Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

coze 是否可以通过LLM生成python代码运行查询excel表格信息?

Answer

在 Coze 中,可以通过以下步骤实现相关操作:

  1. 进入 Coze,点击「个人空间 - 工作流 - 创建工作流」,打开创建工作流的弹窗。
  2. 根据弹窗要求,自定义工作流信息,点击确认完成工作流的新建。
  3. 新建后的编辑视图与功能中,左侧「选择节点」模块根据子任务需要,实际用到的有:
    • 插件:提供一系列能力工具,拓展 Agent 的能力边界。如本案例中的思维导图、英文音频,无法通过 LLM 生成,需依赖插件实现。
    • 大模型:调用 LLM,实现各项文本内容的生成。如本案例中的中文翻译、英文大纲、单词注释等依赖大模型节点。
    • 代码:支持编写简单的 Python、JS 脚本,对数据进行处理。
  4. 编辑面板中的开始节点、结束节点,分别对应分解子任务流程图中的原文输入和结果输出环节。
  5. 按照流程图,在编辑面板中拖入对应的 LLM 大模型、插件、代码节点,即可完成工作流框架的搭建。

需要注意的是,因为前面需要对多维表格操作,所以要先在 http://open.feishu.cn 上建一个飞书机器人,并添加知识库或多维表格编辑权限,具体可参考飞书文档。

Content generated by AI large model, please carefully verify (powered by aily)

References

一泽Eze:万字实践教程,全面入门 Coze 工作流|用 Coze 打造 AI 精读专家智能体,复刻 10 万粉公众号的创作生产力

[title]一泽Eze:万字实践教程,全面入门Coze工作流|用Coze打造AI精读专家智能体,复刻10万粉公众号的创作生产力[heading1]Step 2:分步构建和测试Agent功能[heading2]2.1在Coze上搭建工作流框架,设定每个节点的逻辑关系首先进入Coze,点击「个人空间-工作流-创建工作流」,打开创建工作流的弹窗。根据弹窗要求,自定义工作流信息。点击确认后完成工作流的新建,可以看到整个编辑视图与功能如下:其中,左侧「选择节点」模块中,根据我们的子任务需要,实际用上的有:1.插件:提供一系列能力工具,拓展Agent的能力边界。本案例涉及的思维导图、英文音频,因为无法通过LLM生成,就需要依赖插件来实现。2.大模型:调用LLM,实现各项文本内容的生成。本案例的中文翻译、英文大纲、单词注释等都依赖大模型节点。3.代码:支持编写简单的Python、JS脚本,对数据进行处理。而编辑面板中的开始节点、结束节点,则分别对应1.2分解子任务流程图中的原文输入和结果输出环节。接下来,按照流程图,在编辑面板中拖入对应的LLM大模型、插件、代码节点,即可完成工作流框架的搭建。

一泽Eze:万字实践教程,全面入门 Coze 工作流|用 Coze 打造 AI 精读专家智能体,复刻 10 万粉公众号的创作生产力

[title]一泽Eze:万字实践教程,全面入门Coze工作流|用Coze打造AI精读专家智能体,复刻10万粉公众号的创作生产力[heading1]Step 2:分步构建和测试Agent功能[heading2]2.1在Coze上搭建工作流框架,设定每个节点的逻辑关系首先进入Coze,点击「个人空间-工作流-创建工作流」,打开创建工作流的弹窗。根据弹窗要求,自定义工作流信息。点击确认后完成工作流的新建,可以看到整个编辑视图与功能如下:其中,左侧「选择节点」模块中,根据我们的子任务需要,实际用上的有:1.插件:提供一系列能力工具,拓展Agent的能力边界。本案例涉及的思维导图、英文音频,因为无法通过LLM生成,就需要依赖插件来实现。2.大模型:调用LLM,实现各项文本内容的生成。本案例的中文翻译、英文大纲、单词注释等都依赖大模型节点。3.代码:支持编写简单的Python、JS脚本,对数据进行处理。而编辑面板中的开始节点、结束节点,则分别对应1.2分解子任务流程图中的原文输入和结果输出环节。接下来,按照流程图,在编辑面板中拖入对应的LLM大模型、插件、代码节点,即可完成工作流框架的搭建。

AI实战:搭建信息情报官Agent

注意,因为前面需要对多维表格操作,所以我们先得在http://open.feishu.cn上建一个飞书机器人,并添加知识库或多维表格编辑权限,这个可以读读飞书文档即可实现。那么我们得到机器人的app_id和app_secret即可获得租用token:tenant_access_token来获取多维表格数据和编辑能力。[heading3]工作流一:通过微信文章链接进行文章解读成摘要报告[content]通过LLM能力,这里开源提示词如下:这时,由于Coze使用LLM和批量执行任务延时的约束,建议不要同时处理太多文章(如6篇左右)这样执行后,将多维表格的文章状态转换成“已通知”并生成简报,如:[heading3][heading3]消息情报官Bot[content]最后我们可以通过Coze,建定时任务,执行工作流二,并添加其他如分析文章和搜索文章的能力,即可变成一个消息情报官的Agent,我们即可以获得想要的领域或行业情报,也可以深入挖掘相关情报的信息(CoT)。然后发布到想要的,如:Coze商店、豆包、飞书、微信、微信公众号、微信小程序等,即可使用了。可以构建多个分身,就能收集整理不同领域和行业的情报信息了。如感兴趣欢迎联系交流合作。介绍齐码蓝智能Focusing on Technology,Life,and Truth可以试试在公众号发消息向AI学伴提问,发消息加群可交流合作加AM聊天机器人(微信号:ZiMacroQubit)文章部分内容、图片、代码由AM帮助完成阅读本文,请点击在看并感谢您的点赞鼓励

Others are asking
兼职督学岗位,通过飞书平台为高中生服务,包括:1)解答学习方法等疑问;2)发送测试卷;3)提交测试卷后通知后端制作学习计划;4)发送学习计划链接;5)定期推送知识点和打卡提醒;6)查看打卡并反馈。所有文档通过飞书云文档链接发送。现在我想通过利用coze将deepseek等ai接入飞书的形式,制作出产品赋能督学在这一岗位的工作效率,并希望在这一过程中,锻炼我的ai能力,再想办法让上司或者老板为我这个产品支付报酬,请问我可以从哪些角度开发产品?
