、爬虫(requests 用于发送 HTTP 请求、selenium 用于模拟浏览器交互、BeautifulSoup 和 lxml 用于解析 HTML 和 XML 文档)、测试自动化(unittest 和 pytest)、容器与虚拟化自动化(dockerpy 用于 Docker 容器管理)等。
2025-01-02
如何从零到一学习LLM上层AI应用开发
从零到一学习 LLM 上层 AI 应用开发,您可以参考以下步骤: 1. 掌握深度学习和自然语言处理基础: 学习机器学习、深度学习、神经网络等基础理论。 掌握自然语言处理基础,如词向量、序列模型、注意力机制等。 相关课程:吴恩达的深度学习课程、斯坦福 cs224n 等。 2. 理解 Transformer 和 BERT 等模型原理: 熟悉 Transformer 模型架构及自注意力机制原理。 掌握 BERT 的预训练和微调方法。 阅读相关论文,如 Attention is All You Need、BERT 论文等。 3. 学习 LLM 模型训练和微调: 进行大规模文本语料预处理。 熟悉 LLM 预训练框架,如 PyTorch、TensorFlow 等。 学会微调 LLM 模型进行特定任务迁移。 相关资源:HuggingFace 课程、论文及开源仓库等。 4. LLM 模型优化和部署: 掌握模型压缩、蒸馏、并行等优化技术。 了解模型评估和可解释性。 熟悉模型服务化、在线推理、多语言支持等。 相关资源:ONNX、TVM、BentoML 等开源工具。 5. LLM 工程实践和案例学习: 结合行业场景,进行个性化的 LLM 训练。 分析和优化具体 LLM 工程案例。 研究 LLM 新模型、新方法的最新进展。 6. 持续跟踪前沿发展动态: 关注顶会最新论文、技术博客等资源。 以下是一些相关的学习资源: 面向开发者的 LLM 入门课程: 提示工程指南: LangChain🦜️🔗中文网,跟着 LangChain 一起学 LLM/GPT 开发: LLMs 九层妖塔: 在课程方面,欢迎来到针对开发者的 AIGPT 提示工程课程。该课程将分享软件开发最佳实践的提示,涵盖常见用例,包括总结、推理、转换和扩展,并指导使用 LLM 构建一个聊天机器人。在大型语言模型或 LLM 的开发中,大体上有基础 LLM 和指令调整后的 LLM 两种类型。基础 LLM 已训练出根据文本训练数据预测下一个单词,通常在大量数据上训练,以找出接下来最有可能的单词。
2025-01-28
从零到一的 LLM 学习教程
以下是从零到一学习 LLM 的教程: 1. 掌握深度学习和自然语言处理基础: 学习机器学习、深度学习、神经网络等基础理论。 掌握自然语言处理基础,如词向量、序列模型、注意力机制等。 相关课程:吴恩达的深度学习课程、斯坦福 cs224n 等。 2. 理解 Transformer 和 BERT 等模型原理: 了解 Transformer 模型架构及自注意力机制原理。 掌握 BERT 的预训练和微调方法。 阅读相关论文,如 Attention is All You Need、BERT 论文等。 3. 学习 LLM 模型训练和微调: 进行大规模文本语料预处理。 运用 LLM 预训练框架,如 PyTorch、TensorFlow 等。 微调 LLM 模型进行特定任务迁移。 相关资源:HuggingFace 课程、论文及开源仓库等。 4. LLM 模型优化和部署: 掌握模型压缩、蒸馏、并行等优化技术。 进行模型评估和可解释性研究。 实现模型服务化、在线推理、多语言支持等。 相关资源:ONNX、TVM、BentoML 等开源工具。 5. LLM 工程实践和案例学习: 结合行业场景,进行个性化的 LLM 训练。 分析和优化具体 LLM 工程案例。 研究 LLM 新模型、新方法的最新进展。 