直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

coze 是否可以通过LLM生成python代码运行查询excel表格信息?

回答

在 Coze 中,可以通过以下步骤实现相关操作:

  1. 进入 Coze,点击「个人空间 - 工作流 - 创建工作流」,打开创建工作流的弹窗。
  2. 根据弹窗要求,自定义工作流信息,点击确认完成工作流的新建。
  3. 新建后的编辑视图与功能中,左侧「选择节点」模块根据子任务需要,实际用到的有:
    • 插件:提供一系列能力工具,拓展 Agent 的能力边界。如本案例中的思维导图、英文音频,无法通过 LLM 生成,需依赖插件实现。
    • 大模型:调用 LLM,实现各项文本内容的生成。如本案例中的中文翻译、英文大纲、单词注释等依赖大模型节点。
    • 代码:支持编写简单的 Python、JS 脚本,对数据进行处理。
  4. 编辑面板中的开始节点、结束节点,分别对应分解子任务流程图中的原文输入和结果输出环节。
  5. 按照流程图,在编辑面板中拖入对应的 LLM 大模型、插件、代码节点,即可完成工作流框架的搭建。

需要注意的是,因为前面需要对多维表格操作,所以要先在 http://open.feishu.cn 上建一个飞书机器人,并添加知识库或多维表格编辑权限,具体可参考飞书文档。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

一泽Eze:万字实践教程,全面入门 Coze 工作流|用 Coze 打造 AI 精读专家智能体,复刻 10 万粉公众号的创作生产力

[title]一泽Eze:万字实践教程,全面入门Coze工作流|用Coze打造AI精读专家智能体,复刻10万粉公众号的创作生产力[heading1]Step 2:分步构建和测试Agent功能[heading2]2.1在Coze上搭建工作流框架,设定每个节点的逻辑关系首先进入Coze,点击「个人空间-工作流-创建工作流」,打开创建工作流的弹窗。根据弹窗要求,自定义工作流信息。点击确认后完成工作流的新建,可以看到整个编辑视图与功能如下:其中,左侧「选择节点」模块中,根据我们的子任务需要,实际用上的有:1.插件:提供一系列能力工具,拓展Agent的能力边界。本案例涉及的思维导图、英文音频,因为无法通过LLM生成,就需要依赖插件来实现。2.大模型:调用LLM,实现各项文本内容的生成。本案例的中文翻译、英文大纲、单词注释等都依赖大模型节点。3.代码:支持编写简单的Python、JS脚本,对数据进行处理。而编辑面板中的开始节点、结束节点,则分别对应1.2分解子任务流程图中的原文输入和结果输出环节。接下来,按照流程图,在编辑面板中拖入对应的LLM大模型、插件、代码节点,即可完成工作流框架的搭建。

一泽Eze:万字实践教程,全面入门 Coze 工作流|用 Coze 打造 AI 精读专家智能体,复刻 10 万粉公众号的创作生产力

[title]一泽Eze:万字实践教程,全面入门Coze工作流|用Coze打造AI精读专家智能体,复刻10万粉公众号的创作生产力[heading1]Step 2:分步构建和测试Agent功能[heading2]2.1在Coze上搭建工作流框架,设定每个节点的逻辑关系首先进入Coze,点击「个人空间-工作流-创建工作流」,打开创建工作流的弹窗。根据弹窗要求,自定义工作流信息。点击确认后完成工作流的新建,可以看到整个编辑视图与功能如下:其中,左侧「选择节点」模块中,根据我们的子任务需要,实际用上的有:1.插件:提供一系列能力工具,拓展Agent的能力边界。本案例涉及的思维导图、英文音频,因为无法通过LLM生成,就需要依赖插件来实现。2.大模型:调用LLM,实现各项文本内容的生成。本案例的中文翻译、英文大纲、单词注释等都依赖大模型节点。3.代码:支持编写简单的Python、JS脚本,对数据进行处理。而编辑面板中的开始节点、结束节点,则分别对应1.2分解子任务流程图中的原文输入和结果输出环节。接下来,按照流程图,在编辑面板中拖入对应的LLM大模型、插件、代码节点,即可完成工作流框架的搭建。

AI实战:搭建信息情报官Agent

注意,因为前面需要对多维表格操作,所以我们先得在http://open.feishu.cn上建一个飞书机器人,并添加知识库或多维表格编辑权限,这个可以读读飞书文档即可实现。那么我们得到机器人的app_id和app_secret即可获得租用token:tenant_access_token来获取多维表格数据和编辑能力。[heading3]工作流一:通过微信文章链接进行文章解读成摘要报告[content]通过LLM能力,这里开源提示词如下:这时,由于Coze使用LLM和批量执行任务延时的约束,建议不要同时处理太多文章(如6篇左右)这样执行后,将多维表格的文章状态转换成“已通知”并生成简报,如:[heading3][heading3]消息情报官Bot[content]最后我们可以通过Coze,建定时任务,执行工作流二,并添加其他如分析文章和搜索文章的能力,即可变成一个消息情报官的Agent,我们即可以获得想要的领域或行业情报,也可以深入挖掘相关情报的信息(CoT)。然后发布到想要的,如:Coze商店、豆包、飞书、微信、微信公众号、微信小程序等,即可使用了。可以构建多个分身,就能收集整理不同领域和行业的情报信息了。如感兴趣欢迎联系交流合作。介绍齐码蓝智能Focusing on Technology,Life,and Truth可以试试在公众号发消息向AI学伴提问,发消息加群可交流合作加AM聊天机器人(微信号:ZiMacroQubit)文章部分内容、图片、代码由AM帮助完成阅读本文,请点击在看并感谢您的点赞鼓励