以下是一些您可以从以下角度开发产品来赋能兼职督学岗位的工作效率,并锻炼您的 AI 能力,以争取上司或老板为产品支付报酬: 1. 利用 Coze 的多语言模型支持,为解答高中生学习方法等疑问提供更准确和全面的回答。 2. 借助插件系统,集成与学习相关的插件,如学习资料查询、学习工具推荐等,丰富服务内容。 3. 运用知识库功能,上传各类学科知识点、优秀学习案例等,方便在服务中快速调用和推送。 4. 利用数据库和记忆能力,记住每个高中生的学习情况和需求,提供个性化服务。 5. 设计工作流,例如自动发送测试卷、自动通知后端制作学习计划、自动推送学习计划链接等流程,提高工作效率。 6. 采用多代理模式,针对不同学科或学习阶段设置专门的代理,提供更精准的服务。 7. 利用 Coze 易于发布和分享的特点,将服务产品推广给更多需要的高中生和督学人员。
2025-02-18
兼职督学岗位,通过飞书平台为高中生服务,包括:1)解答学习方法等疑问;2)发送测试卷;3)提交测试卷后通知后端制作学习计划;4)发送学习计划链接;5)定期推送知识点和打卡提醒;6)查看打卡并反馈。所有文档通过飞书云文档链接发送。现在我想通过利用coze将deepseek等ai接入飞书的形式,制作出产品赋能督学在这一岗位的工作效率,并希望在这一过程中,锻炼我的ai能力,再想办法让上司或者老板为我这个产品支付报酬,请问我可以从哪些角度开发产品?又该如何将它推销给上司?
以下是关于您利用 Coze 和 DeepSeek 等 AI 接入飞书来赋能兼职督学岗位工作效率的一些建议: 开发产品的角度: 1. 智能答疑系统:利用 AI 技术,对高中生常见的学习方法疑问进行自动分析和回答,提高答疑效率和准确性。 2. 个性化测试卷生成:根据学生的学习情况和需求,通过 AI 生成个性化的测试卷。 3. 学习计划优化:基于学生提交的测试卷结果,利用 AI 更精准地制定学习计划。 4. 知识点精准推送:运用 AI 分析学生的学习进度和薄弱环节,定期推送更具针对性的知识点。 5. 打卡提醒优化:通过 AI 实现更灵活、个性化的打卡提醒方式。 推销给上司的方法: 1. 展示效率提升:详细说明产品如何大幅提高兼职督学的工作效率,节省人力和时间成本。 2. 个性化服务优势:强调产品能够为高中生提供更个性化、精准的服务,提升学习效果。 3. 数据支持:提供相关的数据和案例,证明 AI 赋能后的积极效果。 4. 成本效益分析:说明开发和使用该产品的成本相对较低,而带来的收益显著。 5. 未来发展潜力:阐述产品在不断优化和拓展功能方面的潜力,适应更多的教育需求。 另外,Coze 是由字节跳动推出的 AI 聊天机器人和应用程序编辑开发平台,专为开发下一代 AI 聊天机器人而设计。它具有多语言模型支持、插件系统、知识库功能、数据库和记忆能力、工作流设计、多代理模式、免费使用、易于发布和分享等特点。这些特点可以为您的产品开发提供有力支持。
2025-02-18
使用COZE搭建智能体的步骤
使用 COZE 搭建智能体的步骤如下: 1. 梳理手捏 AI Agent 的思路: 在上篇文章中提到过 Prompt 工程的必备能力,即通过逻辑思考,从知识经验中抽象表达出关键方法与要求,这一理念同样适用于在 Coze 中创建 AI Agent。 搭建工作流驱动的 Agent 简单情况可分为 3 个步骤: 规划:制定任务的关键方法,包括总结任务目标与执行形式,将任务分解为可管理的子任务,确立逻辑顺序和依赖关系,设计每个子任务的执行方法。 实施:分步构建和测试 Agent 功能。 完善:全面评估并优化 Agent 效果。 2. 分步构建和测试 Agent 功能: 首先进入 Coze,点击「个人空间 工作流 创建工作流」,打开创建工作流的弹窗。 根据弹窗要求,自定义工作流信息。 点击确认后完成工作流的新建,可以看到整个编辑视图与功能。 其中,左侧「选择节点」模块中,根据子任务需要,实际用上的有: 插件:提供一系列能力工具,拓展 Agent 的能力边界。本案例涉及的思维导图、英文音频,因为无法通过 LLM 生成,就需要依赖插件来实现。 大模型:调用 LLM,实现各项文本内容的生成。本案例的中文翻译、英文大纲、单词注释等都依赖大模型节点。 代码:支持编写简单的 Python、JS 脚本,对数据进行处理。 而编辑面板中的开始节点、结束节点,则分别对应分解子任务流程图中的原文输入和结果输出环节。 接下来,按照流程图,在编辑面板中拖入对应的 LLM 大模型、插件、代码节点,即可完成工作流框架的搭建。 3. 全面评估并优化 Agent 效果: 整体试运行 Agent,识别功能和性能的卡点。 通过反复测试和迭代,优化至达到预期水平。
2025-02-17
通过飞书机器人与 Coze 搭建的智能体进行对话
通过飞书机器人与 Coze 搭建智能体进行对话,实现跨平台的稍后读收集与智能阅读计划推荐,具体步骤如下: 1. 前期准备: 设计 AI 稍后读助手的方案思路,包括简化“收集”(实现跨平台收集功能,支持电脑(web 端)、安卓、iOS 多端操作,输入 URL 完成收集,借鉴微信文件传输助手通过聊天窗口输入)、自动化“整理入库”(自动整理每条内容的关键信息,支持跨平台查看)、智能“选择”推荐(根据收藏记录和阅读兴趣生成阅读计划)。 2. 逐步搭建 AI 智能体: 经过配置得到两个可用工作流(整理入库、选择内容),将其编排为完整智能体。 配置过程包括创建 Bot、填写 Bot 介绍、切换模型为“通义千问”、把工作流添加到 Bot 中、新增变量{{app_token}}、添加外层 bot 提示词,完成后可在「预览与调试」窗口与智能体对话并使用全部功能。
2025-02-16