6. 持续跟踪前沿发展动态: 关注顶会最新论文、技术博客等资源。 此外,为您推荐以下 LLM 开源中文大语言模型及数据集集合的学习资源: 1. 面向开发者的 LLM 入门课程: 地址: 简介:一个中文版的大模型入门教程,围绕吴恩达老师的大模型系列课程展开,主要包括:吴恩达《ChatGPT Prompt Engineering for Developers》课程中文版,吴恩达《Building Systems with the ChatGPT API》课程中文版,吴恩达《LangChain for LLM Application Development》课程中文版等。 2. 提示工程指南: 地址: 简介:该项目基于对大语言模型的浓厚兴趣,编写了这份全新的提示工程指南,介绍了大语言模型相关的论文研究、学习指南、模型、讲座、参考资料、大语言模型能力以及与其他与提示工程相关的工具。 3. LangChain🦜️🔗中文网,跟着 LangChain 一起学 LLM/GPT 开发: 地址: 简介:Langchain 的中文文档,由是两个在 LLM 创业者维护,希望帮助到从刚进入 AI 应用开发的朋友们。 4. LLMs 九层妖塔: 地址: 简介:ChatGLM、ChineseLLaMAAlpaca、MiniGPT4、FastChat、LLaMA、gpt4all 等实战与经验。 关于 LLM 的预测原理: LLM 接触了包括教科书、文章、网站等在内的庞大数据集。在训练阶段,它们学会了理解语言的上下文和流动性,掌握了包括语法、风格,甚至是文本的语调等方面。当您用一个句子或问题来指导 LLM 时,它便利用自己所学的知识,预测接下来最可能的一个或几个词。这不仅是基于它在训练期间观察到的模式和规则的推测。 在提示工程方面,鉴于 LLM 的概率本质,提示工程师面临的挑战是如何引导 LLM 向着高度可预测和准确的结果方向发展。在相关课程中,您将学习许多技巧,这些技巧将帮助您掌握高度可预测的 LLM 输出结果的艺术和科学。但在深入学习之前,可以先从一些简单的练习开始,激活思维。
2025-01-28
llm cookbook 有资源吗
以下是关于 LLM 学习资源和 OpenAI Cookbook 的相关信息: 学习大型语言模型(LLM)开发的资源和路径: 1. 掌握深度学习和自然语言处理基础: 机器学习、深度学习、神经网络等基础理论。 自然语言处理基础,如词向量、序列模型、注意力机制等。 相关课程:吴恩达的深度学习课程、斯坦福 cs224n 等。 2. 理解 Transformer 和 BERT 等模型原理: Transformer 模型架构及自注意力机制原理。 BERT 的预训练和微调方法。 掌握相关论文,如 Attention is All You Need、BERT 论文等。 3. 学习 LLM 模型训练和微调: 大规模文本语料预处理。 LLM 预训练框架,如 PyTorch、TensorFlow 等。 微调 LLM 模型进行特定任务迁移。 相关资源:HuggingFace 课程、论文及开源仓库等。 4. LLM 模型优化和部署: 模型压缩、蒸馏、并行等优化技术。 模型评估和可解释性。 模型服务化、在线推理、多语言支持等。 相关资源:ONNX、TVM、BentoML 等开源工具。 5. LLM 工程实践和案例学习: 结合行业场景,进行个性化的 LLM 训练。 分析和优化具体 LLM 工程案例。 研究 LLM 新模型、新方法的最新进展。 6. 持续跟踪前沿发展动态: 关注顶会最新论文、技术博客等资源。 OpenAI Cookbook 资源: 如需更多灵感,请访问,其中包含示例代码以及指向第三方资源的链接,例如: 1. 2. 3. 4. 此外,还有 LLM 开源中文大语言模型及数据集集合中的相关资源: HuggingLLM: 地址: 简介:介绍 ChatGPT 原理、使用和应用,降低使用门槛,让更多感兴趣的非 NLP 或算法专业人士能够无障碍使用 LLM 创造价值。 OpenAI Cookbook: 地址: 简介:该项目是 OpenAI 提供的使用 OpenAI API 的示例和指导,其中包括如何构建一个问答机器人等教程,能够为从业人员开发类似应用时带来指导。