其他人在问
我想知道如果我上传给Coze数据库,我的数据安全有保障吗
关于您上传数据到 Coze 数据库的数据安全保障问题,以下是相关信息: 合规说明方面: 不存在产出违法违规内容,包括色情暴力、政治敏感和违法犯罪等。 不存在爬取行为,遵循 robot.txt 爬虫协议,未使用匿名代理。 不存在版权争议问题,未爬取强版权资源、付费内容等。 不存在跨境数据传输,未使用海外 API 和海外模型。 有安全合规声明,作者声明作品没有侵权,作品安全可用且公开可接受。 Coze 数据库的功能特点: 知识库功能不仅支持上传和存储外部知识内容,还提供多样化的检索能力,能解决大模型可能出现的幻觉问题和专业领域知识的不足,显著提升回复准确性。支持从多种数据源上传文本和表格数据,自动将知识内容切分成多个片段进行存储,并允许用户自定义内容分片规则,提供多种检索方式,适应各种使用场景。 数据库具备记忆能力,可以存储和检索用户的交互历史,以提供更加个性化的服务。支持实时更新,确保信息最新。能存储用户的交互历史,包括提问、回答和反馈,用于理解用户需求和优化对话流程,可进行个性化服务和错误纠正与学习。 综上所述,从目前的信息来看,您上传给 Coze 数据库的数据在一定程度上是有安全保障的。但具体情况还需参考 Coze 数据库的最新政策和规定。
2024-11-14
用Coze创建AI,打造自己的图像生成AI机器人
以下是使用 Coze 创建自己的图像生成 AI 机器人的步骤: 1. 注册 Coze 账号: 访问 Coze 官网,可选择中文版(https://www.coze.cn/,支持大模型:kimi、云雀)或英文版(https://coze.com/,支持大模型:chatgpt4)进行快速注册。 产品定位为新一代 AI 原生应用开发服务平台。 2. 创建机器人: 登录 Coze,可使用抖音或手机号登陆,登陆后选择“创建 Bot”,起一个响亮的名字。 工作空间选“个人空间”。 小技巧:“图标”AI 可以自动生成,先在“Bot 名称”用文字描述想要的图标,满意后再把“Bot 名称”改为简洁版名称。 3. 具体创建 AI Bot: 首先打开扣子的首页(https://www.coze.cn/home),直接点击左上角的创建 AI Bot 按钮。 直接在弹窗输入 Bot 的相关信息,完成创建后细化其功能。 设计人设与回复逻辑,根据功能需求设计提示词。 调整模型设置,比如基于聊天为主的需求,将对话轮数记录改为 20 轮。 选择插件,如英文名言警句(get_one_eng_word & get_many_eng_words)随机获取英语名言,Simple OCR(ocr)识别图片中的文字。 设置开场白和预置问题,预置问题有参考价值。 最后设置语音,若为英语陪练 AI Bot,选择亲切的英语音色。
2024-11-09
用 Coze 免费打造自己的图像生成 AI 机器人
以下是用 Coze 免费打造自己的图像生成 AI 机器人的步骤: 1. 注册 Coze 账号 访问 Coze 官网,快速注册,开启智能之旅。 Coze 中文名扣子,字节跳动出品。 中文版:https://www.coze.cn/(支持大模型:kimi、云雀)——本次教程使用中文版 Coze。 英文版:https://coze.com/(支持大模型:chatgpt4) 产品定位:新一代 AI 原生应用开发服务平台,Nextgeneration AI chatbot building platform。 2. 创建你的机器人 登录 Coze,可使用抖音或手机号登陆,登陆后选择“创建 Bot”,然后起一个响亮的名字。 登录页面、首页、创建 Bot 时,工作空间选“个人空间”即可。 小技巧:“图标”AI 可以自动生成,先在“Bot 名称”那里用文字描述你想要的图标,图标生成满意后,再把“Bot 名称”改为简洁版名称。 此外,在实际体验中: 测试 AI Bot 时,可能会出现回答不完整的情况,如部分信息未给出,这是因为 Coze 国内版刚发布不久,有些官方和第三方插件的 API 调用和返回结果不太稳定。但官方会尽快解决。 成功的回答是根据提示词和插件+工作流的组合,结果非常详细。若加上自己的知识库甚至定制化使用数据库功能,AI Bot 的使用场景会更丰富。 国外版有免费的 GPT4 大模型使用,插件和工作流功能更丰富稳定,还有更多自定义插件和工作流功能,能更灵活定制 AI Bot。 作者演示上述步骤后发布的 AI Bot,其 ID 是:7333630516673167394,有兴趣可在 Coze 平台上搜索这个 ID 来体验。
2024-11-09
用Coze创建AI,能够通过文字生成图片或者视频或者动画或者渲染效果
