直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

如何在Mac上运行comfyUI

回答

在 Mac 上运行 ComfyUI 的步骤如下:

  1. 电脑配置:MacBook Pro,M1 芯片,16G 内存,Sonoma 14.6.1 系统版本。
  2. 部署 ComfyUI:
    • 安装依赖:在终端中输入“pip3 install -r requirements.txt”安装 ComfyUI 的依赖文件。终端提示需要特定版本的 numpy 时,输入“Y”卸载当前版本,然后输入“pip3 install numpy==1.26.4”安装指定版本。
    • 启动 ComfyUI:在终端中输入“pwd”查看 ComfyUI 的文件路径,复制文件路径,替换启动命令中的相应部分,然后将命令“source cf/bin/activate && cd /Users/vina/Documents/ComfyUI && python main.py --auto-launch --listen --dont-upcast-attention --output-directory ~/Desktop”复制到终端。启动成功后,浏览器会自动跳转,但网页地址可能不对,直接在浏览器打开“http://localhost:8188/”即可使用。
  3. 管理器和资源占用插件:官方的 ComfyUI 安装包不带管理器和资源占用视图,需要从 GitHub 下载。管理器插件下载地址:https://github.com/ltdrdata/ComfyUI-Manager 。资源占用视图插件装不装均可,下载地址:https://github.com/crystian/ComfyUI-Crystools 。

此外,还有一种搭建自己第一个 ComfyUI 的方法(熟手推荐 - 自定义创建):

  1. 创建工作空间:进入工作空间,点击自定义创建,按照以下内容配置,点击立即创建。镜像选择 lanrui-comfyui 镜像;网盘默认挂载;数据集默认挂载 sd-base;启动方式默认选择手动启动。待实例状态由启动中变为运行中后,稍等一会,点击进入 JupyterLab,选择 terminal 终端。
  2. 启动 ComfyUI:进入终端后,先参考这里配置学术加速。运行如下启动命令后按回车键,等待 1 分钟左右。(每次启动都需要输入启动命令)如果想要长时间持续运行任务,请用 nonhup 启动:启动命令“nohup bash /home/user/start.sh > comfy.log 2>&1 &”;查看启动/出图进度命令“tail -fn 500 comfy.log”;停止命令“pkill -9 -f '27777'”。当页面显示“To see the GUI go to:http://0.0.0.0:27777”,说明已启动成功。
  3. 访问 ComfyUI 界面:返回工作空间,点击实例右侧的「打开调试地址」到浏览器,就可以使用 ComfyUI 啦。

需要注意的是,在 Mac 上使用 ComfyUI 存在一些难点:

  1. 生图慢,因为 Mac M 只有 CPU,没有 GPU。
  2. 生图的大模型在 CPU 环境中不一定适配、好用。
  3. 用 Mac 生图的人少,能一起讨论的人也少,解决方案也少,需要自己摸索。
  4. 大神们在 Windows 系统里做的一键包,在 Mac 中不能用。
  5. 大神们的工作流也要做适配 Mac 的修改,需要一点点代码阅读和修改的能力。
内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

维纳 Vina: MacBook Pro M1 跑通二狗子的黑神话工作流-ComfyUI 新手从0到1系列

MacBook Pro,M1芯片,16G内存,Sonoma 14.6.1系统版本。[heading2]缘起[content]我是一名AI生图零基础、代码零基础的产品经理,从8.13号开始跟着WaytoAGI社区的ComfyUI共学课学习,刚开始用云平台的应用,对新手来说非常友好,节点、模型都是内置的,打开就能上手。跟着共学课程,我在云平台学习了ComfyUI的基础用法。8.19号,AJ在共学群里发了[二狗子的黑神话悟空工作流](https://openart.ai/workflows/monkey_favorable_41/-ai/YIP0875LOCw3t5K78lkr),特别帅,我很想把这个模型跑起来。我在云平台尝试跑这个工作流,要么是环境不匹配,要么是模型太大上传到云很慢,于是我下决心要在本地部署一套ComfyUI,在本地跑起来。[heading2]Mac用ComfyUI的难点[content]我刚开始不明白,为什么AI生图领域喂饭的大神没有用Mac的,我后来在操作的过程中发现,在Mac部署确实有很多不方便的地方:1.生图慢,因为Mac M只有CPU,没有GPU。这可能是大神们不喜欢用Mac生图的最大原因。2.生图的大模型在CPU环境中不一定适配、好用。3.用Mac生图的人少,能一起讨论的人也少,解决方案也少,需要自己摸索。4.大神们在windows系统里做的一键包,在Mac中不能用。5.大神们的工作流也要做适配Mac的修改,需要一点点代码阅读和修改的能力。