2025-01-14
Llm studio 联网搜索
以下是关于 LLM studio 联网搜索的相关内容: Cursor 方面: Cursor 适用于多种编程场景,如问答。在问答场景中,LLM 支持联网功能后,如 Claude、ChatGPT、Perplexity 等平台可咨询技术问题,能自动提炼关键字、联网搜索并总结分析搜索结果返回简洁答案,但答案置信率不高,而 Cursor 的上下文符号引用能力(如@Codebase 符号索引整个仓库)弥补了这一点,其将整个仓库 Embedding 成向量数据库供 LLM 消费,具备极强的私域知识理解能力,还能高效地帮用户分析总结各类项目的底层原理。 LLM Agent 方面: 工作步骤包括接收指令(用户通过文本、语音等方式发出指令或提出问题)、数据处理与理解(利用内部大语言模型解析用户输入,提取关键信息)、生成响应与执行任务(根据用户需求生成回答或采取行动,如查询数据库、搜索网络等)、输出结果(通过文本或语音将生成的结果反馈给用户)。 AIGC Weekly34 方面: 提出将 LLM 与互联网上的高质量内容结合来修复信息生态系统的问题,如 Metaphor 希望恢复搜索的神奇感,发布了 Metaphor API 用于将 LLM 连接到互联网。 介绍了 StarCraft II 作为强化学习环境的相关论文,提出了 AlphaStar Unplugged 基准测试。 提到了名为 Glean 的 AI 搜索工具能帮助用户在工作场景中进行搜索和优化,还讨论了人工智能人格模拟相关内容,如语言模型如何模拟和改变人格等。
2025-01-13
LLM输出的结果一致性如何保证
要保证 LLM 输出结果的一致性,可以采取以下几种策略: 1. Prompt 工程: 明确的待处理内容指引:在构建 Prompt 时,清晰地定义需要处理的文本,并使用标记框起来,让模型准确识别待处理内容范围,从中提取信息。 提供明确字段定义:具体化每个字段的名称、用途及要求,为 LLM 提供明确的提取方向和标准。 异常处理:设置异常处理原则,如规定缺失数据使用默认值填充,特殊数据类型符合标准格式,确保模型输出的完整性和一致性。 要求结构化输出:指示 LLM 以结构化格式(如 JSON)输出数据,便于后续处理和系统集成。 2. 自我一致性增强可靠性:促使 LLM 对同一问题产生多个答案,通过一致性审查衡量其可信度。一致性评估可从内容重叠、语义相似性评估及高级指标(如 BERT 分数或 ngram 重叠)等多方面进行,增强 LLM 在事实核查工具中的可靠性。 3. 衡量和评估不确定性:如牛津大学通过生成一个问题的多个答案,并使用另一个模型根据相似含义分组来衡量 LLM 不确定性。 4. 利用外部工具验证:如 Google DeepMind 推出的 SAFE,通过将 LLM 响应分解为单个事实、使用搜索引擎验证事实以及对语义相似的陈述进行聚类来评估 LLM 响应的真实性。 5. 借助其他 LLM 发现错误:如 OpenAI 推出的 CriticGPT,使用基于大量有缺陷输入数据集训练的 GPT 式 LLM 来发现其他 LLM 生成代码中的错误。 6. 利用 LLM 生成的评论增强 RLHF 的奖励模型:如 Cohere 使用一系列 LLM 为每个偏好数据对生成逐点评论,评估提示完成对的有效性。
2025-01-02
LLM是什么?