以下是使用 Coze 创建 AI 的相关信息: 1. 注册 Coze 账号: 访问 Coze 官网,快速注册,开启智能之旅。 Coze 中文名扣子,字节跳动出品。 中文版:https://www.coze.cn/(支持大模型:kimi、云雀)——本次教程使用中文版 Coze。 英文版:https://coze.com/(支持大模型:chatgpt4)。 产品定位:新一代 AI 原生应用开发服务平台,Nextgeneration AI chatbot building platform。 2. 创建机器人: 登录 Coze,可使用抖音或手机号登陆,登陆后选择“创建 Bot”,然后起一个响亮的名字。 工作空间选“个人空间”即可。 小技巧:“图标”AI 可以自动生成,先在“Bot 名称”那里用文字描述想要的图标,图标生成满意后,再把“Bot 名称”改为简洁版名称。 3. 制定任务的关键方法: 在开始设计和开发任何 AI Agent 之前,最关键的第一步是明确定义期望 AI 最终输出的结果。这包括详细描述期望获得的输出内容,如输出是文本、图像、音频还是其他形式的数据,输出的具体格式和结构是什么,确定输出内容的质量标准。 预估任务的可行性。 确定任务的执行形式。以 LearnAndRecord 的一篇文章为例,拆解其结构,基于此进行微调优化。值得注意的是,Coze 支持 Markdown 格式输出 AI 生成的内容,Markdown 作为轻量级文本标记语言,能够有效展示文本、图片、URL 链接和表格等多种内容形式。参照精读结构,评估任务的可行性,生成结果包括文字、图片(思维导图)、音频(原文音频)三类输出格式,前两者可直接用 Markdown 输出/嵌入,音频则需通过 URL 链接跳转外部网页收听。最后结合使用习惯,期望在输入一篇英文原文时,AI Agent 能够按模板要求,直接输出精读结果。
2024-11-09
如何用Coze智能体自动提前飞书知识库内容
要使用 Coze 智能体自动提取飞书知识库内容,您可以参考以下步骤: 1. 创建智能体: 手动清洗数据:上节课程是自动清洗数据,自动清洗可能出现数据不准的情况,本节尝试手动清洗以提高准确性。例如创建画小二课程的 FAQ 知识库,飞书在线文档中每个问题和答案以分割,可点击编辑修改和删除,然后添加 Bot 并在调试区测试效果。 本地文档:对于本地 word 文件,注意拆分内容以提高训练数据准确度,例如将画小二课程按章节进行人工标注和处理,然后创建自定义清洗数据的知识库。 发布应用:点击发布,确保在 Bot 商店中能搜到。 2. 创建机器人: 访问 Coze 官网(网址:Coze.cn)创建。 人设与回复逻辑设置。 创建知识库: 飞书知识库:在飞书中选择对应文件夹,一次最多选择 20 个文件(文件多可多建几个知识库),可选择自动进行数据清洗,图片资料会保留,测试对话,目前 Coze 存在不稳定版本,需调试完善。 Excel 知识库:可增加其他形式的知识库,上传表格的知识库不要过于复杂,不要有合并表格情况,系统不认不同的 Sheet,数据处理完成会显示 100%进度,加工出来的数据点击添加 Bot 增加到知识库中,然后测试发布和返回。 网页知识库:有自动采集和手动采集两种方式,手动采集需安装插件,可选择批量添加,写入网址,将全站数据解析并保存到知识库,按照默认自动清洗数据。 此外,在前期准备中,梳理 AI 智能体的功能需求时,要注意在稍后读的知识管理场景中,简化“收集”环节,自动化“整理”环节,根据待阅读内容列表的主题和当前阅读兴趣智能“选择”相关内容、推荐个人阅读计划。
2024-11-05
制作Coze智能体
以下是制作 Coze 智能体的步骤: 1. 打开 Coze 官网(https://www.coze.cn/home)。 2. 创建图像工作流,图像流分为智能生成、智能编辑、基础编辑三类,其很像 ComfyUI,但更普世化且简单易上手。 3. 空间风格化插件有相关参数,如 image_url 是毛坯房的图片地址;Strength 是提示词强度,影响效果图;Style 是生成效果的风格,如新中式、日式、美式、欧式、法式等;user_prompt 是用户输入的 Promot 提示词。 4. 按照构架配置工作流,包括调试效果和测试毛坯房等。 5. 开始节点对应配置三项内容,进行提示词优化。 6. 设定人设和回复逻辑,技能 1 中 3 项中的编译数字来源,然后点击右上角发布。 另外,分步构建和测试 Agent 功能时: 首先进入 Coze,点击「个人空间工作流创建工作流」,打开创建工作流的弹窗。根据弹窗要求自定义工作流信息,点击确认完成新建。编辑视图与功能中,左侧「选择节点」模块根据子任务需要,实际用到插件(提供能力工具)、大模型(生成文本内容)、代码(处理数据)。编辑面板中的开始节点和结束节点分别对应原文输入和结果输出环节。按照流程图在编辑面板中拖入对应的 LLM 大模型、插件、代码节点,完成工作流框架搭建。
2024-11-05
简单、便捷的python编程IDE