使用飞书机器人(如Coze智能体)自动抓取外部链接(如网页、公众号文章),通过多维表格存储为“稍后读”清单,并自动提取关键信息(标题、摘要、标签)
以下是使用飞书机器人(如 Coze 智能体)自动抓取外部链接(如网页、公众号文章),通过多维表格存储为“稍后读”清单,并自动提取关键信息(标题、摘要、标签)的相关内容: 前期准备: 1. 简化“收集”: 实现跨平台收集功能,支持电脑(web 端)、安卓、iOS 多端操作。 输入一个 URL 即可完成收集,借鉴微信文件传输助手的方式,通过聊天窗口输入更符合用户习惯。 2. 自动化“整理入库”: 系统在入库时自动整理每条内容的关键信息,包括标题、摘要、作者、发布平台、发布日期、收集时间和阅读状态。 阅读清单支持跨平台查看。 3. 智能“选择”推荐: 根据当前收藏记录和用户阅读兴趣进行相关性匹配,生成阅读计划。 使用步骤: 1. 设置稍后读存储地址: 首次使用,访问。 点击「更多创建副本」,然后复制新表格的分享链接。 将新链接发送到智能体对话中。 还可以发送“查询存储位置”、“修改存储位置”来更换飞书多维表格链接,调整稍后读存储位置。 2. 收藏待阅读的页面链接: 在对话中输入需要收藏的页面链接,第一次使用会要求授权共享数据,授权通过后再次输入即可完成收藏。 目前部分页面链接可能小概率保存失败。 3. 智能推荐想看的内容: 在对话中发送“我想看 xx”、“xx 内容”,即可按个人兴趣推荐阅读计划。 通过飞书机器人与 Coze 搭建的智能体进行对话,在聊天窗口中完成链接输入和阅读计划输出,由 Coze 调用大模型、插件完成内容的整理、推荐,利用飞书多维表格存储和管理稍后读数据,理论上无需开发任何插件、APP,就能实现跨平台的稍后读收集与智能阅读计划的推荐。部署完成后,您可以在电脑、手机端通过飞书机器人与稍后读助手进行对话,也可以直接在 Coze 商店中与 bot 进行对话,如果部署到微信服务号、订阅号,还可以通过这些渠道调用 bot。
2025-02-16
coze教程
以下是关于 Coze 教程的相关内容: 可能是全网最好的 Coze 教程之一,能一次性带您入门 Coze 工作流。即使是非技术出身的爱好者也能上手跟学,一站式学会 AI Agent 从设计到落地的全流程方法论。 阅读指南: 长文预警,请视情况收藏保存。 核心看点: 通过实际案例逐步演示,用 Coze 工作流构建一个能够稳定按照模板要求,生成结构化内容的 AI Agent。 开源 AI Agent 的设计到落地的全过程思路。 10+项常用的 Coze 工作流的配置细节、常见问题与解决方法。 适合人群: 任何玩过 AI 对话产品的一般用户(如果没用过,可以先找个国内大模型耍耍)。 希望深入学习 AI 应用开发平台(如 Coze、Dify),对 AI Agent 工作流配置感兴趣的爱好者。 注:本文不单独讲解案例所涉及 Prompt 的撰写方法。文末「拓展阅读」中,附有相关 Prompt 通用入门教程、Coze 其他使用技巧等内容,以供前置或拓展学习。 此外,还有以下关于 Coze 的介绍: Coze 是新一代一站式 AI Bot 开发平台。无论是否有编程基础,都可以在 Coze 平台上快速搭建基于 AI 模型的各类问答 Bot,从解决简单的问答到处理复杂逻辑的对话。并且,可以将搭建的 Bot 发布到各类社交平台和通讯软件上,与这些平台/软件上的用户互动。 个人认为:Coze 是字节针对 AI Agent 这一领域的初代产品,在 Coze 中将 AI Agent 称之为 Bot。字节针对 Coze 这个产品部署了两个站点,分别是国内版和海外版。 国内版: 网址:https://www.coze.cn 官方文档教程:https://www.coze.cn/docs/guides/welcome 大模型:使用的是字节自研的云雀大模型,国内网络即可正常访问。 海外版: 网址:https://www.coze.com 官方文档教程:https://www.coze.com/docs/guides/welcome 大模型:GPT4、GPT3.5 等大模型(可以在这里白嫖 ChatGPT4,具体参考文档:),访问需要突破网络限制的工具。 参考文档:https://www.coze.com/docs/zh_cn/welcome.html AI Agent 的开发流程: Bot 的开发和调试页面布局主要分为如下几个区块:提示词和人设的区块、Bot 的技能组件、插件、工作流、Bot 的记忆组件、知识库、变量、数据库、长记忆、文件盒子、一些先进的配置、触发器(例如定时发送早报)、开场白(用户和 Bot 初次对话时,Bot 的招呼话语)、自动建议(每当和 Bot 一轮对话完成后,Bot 给出的问题建议)、声音(和 Bot 对话时,Bot 读对话内容的音色)。下面会逐一讲解每个组件的能力以及使用方式。
2025-02-16
怎么学python,以适应AI时代趋势为导向