维纳 Vina: MacBook Pro M1 跑通二狗子的黑神话工作流-ComfyUI 新手从0到1系列

在终端中输入pip3 install -r requirements.txt用来安装ComfyUI的依赖文件。终端提示,需要特定版本的numpy,终端询问是否卸载当前版本numpy,输入Y卸载,然后输入pip3 install numpy==1.26.4安装此版本的numpy。[heading2]启动ComfyUI[content]在终端中输入pwd,查看ComfyUI的文件路径,复制文件路径,替换启动命令中的背景色部分,然后将命令复制到终端,即可启动ComfyUI。启动ComfyUI的命令source cf/bin/activate && cd /Users/vina/Documents/ComfyUI && python main.py --auto-launch --listen --dont-upcast-attention --output-directory ~/Desktop启动成功后,浏览器会自动跳转到一个本地网页,但这个网页地址是不对的,直接在浏览器打开http://localhost:8188/这个地址,就可以使用ComfyUI了。[heading2]管理器和资源占用插件[content]官方的ComfyUI安装包是不带管理器和资源占用视图的,需要另外再从GitHub下载。推荐安装管理器插件,[下载](https://github.com/ltdrdata/ComfyUI-Manager)地址。资源占用视图的插件装不装我觉得都可以,在终端中也可以看到进度,不过资源管理插件看到的更详细,[下载](https://github.com/crystian/ComfyUI-Crystools)地址。

ComfyUI基础教程—小谈

进入工作空间,点击自定义创建,按照以下内容配置,点击立即创建(如图所示):镜像:选择lanrui-comfyui镜像;网盘:默认挂载;数据集:默认挂载sd-base;启动方式:默认选择手动启动;待实例状态由启动中变为运行中后,稍等一会,点击进入JupyterLab,选择terminal终端;[heading5]2、启动ComfyUI[content]进入终端后,请参考[这里](https://doc-rde.lanrui-ai.com/docs/yong-hu-shou-ce/gao-ji-she-zhi/xue-shu-wang-zhan-jia-su/)先配置学术加速运行如下启动命令后按回车键,等待1分钟左右。(每次启动都需要输入启动命令)如果想要长时间持续运行任务,请用nonhup启动:启动命令nohup bash /home/user/start.sh > comfy.log 2>&1 &查看启动/出图进度命令tail -fn 500 comfy.log停止命令pkill -9 -f '27777'当页面显示(如下图所示)“To see the GUI go to:http://0.0.0.0:27777”,说明已启动成功。[heading5]3、访问ComfyUI界面[content]返回工作空间,点击实例右侧的「打开调试地址」到浏览器,就可以使用ComfyUI啦。