以下是一些简单、便捷的 Python 编程 IDE: 1. Wing Python IDE Pro:由 Wingware 开发,专为 Python 编程设计,集成了代码编辑、导航和调试功能,具备智能自动补全、代码重构、多选功能和代码片段工具,使编程更轻松高效。价格:年度许可证起价 179 美元/月。 2. Smol Developer:开源的 AI 开发助手,可根据产品需求生成完整的代码库,具有简单、安全、易于理解的代码结构,同时具备高度灵活性和定制性。价格:开源项目,遵循 MIT 许可证。 3. Cody:Sourcegraph 的 AI 工具,能理解整个代码库,解答问题并编写代码,还能详细解释代码,定位特定组件,并提出修复建议。可通过 VS Code 扩展直接使用,个人使用免费。 配置 Python 运行环境的方法如下: 简单版: 下载 Python 和 PyCharm。 Python 下载地址:https://www.python.org/ PyCharm 下载地址:https://www.jetbrains.com/pycharm/download/ 然后双击 exe 文件安装即可。 详细版: 1. 访问 Python 官网:https://www.python.org/ 2. 下载 Python 安装包 3. 安装 Python:打开 window 控制台,输入 python,能进入控制台就说明安装成功了。 4. 集成开发环境: PyCharm 是由 JetBrains 打造的一款 Python IDE,支持 macOS、Windows、Linux 系统。功能包括调试、语法高亮、Project 管理、代码跳转、智能提示、自动完成、单元测试、版本控制等。 下载 PyCharm: Professional(专业版,收费):完整的功能,可试用 30 天。 Community(社区版,免费):阉割版的专业版。 安装 PyCharm:下载完成后,双击安装即可。 使用 PyCharm:首先在桌面上创建一个文件夹 test,并创建一个目录 test.py,双击桌面 PyCharm 图标,打开刚才创建的 test 目录即可。 安装 PyCharm 的补充说明: PyCharm 是一个专门用于 Python 开发的集成开发环境(IDE),能更方便地编写和运行 Python 代码。 点击该网址:https://www.jetbrains.com/pycharm/download/ ,点击完后注意下拉,选择下面这个下载,这个是 Community Edition(社区版),该版本是免费的。如果是开头映入眼帘的下载按钮是收费版,只能体验 30 天。社区版自己玩的话够用了。如果没法外网下载,可使用以下网盘链接: 夸克网盘:Pycharm 和 Cursor(主要是 Pycharm,版本稳定,Cursor 有条件可以自己下) 链接:https://pan.quark.cn/s/c5df4670858c 百度网盘:pycharmcommunity2024.2.3.exe 链接:https://pan.baidu.com/s/1jFMxBQD0r41eU6f5BGQg?pwd=43h2 提取码:43h2
2024-11-13
python安装后文本文档改为".py"后跳转不到IDLE
很抱歉,目前知识库中没有关于“python 安装后文本文档改为‘.py’后跳转不到 IDLE”这一问题的相关内容。但通常情况下,出现这种情况可能是以下原因导致的: 1. 文件关联设置问题:您的系统可能没有正确将.py 文件与 IDLE 关联,您可以检查系统的文件关联设置。 2. IDLE 配置问题:IDLE 的配置可能存在异常,您可以尝试重新安装或配置 IDLE。 3. 环境变量问题:Python 的环境变量设置不正确也可能导致此问题,您需要确认环境变量是否正确配置。 建议您逐一排查以上可能的原因,以解决该问题。
2024-11-10
coze是用python实现的码
Coze 可以使用 Python 实现。在 Coze 中,搭建工作流框架时,左侧的“选择节点”模块中有支持编写简单 Python 脚本的“代码”节点,可对数据进行处理。例如,在“大圣:我用 Coze 搓了一个乞丐版的秘塔搜索”中,代码节点的逻辑是将输入的内容处理成两个字段,即 contexts 字段(所有 snippet+title+link 的平铺,用来丢给大模型进行处理)和 references 字段(所有的引用)。代码块对于非程序员来说运用有一定难度,但在 AI 时代,学习一些基础语法就足够,具体逻辑可让 AI 帮忙编写。
2024-11-04
在苹果电脑怎么安装python
在苹果电脑上安装 Python 的步骤如下: 1. 点击电脑“系统”,直接输入“cmd”,点击回车,打开命令窗口。 2. 在命令窗口中,粘贴入以下代码,确认是否有 Python。 3. 粘贴入以下代码,确认是否有 pip。 4. 两步命令输入完,核对一下。如果有的话,会分别显示出版本号,可以跳过“安装环境这一步,直接到“二、部署项目”。如果没有的话,需要安装以下步骤: 先进行 Python 的安装,安装包可以通过以下链接下载: 按照 Python 安装步骤进行安装。 5. 安装完成后,关闭窗口,再次运行上述两行命令确认是否安装成功。 需要注意的是,mac 系统与 windows 系统步骤类似,只是打开命令符的命令些许不同,遇到问题可以问大模型。
2024-10-26
可以写出一个两数之和的Python实现代码吗
以下是一个用 Python 实现求两数之和的代码示例: ```python def sum_two_numbers: return num1 + num2 示例用法 num1 = 5 num2 = 10 result = sum_two_numbers print ```
2024-10-18
ai.学python