以下是一些关于以适应 AI 时代趋势为导向学习 Python 的建议: 1. 学习资源: 微信机器人教程,其中介绍了在 Linux 环境安装 Python 以及 Python 虚拟环境的相关知识。 吴恩达的 AI Python 初学者课程,这是一系列四门短期课程,适合任何技术水平的人。 2. 基础知识: 掌握 Python 的安装和编程基础,包括变量、数据类型、控制结构、函数等。 了解 Python 虚拟环境,它是一个独立的 Python 运行空间,用于隔离不同项目的依赖库,避免与系统的 Python 版本形成冲突。 3. 数学和理论基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等线性代数基本概念。 概率论:基础的概率论知识,如条件概率、贝叶斯定理。 了解人工智能、机器学习、深度学习的定义及其之间的关系,以及 AI 的发展历程和重要里程碑。 4. 算法和模型: 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:简介强化学习的基本概念。 神经网络基础:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN),以及常用的激活函数,如 ReLU、Sigmoid、Tanh。 5. 实践和应用: 学会向 AI 提供线索,这对于快速修复问题非常重要。 可以使用 Cursor 的菜单 Open in intergrated Terminal 直接切换到对应目录,也可以使用 cd 命令。 参考 Cursor 提示词网站:https://cursor.directory/,学习和参考其中大量网友实践后上传的提示词。 通过构建 AI 应用程序进行学习,例如编写与大型语言模型交互的代码,以快速创建有趣的应用程序来定制诗歌、编写食谱和管理待办事项列表。 总之,强烈推荐在 AI 时代掌握 Python 这门编程语言,不断学习和实践,以适应时代的发展趋势。
2025-02-17
python
以下是关于 Python 安装相关 AI 编程助手的信息: 安装 FittenAI 编程助手: 这两年 AI 发展迅猛,改变了很多人的工作方式,编程领域也不例外,AI 作为编程助手能提供实时建议和解决方案,提升工作效率。 配置 AI 插件前需先安装 Python 运行环境,可参考:。 安装步骤:点击左上角的 File Settings Plugins Marketplace。安装完成后左侧会出现 Fitten Code 插件图标,注册登录后即可开始使用。 功能包括智能补全(按下 Tab 键接受所有补全建议,按下 Ctrl+→键接收单个词补全建议)、AI 问答(通过点击左上角工具栏中的 Fitten Code 开始新对话打开对话窗口进行对话)、自动生成代码(Fitten Code 工具栏中选择“Fitten Code 生成代码”,然后在输入框中输入指令即可生成代码)、代码转换(选中需要进行翻译的代码段,右键选择“Fitten Code 编辑代码”,然后在输入框中输入需求即可完成转换)、自动生成注释(Fitten Code 能够根据代码自动生成相关注释)。 安装灵码 AI 编程助手: 同样在 AI 快速发展的背景下,其能为编程带来高效帮助。 配置前也需先安装 Python 运行环境,可参考:。 安装步骤:点击左上角的 File Settings Plugins Marketplace。安装完成插件会提示登录,按要求注册登录即可。使用上和 Fitten 差不多。 安装 FaceFusion 时的 Python 环境配置: FaceFusion 是开源换脸工具,安装较繁琐。 其所需环境包括 Python(需是 3.10 版本,不能高于 3.7 到 3.10,因为 onnxruntime==1.16.3 需要 Python 版本在 3.7 到 3.10 之间,推荐使用安装包下载安装:python 下载地址 https://www.python.org/downloads/,下载对应版本后点击安装,注意添加到系统环境变量中,也可使用命令行安装方式)、PIP、GIT、FFmpeg(安装后需重新启动系统以使 FFmpeg 正常运行)、Microsoft Visual C++2015 可再发行组件包、微软 Visual Studio 2022 构建工具(安装过程中确保选择桌面开发与 C++包)。
2025-02-13
python现在能和ai软件怎么结合应用
Python 与 AI 软件可以通过以下方式结合应用: 1. 安装编程助手插件,如 FittenAI 编程助手或灵码 AI 编程助手: 安装 Python 的运行环境,可参考 。 对于 FittenAI 编程助手,安装步骤为点击左上角的 FileSettingsPluginsMarketplace,安装完成后左侧会出现插件图标,注册登录后即可开始使用。使用时,按下 Tab 键接受所有补全建议,按下 Ctrl+→键接收单个词补全建议;通过点击左上角工具栏中的 Fitten Code–开始新对话打开对话窗口进行 AI 问答;在 Fitten Code 工具栏中选择“Fitten Code生成代码”,然后在输入框中输入指令即可自动生成代码;选中需要进行翻译的代码段,右键选择“Fitten Code–编辑代码”,然后在输入框中输入需求即可完成代码转换;Fitten Code 能够根据代码自动生成相关注释。 对于灵码 AI 编程助手,安装步骤为点击左上角的 FileSettingsPluginsMarketplace,安装完成插件会提示登录,按要求注册登录即可,使用上和 Fitten 差不多。 2. 如果希望更深入地结合应用,最好体系化地了解编程以及 AI 知识,至少熟悉以下内容: Python 基础:包括基本语法(如变量命名、缩进等)、数据类型(如字符串、整数、浮点数、列表、元组、字典等)、控制流(如条件语句、循环语句)、函数(定义和调用函数、参数和返回值、作用域和命名空间)、模块和包(导入模块、使用包)、面向对象编程(类和对象、属性和方法、继承和多态)、异常处理(理解异常、异常处理)、文件操作(文件读写、文件与路径操作)。
2025-01-25
你觉得作为一个普通不懂得程序的人来说,在面对未来的AI时代,需要学习编程的基础知识吗?系统性的学习Python或者你觉得学习Python哪些主要知识注音对了。