LLM(语言逻辑模型)是 LangChain 平台与各种大模型进行交互的核心模型,是一个能够处理语言输入和输出的抽象概念,可以理解为一个黑盒。 其输入是一个字符串,表示用户的请求或问题,输出也是一个字符串,表示模型的回答或结果。LLM 能根据不同输入调用不同大模型来完成不同语言任务,如文本生成、文本理解、文本翻译等。 从大模型的整体架构来看,LLM 处于模型层,例如 GPT 就是一种常见的 LLM,一般使用 transformer 算法实现。 LLM 的工作原理是像输入法的输入联想逻辑一样,一个字一个字地推理生成内容。通过将上下文加入输入,能帮助模型理解下一个字。但存在计算时带入全量数据算力吃不消以及仅算字的概率易被不相干信息干扰的问题,词向量机制和 transformer 模型中的 attention 自注意力机制解决了这些难题。
2025-01-02
处理Excel的ai
以下是一些关于处理 Excel 的 AI 工具和相关信息: 1. Excel Labs:这是一个 Excel 插件,基于 OpenAI 技术,新增了生成式 AI 功能,允许用户在 Excel 中直接利用 AI 进行数据分析和决策支持。 2. Microsoft 365 Copilot:微软推出的 AI 工具,整合了包括 Excel 在内的多种办公软件,用户通过聊天形式告知需求,Copilot 会自动完成如数据分析、格式创建等任务。 3. Formula Bot:提供数据分析聊天机器人和公式生成器两大功能,用户可通过自然语言交互式地进行数据分析和生成 Excel 公式。 4. Numerous AI:支持 Excel 和 Google Sheets 的 AI 插件,除公式生成外,还能根据提示生成相关文本内容、执行情感分析、语言翻译等任务。 这些工具通过 AI 技术提升了 Excel 的数据处理能力,让用户能更高效地进行数据分析和决策。未来可能会有更多 AI 功能集成到 Excel 中,进一步提高工作效率和智能化水平。 另外,在飞书多维表格与 Excel 的对比中,虽然 Excel 有手就会,但 VBA 进阶版功能门槛高。而多维表格在处理一些数据处理功能时能让人更偷懒,例如自带 AI 插件,对于一些特定场景,如挑出网址和电话、处理收集的链接等,多维表格有相应的便捷处理方式。 在实践演示中,如 Chat Excel,用户提要求,它就能处理 Excel 数据,可进行数据统计、分析、作图等操作,还能让 AI 辅助编写苹果“自动操作”实现批量统计学生作业字数。
2025-02-03
怎么用ai做家庭财务系统的excel
抱歉,当前提供的内容中没有关于如何用 AI 做家庭财务系统 Excel 的直接相关信息。但一般来说,您可以考虑以下步骤: 1. 明确家庭财务系统的具体需求和功能,例如收入、支出的分类,预算设定等。 2. 寻找支持 Excel 操作的 AI 工具或插件,有些工具可能能够根据您提供的需求和数据自动生成相关的表格和计算。 3. 在向 AI 提出需求时,尽可能详细地描述您的要求,包括格式、计算公式、数据来源等。 4. 对于生成的结果,进行检查和调整,确保其符合您的实际需求和财务逻辑。
2025-02-02
Excel表格办公AI工具
以下是一些关于 Excel 表格办公的 AI 工具: 1. Excel Labs:是 Excel 插件,新增生成式 AI 功能,基于 OpenAI 技术,可在 Excel 中利用 AI 进行数据分析和决策支持。 2. Microsoft 365 Copilot:微软推出,整合了多种办公软件,用户通过聊天告知需求,Copilot 自动完成任务,包括 Excel 中的数据分析和格式创建等。 3. Formula Bot:提供数据分析聊天机器人和公式生成器两大功能,用户可自然语言交互进行数据分析和生成 Excel 公式。 4. Numerous AI:支持 Excel 和 Google Sheets 的 AI 插件,能生成公式、相关文本内容、执行情感分析、语言翻译等任务。 随着技术发展,未来可能会有更多 AI 功能集成到 Excel 中,进一步提高工作效率和数据处理智能化水平。