如果您想通过 AI 学习 Python,以下是一些关键的知识和步骤: 从零开始学习,最重要的是掌握最少必要知识,然后尽快开始并度过这个过程。现在有了 AI 能极大加速这一进程。您可以参考:,结合 ChatGPT,不懂的地方都可以提问。 如果希望继续精进,最好体系化地了解编程和 AI,至少熟悉以下内容: 1. Python 基础: 基本语法:了解 Python 的基本语法规则,如变量命名、缩进等。 数据类型:熟悉字符串、整数、浮点数、列表、元组、字典等基本数据类型。 控制流:学会使用条件语句(if)、循环语句(for 和 while)控制程序执行流程。 2. 函数: 定义和调用函数:学会定义自己的函数及调用现有函数。 参数和返回值:理解函数接收参数和返回结果的方式。 作用域和命名空间:了解局部变量和全局变量的概念及工作方式。 3. 模块和包: 导入模块:学会导入 Python 标准库中的模块或第三方库。 使用包:理解如何安装和使用 Python 包扩展程序功能。 4. 面向对象编程(OOP): 类和对象:了解类的定义和实例化等基本概念。 属性和方法:学会为类定义属性和方法,并通过对象调用。 继承和多态:了解类之间的继承关系及多态的实现。 5. 异常处理: 理解异常:了解异常是什么及在 Python 中的工作方式。 异常处理:学会使用 try 和 except 语句处理程序中可能的错误。 6. 文件操作: 文件读写:学会打开文件、读取文件内容和写入文件。 文件与路径操作:理解如何用 Python 处理文件路径及列举目录下的文件。
2024-10-16
有哪些工具直接可以调用国外的多个LLM
以下是一些关于能够调用国外多个 LLM 的相关信息: 开源项目作者 ailm 提出一种仅使用提示词工程和精巧的代码设计,让 LLM 获得稳定的 tool calling 能力,使用多个不具备该功能的 LLM 进行实验,成功率达 100%,工作基于 comfyui 开发,适合无代码基础的人员复现和修改。 在高级提示词工程领域,工具、连接器和技能的整合能显著增强 LLM 的能力。工具是指 LLM 可利用的外部功能或服务,扩展任务范围;连接器是 LLM 与外部工具或服务的接口,管理数据交换和通信;技能是 LLM 可执行的专门功能。 目前开源模型与专有产品存在差距但在缩小,如 Meta 的 LLaMa 模型引发一系列变体。当开源 LLM 达到一定准确度水平时,预计会有大量实验等。开发人员对 LLM 操作工具的研究尚不深入,一些工具如缓存(基于 Redis)、Weights & Biases、MLflow、PromptLayer、Helicone 等得到较广泛使用,还有新工具用于验证 LLM 输出或检测攻击。多数操作工具鼓励使用自身的 Python 客户端进行 LLM 调用。
2024-11-12
集成LLM的工具
以下是关于集成 LLM 的工具的相关内容: 一、“手臂和腿部”:赋予模型使用工具的能力 1. 从知识挖掘转向行动导向,增加模型使用工具的能力,有望在消费者和企业领域实现一系列用例。 对于消费者,LLMs 可能给出菜谱建议并订购食材,或推荐早午餐地点并预订餐桌。 在企业领域,创始人可接入 LLMs 使应用程序更易用,如在 Salesforce 等应用中,用户能用自然语言更新,模型自动更改,减少维护 CRM 所需时间。 2. LLM 虽对常见系统有复杂理解能力,但无法执行提取的信息。不过,公司在不断改善其使用工具的能力。 老牌公司如必应、谷歌和初创公司如 Perplexity、You.com 推出搜索 API。 AI21 Labs 推出 JurassicX,解决独立 LLMs 缺陷。 OpenAI 推出 ChatGPT 插件测试版,允许与多种工具交互,在 GPT3.5 和 GPT4 中引入函数调用,允许开发者将 GPT 能力与外部工具链接。 二、无需微调,仅用提示词工程就能让 LLM 获得 tool calling 的功能 1. 提示词工程主要由提示词注入和工具结果回传两部分代码组成。 2. 提示词注入用于将工具信息及使用工具的提示词添加到系统提示中,包含 TOOL_EAXMPLE、tools_instructions、REUTRN_FORMAT 三个部分。 TOOL_EAXMPLE 提示 LLM 如何理解和使用工具,编写时用无关紧要工具作示例避免混淆。 tools_instructions 是通用工具字典转换成 LLM 可读的工具列表,可动态调整。 REUTRN_FORMAT 定义调用 API 格式。 3. 工具结果回传阶段利用正则表达式抓取输出中的“tool”和“parameters”参数,对于 interpreter 工具使用另一种正则表达式提取 LLM 输出的代码,提高使用成功率。通过识别 LLM 返回的调用工具字典,提取对应值传入工具函数,将结果以 observation 角色返回给 LLM,对于不接受某些角色的 LLM 接口,可改为回传给 user 角色。通过以上提示词工程,可让无 tool calling 能力的 LLM 获得稳定的该能力。
2024-11-12
摘要总结作为 llm 训练的下游任务,一般的训练流程是怎样的
作为 LLM 训练的下游任务,一般的训练流程如下: 1. 首先从大量文本数据中训练出一个基础 LLM。 2. 随后使用指令和良好尝试的输入和输出来对基础 LLM 进行微调和优化。 3. 接着通常使用称为“人类反馈强化学习”的技术进行进一步细化,以使系统更能够有帮助且能够遵循指令。 在训练过程中,会涉及到一些相关的理论探讨和评价指标: 理论探讨方面,如在推理阶段对 InContext Learning 能力的运行分析,将其视为隐式微调,通过前向计算生成元梯度并通过注意力机制执行梯度下降,且实验表明 LLM 中的某些注意力头能执行与任务相关的操作。 评价指标方面,entropylike 指标(如 crossentropy 指标)常用于表征模型的收敛情况和测试集的简单评估(如 Perplexity 指标),但对于复杂的下游应用,还需更多指标,如正确性(Accuracy)、信息检索任务中的 NDCG@K 指标、摘要任务中的 ROUGE 指标、文本生成任务中的 BitsperByte 指标、不确定性中的 ECE 指标、鲁棒性(包括 invariance 和 equivariance)、公平性、偏见程度和有毒性等。