对于普通不懂得程序的人来说,在面对未来的 AI 时代,学习编程的基础知识是有一定必要的。如果想系统性地学习 Python,以下是一些需要重点关注的主要知识: 1. Python 基础: 基本语法:了解 Python 的基本语法规则,如变量命名、缩进等。 数据类型:熟悉字符串(String)、整数(Integer)、浮点数(Float)、列表(List)、元组(Tuple)、字典(Dictionary)等基本数据类型。 控制流:学会使用条件语句(if)、循环语句(for 和 while)来控制程序执行流程。 2. 函数: 定义和调用函数:学习如何定义自己的函数以及调用现有的函数。 参数和返回值:理解函数接收参数和返回结果的方式。 作用域和命名空间:了解局部变量和全局变量的概念及工作方式。 3. 模块和包: 导入模块:学习如何导入 Python 标准库中的模块或第三方库。 使用包:理解如何安装和使用 Python 包来扩展程序功能。 4. 面向对象编程(OOP): 类和对象:了解类的定义和实例化等基本概念。 属性和方法:学习为类定义属性和方法,并通过对象调用。 继承和多态:了解类之间的继承关系及实现多态的方法。 5. 异常处理: 理解异常:了解异常的概念及在 Python 中的工作原理。 异常处理:学会使用 try 和 except 语句处理程序中可能出现的错误。 6. 文件操作: 文件读写:学习如何打开文件、读取文件内容和写入文件。 文件与路径操作:理解如何使用 Python 处理文件路径及列举目录下的文件。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习:可以从 Python、JavaScript 等编程语言开始,学习编程语法、数据结构、算法等基础知识。 2. 尝试使用 AI 工具和平台:使用 ChatGPT、Midjourney 等 AI 生成工具体验应用场景,探索如百度的“文心智能体平台”、Coze 智能体平台等面向中学生的教育平台。 3. 学习 AI 基础知识:了解 AI 的基本概念、发展历程、主要技术(如机器学习、深度学习),学习其在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目:参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动,尝试利用 AI 技术解决实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态:关注权威媒体和学者,了解最新进展,思考 AI 技术对未来社会的影响,培养思考和判断能力。 总之,中学生可以从编程基础、工具体验、知识学习、实践项目等多方面入手,全面系统地学习 AI 知识和技能,为未来的 AI 发展做好准备。但需注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-01-24
Python机器学习基础教程
很抱歉,目前知识库中没有关于“Python 机器学习基础教程”的具体内容。但我可以为您提供一个大致的指导方向。 首先,学习 Python 机器学习需要掌握 Python 编程语言的基础知识,包括数据类型、控制结构、函数等。 其次,了解常见的机器学习概念和算法,如线性回归、逻辑回归、决策树、聚类等。 然后,学习使用相关的 Python 库,如 Scikitlearn,它提供了丰富的机器学习工具和函数。 您可以通过在线课程、书籍、官方文档等多种资源来深入学习 Python 机器学习。
2025-01-23
我想学习使用python
Python 是一种高级编程语言,具有以下特点和优势: 特点:简单易学、功能强大、库丰富。可以想象成一个拥有多种工具的工具箱,能帮助完成画画、计算、整理东西等各种任务。 起源:1989 年由 Guido van Rossum 在荷兰的 Centrum Wiskunde&Informatica(CWI)开始开发,1991 年发布第一个公开发行版 Python 0.9.0,之后不断发展,2020 年 1 月 1 日 Python 2 正式停止支持。 为什么使用:环境部署简单,下载两个软件并点击安装即可;语法简单且可读性强,适合小白;应用广泛,可用于做网站、开发游戏、分析数据、自动化任务等。 如果您想深入学习 Python,至少需要熟悉以下内容: Python 基础:包括基本语法(如变量命名、缩进)、数据类型(如字符串、整数、浮点数、列表、元组、字典)、控制流(如条件语句、循环语句)。 函数:定义和调用函数,理解参数和返回值,以及作用域和命名空间。 模块和包:学会导入模块和使用包来扩展程序功能。 面向对象编程(OOP):了解类和对象、属性和方法、继承和多态。 异常处理:理解异常以及如何使用 try 和 except 语句处理错误。 文件操作:掌握文件读写和文件与路径操作。 在学习 Python 的课程中,比如“和 Cursor AI 一起学 Python 编程”的第一节,会介绍 Python 是什么、Cursor 使用、notebook 远程编程。包括 Python 的简介、发展历史和特点,在数据分析和人工智能等领域的优势及应用案例,还会介绍 Cursor 编程环境,它是结合了 AI 功能的编程编辑器,具有 AI 辅助代码补全和生成、实时语法和错误检查等功能和优势,以及 Bohrium 在线编程平台,它是 AI for Science 的科研学习平台,利用其 Jupyter Notebook 进行远程编程具有无需本地环境配置、内置丰富功能、适合团队协作和教学场景等优势。
2025-01-13
我怎样用低代码工具去构建我的AI智能体?LLM应用?