但请注意,内容由 AI 大模型生成,请仔细甄别。 另外,在软件架构设计中,以下是一些可以绘制逻辑视图、功能视图、部署视图的工具: 1. Lucidchart:流行的在线绘图工具,支持多种视图创建,可拖放界面轻松创建架构图。 2. Visual Paradigm:全面的 UML 工具,提供多种架构视图创建功能。 3. ArchiMate:开源建模语言,与 Archi 工具配合可创建逻辑视图。 4. Enterprise Architect:强大的建模、设计和生成代码工具,支持多种视图创建。 5. Microsoft Visio:广泛使用的图表和矢量图形应用程序,提供丰富模板。 6. draw.io(diagrams.net):免费在线图表软件,支持多种视图创建。 7. PlantUML:文本到 UML 转换工具,通过描述文本自动生成视图。 8. Gliffy:基于云的绘图工具,提供多种架构图创建功能。 9. Archi:免费开源工具,支持逻辑视图创建。 10. Rational Rose:IBM 的 UML 工具,支持多种视图创建。
2025-02-01
北大excel处理ai
以下是关于 Excel 处理的 AI 相关内容: 目前有多种工具和插件可增强 Excel 的数据处理和分析能力,例如: Excel Labs:是 Excel 插件,新增基于 OpenAI 技术的生成式 AI 功能,可用于数据分析和决策支持。 Microsoft 365 Copilot:整合了多种办公软件,能通过聊天形式完成用户需求,如数据分析和格式创建。 Formula Bot:提供数据分析聊天机器人和公式生成器功能,支持自然语言交互。 Numerous AI:支持 Excel 和 Google Sheets,能生成公式、文本内容、执行情感分析和语言翻译等任务。 对于 Excel 与其他工具的比较: Excel 有手就会,但 VBA 进阶版功能门槛高。 多维表格在处理一些数据处理功能时更方便,例如自带 AI 插件,能通过自然语言提取网址和电话、添加 AI 标签等。 都能帮助整理数据、做计算、做图表,但多维表格能让人偷更多懒。 在作业测评方面,可提要求让 AI 处理 Excel 数据,制作数据分析图等。例如天津师大王树义老师的案例。 随着技术发展,未来可能会有更多 AI 功能集成到 Excel 中,进一步提高工作效率和智能化水平。内容由 AI 大模型生成,请仔细甄别。
2025-01-31
我给你一个excel表格,你可以快速生成甘特图吗?
目前我无法直接为您提供将 Excel 表格快速生成甘特图的服务。但您可以使用一些专业的软件,如 Microsoft Project、Excel 本身(通过特定的功能和插件)、Trello 等,它们都具备将相关数据转化为甘特图的功能。您可以根据自己的需求和使用习惯选择合适的工具,并按照其操作指南进行操作。
2025-01-24
excel处理ai有哪些
关于 Excel 处理的 AI 功能,目前有以下几种工具和插件: 1. Excel Labs:这是一个 Excel 插件,新增了基于 OpenAI 技术的生成式 AI 功能,可用于数据分析和决策支持。 2. Microsoft 365 Copilot:微软推出的整合了 Word、Excel、PowerPoint 等办公软件的 AI 工具,能通过聊天形式完成用户需求,如数据分析和格式创建。 3. Formula Bot:提供数据分析聊天机器人和公式生成器功能,支持自然语言交互进行数据分析和生成 Excel 公式。 4. Numerous AI:支持 Excel 和 Google Sheets 的 AI 插件,能进行公式生成、生成相关文本内容、执行情感分析、语言翻译等任务。 此外,还可以利用 ChatGPT 编写 Python 程序来做 Excel 数据处理,如让 GPT4 按文字需求出代码、修改代码、解 bug 等。也能通过自然语言让其处理一些 Excel 中的特定任务,如合并单元格内容、去除整个表格所有单元格的重复内容等。随着技术发展,未来可能会有更多 AI 功能集成到 Excel 中,进一步提高工作效率和智能化水平。
2025-01-21