2024-11-07
如何学会ollma dify
以下是关于学习 Ollama 的详细步骤: 1. 了解 Ollama :Ollama 是一个开源的框架,旨在简化在本地运行大型语言模型(LLM)的过程。它是一个轻量级、可扩展的框架,提供了简单的 API 来创建、运行和管理模型,还有预构建模型库,降低了使用门槛,适合初学者或非技术人员使用,特别是希望在本地与大型语言模型交互的用户。 2. 安装 Ollama : 官方下载地址:https://ollama.com/download 。 安装完成后,可通过访问 http://127.0.0.1:11434/ 判断是否安装成功。 3. 启动 Ollama : 从 ollama 的 github 仓库找到对应版本并下载。 启动 ollama 后,在 cmd 中输入 ollama run gemma2 将自动下载 gemma2 模型到本地并启动。 将 ollama 的默认 base URL=http://127.0.0.1:11434/v1/ 以及 api_key=ollama 填入 LLM 加载器节点即可调用 ollama 中的模型进行实验。 4. 常见报错及解决方案:如果 ollama 连接不上,很可能是代理服务器的问题,请将 127.0.0.1:11434 添加到不使用代理服务器的列表中。 5. 使用 Ollama 运行本地大模型: 安装完成 ollama 后,在命令行中运行相应命令。 可通过查看并选择要运行的本地大模型,如 llama2 大模型。考虑机器配置及不同版本的内存要求选择合适的模型参数。运行时,ollama 会自动下载大模型到本地。
2024-11-06
LLM和COT分别是什么
LLM 即大型语言模型(Large Language Model),是一种基于深度学习的自然语言处理模型,具有强大的语言理解和生成能力。例如 FlanT5、ChatGLM、UL2、Qwen、Chinchilla、OPT、PaLM、LLaMA、LLaMA2、Vicuna 等都是常见的 LLM 模型。 COT 即思维链(ChainofThought),它能引导 LLM 逐步推理,增强其逻辑推理能力,对于需要逻辑解决方案的任务非常有效,但在创造性问题解决中存在局限性。在一些研究中,如多模态大模型中,LLM 作为核心智能体可以继承包括 COT 在内的一些显著属性。同时,ReAct 框架中也提到了将 ReAct 和 COT 结合使用的方法。
2024-10-28
LLM原理
LLM(大语言模型)的工作原理如下: 大模型在回复时是一个字一个字地推理生成内容,就像输入法的输入联想逻辑,会根据输入的字推测下一个字。但仅算字的概率存在问题,且全量数据计算算力吃不消。 为解决这些问题,出现了词向量机制和 transformer 模型中的 attention 自注意力机制。 以“我今天吃了狮子头和蔬菜”这句话为例,在 transformer 中,attention 层会对其加入更多信息补充,如“狮子头是一道菜”“今天是星期六”等,层与层之间由模型自主学习哪些信息补充、保留和传递,最终把海量数据以关系网形式“消化”并保留重要相关性。 这些层就像人阅读文章时的连贯性注意力过程,记忆的不是点状知识而是网状经验。 大模型以词向量和 transformer 的模型学习海量知识,把知识作为向量空间中的关系网存储,接受输入时通过向量空间中的匹配进行输出。 就像人脑阅读学习,记忆不是逐字逐句,而是按相关性、重要程度结合历史经验,比如记忆“红色”时会带有很多“feature”信息。 常见缩写和专业词汇解释: LLM:Large language model 的缩写,即大语言模型。 Prompt:中文译作提示词,是输入给大模型的文本内容,其质量会影响回答质量。 Token:大模型语言体系中的最小单元,不同厂商对中文的切分方法不同,1Token 约等于 1 2 个汉字,收费和输入输出长度限制以 token 为单位。 上下文:英文为 context,指对话聊天内容前、后的信息,其长度和窗口会影响回答质量。
2024-10-24
用于分析excel表数据的AI工具
以下是一些可用于分析 Excel 表数据的 AI 工具: 1. Excel Labs:这是一个 Excel 插件,基于 OpenAI 技术,新增了生成式 AI 功能,允许用户在 Excel 中直接利用 AI 进行数据分析和决策支持。 2. Microsoft 365 Copilot:微软推出的 AI 工具,整合了多种办公软件,用户能以聊天形式告知需求,Copilot 会自动完成如数据分析、格式创建等任务。 3. Formula Bot:提供数据分析聊天机器人和公式生成器两大功能,用户可通过自然语言交互进行数据分析和生成 Excel 公式。 4. Numerous AI:支持 Excel 和 Google Sheets 的 AI 插件,除公式生成外,还能根据提示生成相关文本内容、执行情感分析、语言翻译等任务。 此外,Omni 的计算 AI 功能能利用 LLM 直接输出适当的 Excel 函数到电子表格中,然后执行计算并自动生成复杂查询供用户使用。 随着技术发展,未来可能会有更多 AI 功能集成到 Excel 中,进一步提高工作效率和数据处理的智能化水平。请注意,内容由 AI 大模型生成,请仔细甄别。