以下是关于如何用低代码工具构建 AI 智能体和 LLM 应用的一些建议: 在构建基于 LLM 的应用时,Anthropic 建议先寻找最简单的解决方案,只在必要时增加复杂度。智能系统通常会以延迟和成本为代价来换取更好的任务表现,开发者需要考虑这种权衡是否合理。当需要更复杂的解决方案时,工作流适合需要可预测性和一致性的明确任务,而智能体则更适合需要灵活性和模型驱动决策的大规模场景。不过,对于许多应用来说,优化单个 LLM 调用(配合检索和上下文示例)通常就足够了。 目前有许多框架可以简化智能系统的实现,例如: 1. LangChain 的 LangGraph。 2. 亚马逊 Bedrock 的 AI Agent 框架。 3. Rivet(一个拖放式 GUI 的 LLM 工作流构建器)。 4. Vellum(另一个用于构建和测试复杂工作流的 GUI 工具)。 这些框架通过简化标准的底层任务(如调用 LLM、定义和解析工具、链接调用等)使入门变得容易,但它们往往会创建额外的抽象层,可能会使底层提示词和响应变得难以调试,也可能诱使开发者在简单设置就足够的情况下增加不必要的复杂性。建议开发者先直接使用 LLM API,许多模式只需要几行代码就能实现。如果确实要使用框架,请确保理解底层代码。 此外,还有以下相关工具和应用: 1. VectorShift:能在几分钟内构建和部署生成式人工智能应用程序,利用大型语言模型(例如 ChatGPT)构建聊天机器人、文档搜索引擎和文档创建工作流程,无需编码。 2. Unriddle:帮助更快阅读、写作和学习的工具,能简化复杂的主题,找到信息,提问并立即获得答案。 工具使用或函数调用通常被视为从 RAG 到主动行为的第一个半步,为现代人工智能栈增加了一个新的层。一些流行的原语如网页浏览(Browserbase、Tiny Fish)、代码解释(E2B)和授权+认证(Anon)已经出现,它们使 LLM 能够导航网络、与外部软件(如 CRM、ERP)交互并运行自定义代码。Omni 的计算 AI 功能体现了这种方法,它利用 LLM 直接输出适当的 Excel 函数到电子表格中,然后执行计算并自动生成复杂查询供用户使用。 详细示例请参考:https://github.com/anthropics/anthropiccookbook/tree/main/patterns/agents
2025-02-17
类似于ollama和vllm这样的LLM 框架有哪些
以下是类似于 ollama 和 vllm 的 LLM 框架: 1. Encoderonly 框架(也叫 AutoEncoder),典型代表如 BERT 等。 2. Encoderdecoder 框架,典型代表如 T5 和 GLM 等。 3. Decoderonly 框架(也叫 AutoRegressive),典型代表如 GPT 系列、LLaMa、PaLM 等。 此外,还有一些在 LLM 应用中发挥重要作用的框架,如: 1. LangChain:是当前大模型应用开发的主流框架之一,提供了一系列工具和接口,其核心在于“链”概念,包括 Model I/O、Retrieval、Chains、Agents、Memory 和 Callbacks 等组件,生态系统还包括 LangSmith、LangGraph 和 LangServe 等工具。 2. LlamaIndex:在促进 LLM 和整合上下文数据方面表现出色,抽象出许多提示链的细节,与外部 API 的接口,从向量数据库检索上下文数据,并在多个 LLM 调用中维持内存。
2025-02-17
LLM 训练推理模型有哪些
以下是一些常见的 LLM 训练推理模型: 1. FengshenbangLM: 地址: 简介:是 IDEA 研究院认知计算与自然语言研究中心主导的大模型开源体系,开源了姜子牙通用大模型 V1,是基于 LLaMa 的 130 亿参数的大规模预训练模型,具备翻译、编程、文本分类、信息抽取、摘要、文案生成、常识问答和数学计算等能力。除姜子牙系列模型之外,还开源了太乙、二郎神系列等模型。 2. BiLLa: 地址: 简介:开源了推理能力增强的中英双语 LLaMA 模型。较大提升 LLaMA 的中文理解能力,并尽可能减少对原始 LLaMA 英文能力的损伤;训练过程增加较多的任务型数据,利用 ChatGPT 生成解析,强化模型理解任务求解逻辑;全量参数更新,追求更好的生成效果。 3. Moss: 地址: 简介:支持中英双语和多种插件的开源对话语言模型,MOSS 基座语言模型在约七千亿中英文以及代码单词上预训练得到,后续经过对话指令微调、插件增强学习和人类偏好训练具备多轮对话能力及使用多种插件的能力。 此外,Andrej Karpathy 的相关介绍中提到了 LLM 训练的一些情况,如训练过程涉及大约 10TB 的文本,通常来源于互联网的抓取,需要大量的互联网资源和一个 GPU 集群,费用大约 200 万美元。Karpathy 的视频还详细介绍了 LLM 训练的全部过程,包括预训练、有监督微调和强化学习等。
2025-02-16
大型语言模型(LLM)基于Transformer架构的模型的优缺点是什么,有什么局限性
大型语言模型(LLM)基于 Transformer 架构的模型具有以下优点: 1. 在大量数据集上进行预训练,展现出卓越的语言处理能力,能预测接下来的 Token。 然而,也存在一些缺点和局限性: 1. 瞬态状态:天生缺乏持久的记忆或状态,需要额外的软件或系统来保留和管理上下文。 2. 概率性质:随机性导致响应的不确定性,对相同提示词可能产生不同回答。 3. 过时信息:依赖预训练数据,只能访问历史知识,无法获取实时更新。 4. 内容制造:可能生成看似合理但不准确的信息,即“幻觉”。 5. 资源密集:巨大规模意味着显著的计算和财务成本,影响可扩展性和可访问性。 6. 领域特定性:本质上通用,但通常需要特定领域数据才能在专业任务中表现出色。 7. 缺乏创造性:像一个高性能的知识检索工具,超出检索范围时表现差,甚至出现“幻觉”。面对复杂逻辑推导和新的知识推演能力不足,无法基于新的语料推演出新知识。 8. 对于特定领域或高度专业化的查询,容易产生错误信息或“幻觉”,特别是当查询超出训练数据或需要最新信息时。
2025-02-13
anythingllm安装包
以下是关于 AnythingLLM 安装包的相关信息: 安装地址:https://useanything.com/download 。 安装完成后会进入配置页面,主要分为三步: 第一步:选择大模型。 第二步:选择文本嵌入模型。 第三步:选择向量数据库。 在 AnythingLLM 中有 Workspace 的概念,可以创建自己独有的 Workspace 与其他项目数据进行隔离。配置流程包括: 首先创建一个工作空间。 上传文档并且在工作空间中进行文本嵌入。 选择对话模式,提供了 Chat 模式和 Query 模式。Chat 模式大模型会根据训练数据和上传的文档数据综合给出答案,Query 模式大模型仅依靠文档中的数据给出答案。 完成上述配置后,即可与大模型进行对话。 此外,在 GitHubDaily 开源项目列表 2023 年复盘的 AIGC 部分中, 是一个可打造成企业内部知识库的私人专属 GPT,能将任何文档、资源或内容转换为大语言模型(LLM)知识库,在对话中引用其中内容。
2025-02-06
AnythingLLM 怎么用,好用吗
AnythingLLM 是一款功能强大的软件,具有以下特点和使用方法: 功能:包含了所有 Open WebUI 的能力,并且额外支持选择文本嵌入模型和向量数据库。 安装和配置:安装地址为 https://useanything.com/download 。安装完成后进入配置页面,主要分为三步:选择大模型、选择文本嵌入模型、选择向量数据库。 构建本地知识库:其中有 Workspace 的概念,可以创建自己独有的 Workspace 与其他项目数据隔离。首先创建工作空间,然后上传文档并进行文本嵌入,接着选择对话模式,提供了 Chat 模式(大模型根据训练数据和上传文档数据综合给出答案)和 Query 模式(大模型仅依靠文档中的数据给出答案),最后进行测试对话。 相关评价:被认为是一个可打造成企业内部知识库的私人专属 GPT,能将任何文档、资源或内容转换为大语言模型(LLM)知识库,支持多用户使用,可设权限,兼容多种 LLM 和数据库。 总的来说,AnythingLLM 的使用效果因人而异,需要您亲自实践和体验来判断其是否好用。
2025-02-04
通过AI如何来处理Excel数据
以下是一些通过 AI 处理 Excel 数据的工具和方法: 1. Excel Labs:这是一个 Excel 插件,基于 OpenAI 技术,新增了生成式 AI 功能,允许用户在 Excel 中直接利用 AI 进行数据分析和决策支持。 2. Microsoft 365 Copilot:微软推出的 AI 工具,整合了多种办公软件,用户通过聊天形式告知需求,Copilot 可自动完成如数据分析、格式创建等任务。 3. Formula Bot:提供数据分析聊天机器人和公式生成器两大功能,用户能通过自然语言交互式地进行数据分析和生成 Excel 公式。 4. Numerous AI:支持 Excel 和 Google Sheets 的 AI 插件,除公式生成外,还能根据提示生成相关文本内容、执行情感分析、语言翻译等任务。 此外,Chat Excel 也可以帮助处理 Excel 数据,您提出要求,它会逐步进行处理。同时,还可以利用一些其他的 AI 工具和技巧,如 360AI 浏览器实现 AI 内容摘要、问答、思维导图等功能,用通义听悟整理录音笔记等,来辅助处理 Excel 相关的数据工作。随着技术发展,未来可能会有更多 AI 功能集成到 Excel 中,进一步提高工作效率和智能化水平。请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-02-18
我的工作是财务会计,经常需要对账,输入是2个Excel表格,但格式内容都有不少差异,哪些大模型或者工具可以帮我快速完成这个工作?