2024-11-14
现有能分析EXCEL数据的AI
目前能够分析 Excel 数据的 AI 工具和插件主要有以下几种: 1. Excel Labs:这是一个 Excel 插件,新增了基于 OpenAI 技术的生成式 AI 功能,可在 Excel 中直接利用 AI 进行数据分析和决策支持。 2. Microsoft 365 Copilot:微软推出的 AI 工具,整合了多种办公软件,用户通过聊天形式告知需求,Copilot 会自动完成如数据分析、格式创建等任务。 3. Formula Bot:提供数据分析聊天机器人和公式生成器两大功能,用户可通过自然语言交互进行数据分析和生成 Excel 公式。 4. Numerous AI:支持 Excel 和 Google Sheets 的 AI 插件,除公式生成外,还能根据提示生成相关文本内容、执行情感分析、语言翻译等任务。 随着技术的不断发展,未来可能会有更多 AI 功能被集成到 Excel 中,进一步提高工作效率和数据处理的智能化水平。 此外,ChatGPT 也可以助力数据分析,其流程为:SQL 分析时,用户描述想分析的内容,后台连接数据库,附带表结构信息让 AI 输出 SQL 语句,校验为 SELECT 类型后执行并将结果数据传给 GPT 进行学习和分析,最后输出分析结论和建议,与结果数据一起返回前端页面渲染图表、展示分析结论;个性化分析时,用户上传文件并描述辅助信息,前端解析后传给 GPT 分析数据,后续步骤与 SQL 分析一致。
2024-11-11
excel ai 工具
以下是一些与 Excel 相关的 AI 工具: 1. Excel Labs:是 Excel 插件,新增基于 OpenAI 技术的生成式 AI 功能,可用于数据分析和决策支持。 2. Microsoft 365 Copilot:微软推出的整合了 Word、Excel 等办公软件的 AI 工具,能通过聊天形式完成用户需求,如数据分析和格式创建。 3. Formula Bot:提供数据分析聊天机器人和公式生成器功能,支持自然语言交互进行数据分析和生成 Excel 公式。 4. Numerous AI:支持 Excel 和 Google Sheets 的 AI 插件,能生成公式、相关文本内容、执行情感分析、语言翻译等任务。 此外,还有以下关于 AI 产品数据 2024 1 3 月的 Excel 表格信息: |名称|12 月|1 月|2 月|3 月|3 月变化|12 月 3 月变化|更多_迷你图|网址| |||||||||| |GPTExcel|50|32.4|19.5|17.3|0.113|0.654|| |GPT Workspace|18|12.7|9.4|14.3|0.521|0.206|| |Ajelix AI Excel Tools|13|9.5|8.6|9|0.047|0.308|| |GRID 2.0|13|13|7.6|7.7|0.013|0.408|| |Tomsplanner|8|14.1|7.6|7|0.079|0.125|| |SheetAI.app|5|4.1|4.4|5.1|0.159|0.02|| 在工具使用方面,工具使用或函数调用被视为从 RAG 到主动行为的第一个半步,为现代人工智能栈增加新层。一些流行的原语如网页浏览(Browserbase、Tiny Fish)、代码解释(E2B)和授权+认证(Anon)已出现。Omni 的计算 AI 功能能利用 LLM 直接输出适当的 Excel 函数到电子表格中,然后执行计算并自动生成复杂查询供用户使用。
2024-11-08
有哪些好用的excel數據分析AI
以下是一些好用的 Excel 数据分析 AI 工具: 1. Excel Labs:这是一个 Excel 插件,基于 OpenAI 技术,新增了生成式 AI 功能,允许用户在 Excel 中利用 AI 进行数据分析和决策支持。 2. Microsoft 365 Copilot:微软推出的 AI 工具,整合了多种办公软件,用户通过聊天形式告知需求,Copilot 会自动完成如数据分析等任务。 3. Formula Bot:提供数据分析聊天机器人和公式生成器两大功能,用户可通过自然语言交互进行数据分析和生成 Excel 公式。 4. Numerous AI:支持 Excel 和 Google Sheets 的 AI 插件,能生成公式、相关文本内容、执行情感分析、语言翻译等任务。 此外,用 ChatGPT 做数据分析时,可利用以下工具: 1. Excel:写公式算进阶用法,还可写 Excel 宏,ChatGPT 能根据需求和描述写出可用的 Excel 宏。 2. Python:有很多强大的数据分析库,如 pandas、numpy 等,绘图库有 seaborn、plotly、matplotlib 等。 以下是一些推荐的 text2sql 相关的 AI 工具及其链接: 1. Text2SQL 将英文转换为 SQL 查询。 链接:https://toolske.com/text2sql/?ref=theresanaiforthat 2. ai2sql 高效且无错误的 SQL 构建器。 