以下是一些可能有助于您快速完成对账工作的大模型或工具: 1. Coze 记账管家:它能通过大语言模型将用户输入的非结构化数据转变为结构化数据存入数据库。工作流程包括定义提示词,让大模型拆解并识别记账事项、发生时间、变动金额等,然后将这些数据存入数据库。 2. GLM4AllTools:可用于统计平台月度账单,例如您可以从平台导出月度明细数据,上传账单给沙盒,让模型统计账单数据和用量,还能分析账单数据波动。 3. 生成式 AI:在金融服务领域,它能帮助改进内部流程,如预测编写 Excel、SQL 和 BI 工具中的公式和查询,自动创建报告的文本、图表、图形等内容,为会计和税务团队提供税法和扣除项的可能答案,以及帮助采购和应付账款团队自动生成和调整合同、采购订单和发票等。
2025-02-15
excel AI 工具
以下是一些关于 Excel 的 AI 工具: 1. Excel Labs:这是一个 Excel 插件,基于 OpenAI 技术新增了生成式 AI 功能,可在 Excel 中直接利用 AI 进行数据分析和决策支持。 2. Microsoft 365 Copilot:微软推出的整合了 Word、Excel、PowerPoint 等办公软件的 AI 工具,用户通过聊天形式告知需求,Copilot 自动完成如数据分析或格式创建等任务。 3. Formula Bot:提供数据分析聊天机器人和公式生成器两大功能,用户能通过自然语言交互式地进行数据分析和生成 Excel 公式。 4. Numerous AI:支持 Excel 和 Google Sheets 的 AI 插件,除公式生成外,还可根据提示生成相关文本内容、执行情感分析、语言翻译等任务。 以下是一些 Excel 相关的表格数据: 1. AI 产品数据 2024 1 3 月表格:包括 GPTExcel、GPT Workspace、Ajelix AI Excel Tools 等产品在 1 3 月的数据及变化。 2. 表格 Top10 的 AI 产品数据:如 Highcharts、Fillout.com、Coefficient 等产品的 6 月访问量及相对 5 月的变化。 随着技术发展,未来可能会有更多 AI 功能集成到 Excel 中,进一步提高工作效率和数据处理的智能化水平。内容由 AI 大模型生成,请仔细甄别。
2025-02-09
chat excel怎么样,好用吗
Chat Excel 具有一定的实用性和便利性。 从应用场景来看,在数据分析工作中,Excel 是大家最为熟悉和常用的工具之一。写一些公式属于进阶用法,比如会用 vlookup 函数甚至能编写 Excel 宏(在 Excel 中运行 VBA 程序),这在 Excel 中属于非常高级的用法,能解决产品工作中的绝大部分需求。 此外,ChatGPT 新功能“ChatExcel”已开始灰度测试,包括与 Google Drive 和 OneDrive 的打通、双栏对话表格和自助图表生成等功能。 在办公中,如果需要对大量 Excel 文件进行批处理操作,如合并、标准化、删除无效数据等,可借助 ChatGPT 生成代码来实现。直接向 ChatGPT 提问,它能给出相应的帮助,甚至包括如何打开 Excel 中的开发工具等细节。 总之,Chat Excel 在不同的场景和需求下,能为用户提供一定的帮助和便利,但具体的好用程度还需根据个人的使用习惯和具体需求来判断。
2025-02-08
AI与Excel
关于 Excel 与 AI 的相关内容如下: Excel 的 AI 功能方面,目前有多种工具和插件可增强其数据处理和分析能力,例如: Excel Labs 是 Excel 插件,基于 OpenAI 技术,新增生成式 AI 功能,可在 Excel 中进行数据分析和决策支持。 Microsoft 365 Copilot 整合了 Word、Excel 等办公软件,用户通过聊天形式告知需求,Copilot 自动完成任务。 Formula Bot 提供数据分析聊天机器人和公式生成器功能,支持自然语言交互进行数据分析和生成 Excel 公式。 Numerous AI 是支持 Excel 和 Google Sheets 的 AI 插件,能进行公式生成、生成相关文本内容、执行情感分析、语言翻译等任务。 与 Excel 相关的对比和应用方面: Excel 有手就会,但 VBA 进阶版功能门槛高。 对于一些重复工作,AI 能处理 Excel 但较麻烦,而多维表格在某些方面能更便捷地解决问题,如自带 AI 插件,可通过自然语言提取网址和电话、生成 AI 标签等。 常见应用包括数据整理与分析、内容生成与优化、自动化建议等,多维表格和 Excel 都能整理数据、做计算和图表,但多维表格能让人偷更多懒。
2025-02-08
Excel有什么好的AI
以下是一些与 Excel 相关的 AI 工具和功能: 1. Excel Labs:这是一个 Excel 插件,基于 OpenAI 技术,新增了生成式 AI 功能,可在 Excel 中直接利用 AI 进行数据分析和决策支持。 2. Microsoft 365 Copilot:微软推出的 AI 工具,整合了包括 Excel 在内的多种办公软件,用户通过聊天形式告知需求,Copilot 自动完成任务,如数据分析、格式创建等。 3. Formula Bot:提供数据分析聊天机器人和公式生成器两大功能,用户能通过自然语言交互式地进行数据分析和生成 Excel 公式。 4. Numerous AI:支持 Excel 和 Google Sheets 的 AI 插件,除公式生成外,还能根据提示生成相关文本内容、执行情感分析、语言翻译等任务。 随着技术发展,未来可能会有更多 AI 功能集成到 Excel 中,进一步提高工作效率和数据处理的智能化水平。 在金融服务业中,生成式 AI 除了能帮助回答财务问题,还能改进金融服务团队的内部流程,简化日常工作流程。例如,在预测方面,生成式 AI 能帮助编写 Excel、SQL 和 BI 工具中的公式和查询,实现分析自动化,发现模式并为预测建议输入;在报告方面,能自动创建文本、图表、图形等内容,并根据不同示例调整报告;在会计和税务方面,能帮助综合、总结并就税法和潜在扣除项提出可能答案;在采购和应付账款方面,能帮助自动生成和调整合同、采购订单和发票以及提醒。 此外,飞书多维表格在处理数据方面也有优势,能解决一些 Excel 中高级门槛的数据处理功能,如自带 AI 插件,可通过自然语言提取网址和电话、生成 AI 标签等。总之,Excel 和多维表格都能帮助整理数据、做计算和图表,具体使用哪种取决于您的需求。
2025-02-07