链接:https://www.ai2sql.io/ 3. EverSQL 从 SQL 查询翻译英文文本。 链接:https://www.eversql.com/sqltotext/ 4. SupaSQL 从 NLP 生成 SQL 查询。 链接:https://supasql.com/ 5. SQLgenius 使用自然语言的 SQL 查询生成器。 链接:https://sqlgenius.app/ 6. SQL Chat 与数据库进行自然语言聊天的 SQL 客户端。 链接:https://www.sqlchat.ai/ 7. SQL Ease 从自然语言输入生成 SQL 查询。 链接:https://sqlease.buildnship.in/ 8. Talktotables 翻译和查询数据库。 链接:https://talktotables.com/ 建议查看以下几个知名的 text2sql 项目: 1. SQLNet 一个使用深度学习方法解决 text2sql 任务的项目。 2. Seq2SQL 一个将自然语言转换为 SQL 查询的序列到序列模型。 3. Spider 一个大规模的 text2sql 数据集及其相关的挑战。 内容由 AI 大模型生成,请仔细甄别。
2024-11-07
有什么AI excel word 类工具
以下是一些 AI Excel、Word 类工具: Excel 相关: Excel Labs:是 Excel 插件,新增基于 OpenAI 技术的生成式 AI 功能,可在 Excel 中进行数据分析和决策支持。 Microsoft 365 Copilot:整合了 Word、Excel 等办公软件,用户通过聊天告知需求,Copilot 自动完成任务。 Formula Bot:提供数据分析聊天机器人和公式生成器功能,可自然语言交互进行数据分析和生成 Excel 公式。 Numerous AI:支持 Excel 和 Google Sheets 的 AI 插件,能生成公式、文本内容、执行情感分析、语言翻译等任务。 Word 相关: Grammarly:不仅是语法和拼写检查工具,还提供排版功能,改进文档风格和流畅性。 QuillBot:AI 驱动的写作和排版工具,改进文本清晰度和流畅性。 Latex:用于学术论文排版的软件,使用标记语言描述格式,有 AI 辅助的编辑器和插件简化排版。 PandaDoc:文档自动化平台,使用 AI 帮助创建、格式化和自动化文档生成,适合商业和技术文档。 Wordtune:AI 写作助手,重新表述和改进文本,使其更清晰专业。 Overleaf:在线 Latex 编辑器,提供丰富模板和协作工具,适合学术写作和排版。 选择合适的工具取决于具体需求,如文档类型、出版标准和个人偏好。对于学术论文,Latex 和 Overleaf 受欢迎;一般文章和商业文档,Grammarly 和 PandaDoc 等可能更适用。请注意,内容由 AI 大模型生成,请仔细甄别。
2024-11-05
有哪些好用的上传excel做数据分析的AI工具
以下是一些好用的上传 Excel 做数据分析的 AI 工具: 1. Excel Labs:这是一个 Excel 插件,新增了基于 OpenAI 技术的生成式 AI 功能,允许用户在 Excel 中直接利用 AI 进行数据分析和决策支持。 2. Microsoft 365 Copilot:微软推出的 AI 工具,整合了 Word、Excel、PowerPoint、Outlook、Teams 等办公软件,用户通过聊天形式告知需求,Copilot 自动完成如数据分析或格式创建等任务。 3. Formula Bot:提供数据分析聊天机器人和公式生成器两大功能,用户可通过自然语言交互式地进行数据分析和生成 Excel 公式。 4. Numerous AI:支持 Excel 和 Google Sheets 的 AI 插件,除公式生成外,还可根据提示生成相关文本内容、执行情感分析、语言翻译等任务。 此外,以下是一些 text2sql 相关的 AI 工具及其链接: 1. Text2SQL 将英文转换为 SQL 查询。 链接:https://toolske.com/text2sql/?ref=theresanaiforthat 2. ai2sql 高效且无错误的 SQL 构建器。 链接:https://www.ai2sql.io/ 3. EverSQL 从 SQL 查询翻译英文文本。 链接:https://www.eversql.com/sqltotext/ 4. SupaSQL 从 NLP 生成 SQL 查询。 链接:https://supasql.com/ 5. SQLgenius 使用自然语言的 SQL 查询生成器。 链接:https://sqlgenius.app/ 6. SQL Chat 与数据库进行自然语言聊天的 SQL 客户端。 链接:https://www.sqlchat.ai/ 7. SQL Ease 从自然语言输入生成 SQL 查询。 链接:https://sqlease.buildnship.in/ 8. Talktotables 翻译和查询数据库。 链接:https://talktotables.com/ 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-10-29