其他人在问
Mac部署stable diffusion
在 Mac 上部署 Stable Diffusion 存在一定限制,功能可能不全且出错率偏高,严重影响使用体验。个人建议升级设备或者采用云服务器玩耍。 如果您仍想在 Mac 上部署,可以参考以下步骤: 1. 电脑硬件要求: 系统:无明确针对 Mac 的特定系统要求。 显卡:未明确针对 Mac 的显卡要求。 硬盘:留有足够的空间,最低 100G 起步(包括模型)。 2. 环境安装: 未提供 Mac 系统下的具体环境安装步骤。 由于 Mac 系统的特殊性,更推荐您采用云端部署的方式,相关教程可参考:https://qa3dhma45mc.feishu.cn/wiki/A6WYw1Nm0ikGplkuO9Ecwomqnnd
2024-11-06
Mac有Chat GPT客户端吗
Mac 有 Chat GPT 客户端,以下是相关信息: 下载地址: persistent.oaistatic.com/sidekick/public/ChatGPT_Desktop_public_latest.dmg 或者:https://waytoagi.feishu.cn/file/I58PbrukKoXYdVxEF0EcY9SXnBf 下载不了可以用百度云链接:https://pan.baidu.com/s/1jFZ5uBClqP0T1IOKQLW5HQ?pwd=hmbe 提取码:hmbe 或者:https://persistenNt.oaistatic.com/sidekick/public/ChatGPT_Desktop_public_latest.dmg 使用条件: 需要苹果芯片的 mac。 内测用户(非内测用户使用指南: )。 macOS 12.6.8 M1 芯片不兼容,系统版本 MacOS 14 及以上。 提前下载使用 ChatGPT Mac 桌面客户端的办法(需要有 ChatGPT 付费账号,以及网络技术基础): 以 ProxyMan 为例: 登录一次以触发 API 调用。 对 ChatGPT 的 App 启用 SSL 代理(需要配置好 ProxyMan 证书)。 再登录一次以触发 API 调用。 然后右键点击 ab.chatgpt.com/v1/initialize 选择本地映射,并将所有的 false 替换为 true。 再尝试一次,你就应该能顺利登录了。 详细版图文教程:
2024-11-01
MacBook如何做一些AIGC软件布置
很抱歉,目前知识库中没有关于“MacBook 如何做一些 AIGC 软件布置”的相关内容。但一般来说,您可以通过以下步骤尝试在 MacBook 上进行 AIGC 软件的布置: 1. 确定您想要安装的 AIGC 软件,并在其官方网站上查找适用于 macOS 系统的版本。 2. 检查您的 MacBook 系统版本是否满足软件的要求,如果不满足,可能需要进行系统更新。 3. 下载软件安装包,通常可以在官方网站上找到下载链接。 4. 打开下载的安装包,按照安装向导的指示进行操作,可能需要您同意许可协议、选择安装位置等。 5. 安装完成后,在应用程序文件夹中找到并打开该软件,进行必要的设置和配置。 请注意,不同的 AIGC 软件可能会有略微不同的安装和配置步骤,具体还需根据您选择的软件来操作。
2024-09-25
stable diffusion可以用macbook 13来运行吗?配置够吗
Stable Diffusion(简称“SD”)的运行对电脑配置有一定要求。对于 Windows 系统: 显卡:必须是 NVIDIA(俗称 N 卡)。 专用 GPU 内存:4GB 勉强可以跑动 SD,出图时间较长;6GB 出一张图时间为 20 50 秒,大部分功能可用;8GB 5 20 秒出一张图,所有功能基本开放。 电脑运行内存:8GB 以上。 电脑系统:Win10 或者 Win11。 对于 Mac 系统,可以查看以下视频进行一键安装:https://www.bilibili.com/video/BV1Kh4y1W7Vg/?spm_id_from=333.788&vd_source=6f836e2ab17b1bdb4fc5ea98f38df761 但具体 MacBook 13 是否能运行及配置是否足够,还需根据上述标准进行对照检查。
2024-09-16
mac怎么使用Chat GPT
以下是在 Mac 上使用 Chat GPT 的方法: 1. 下载地址: persistent.oaistatic.com/sidekick/public/ChatGPT_Desktop_public_latest.dmg 下载不了可以用百度云链接:https://pan.baidu.com/s/1jFZ5uBClqP0T1IOKQLW5HQ?pwd=hmbe 提取码:hmbe 或者:https://persistenNt.oaistatic.com/sidekick/public/ChatGPT_Desktop_public_latest.dmg 2. 使用条件: 需要苹果芯片的 mac 内测用户(非内测用户使用指南: ) macOS 12.6.8 M1 芯片不兼容,系统版本 MacOS 14 及以上 3. 操作步骤(需要有 ChatGPT 付费账号,以及网络技术基础): 使用 Proxyman、Charles 或您喜欢的网络代理来进行以下操作:以 ProxyMan 为例 登录一次以触发 API 调用 对 ChatGPT 的 App 启用 SSL 代理(需要配置好 ProxyMan 证书) 再登录一次以触发 API 调用 然后右键点击 ab.chatgpt.com/v1/initialize 选择本地映射,并将所有的 false 替换为 true 再尝试一次,您就应该能顺利登录了 详细版图文教程: 官方介绍:https://openai.com/index/hellogpt4o/ 如何访问 GPT4、GPT4 Turbo 和 GPT4o?https://help.openai.com/en/articles/7102672howcaniaccessgpt4gpt4turboandgpt4o Sam 的博文:https://blog.samaltman.com/gpt4o 音频主管 Alexis Conneau:https://twitter.com/alex_conneau
2024-09-04
MAC笔记本电脑,有哪个网址可以下载SD的安装包?或者说MAC电脑可以使用SD吗
对于 MAC 电脑安装 Stable Diffusion(SD),推荐云端部署,相关链接为:https://qa3dhma45mc.feishu.cn/wiki/A6WYw1Nm0ikGplkuO9Ecwomqnnd 。 如果您选择本地部署,以下是一些相关步骤供您参考: 1. 进入安装页面,等待安装好。 2. 勾选如下项目,要确保包含 Python 和 C++包。 3. 更改到您想要安装的位置,然后点击右下角的安装就行。 4. 安装时间比较长,要耐心等待。 5. 安装好之后,打开 SD 文件目录下的这个文件夹。 6. 在地址栏输入“cmd”,然后回车。 7. 在打开的 dos 界面里面,将这行代码“python m pip install insightface==0.7.3 user”粘贴进来,就会自动开始安装 insightface。 8. 如果这个阶段出现错误,建议去下载使用最新的秋叶 4.2 整合包(6 月 23 号更新),下载包已更新到云盘里,后台回复【SD】就可以下载。 9. 安装完成后,重新打开我们的启动器,后台会继续下载一些模型,此时一定要保证全程科学上网。 另外,对于电脑配置能支持 SD 运行的朋友,也可以使用 B 站秋叶分享的整合包进行本地部署,具体步骤如下: 1. 打开链接 https://pan.baidu.com/s/1hY8CKbYRAj9RrFGmswdNiA?pwd=caru 下载《1.整合包安装》,存放到电脑本地。 2. 打开保存到电脑里的文件夹。 3. 打开文件夹《1.秋叶整合包主包》——鼠标右击文件——点击“解压文件”。 4. 选择解压到 D 盘或者 E 盘,小心 C 盘被占满!点击确定。 5. 解压完成后,来到第二个文件夹,双击里面的文件点击安装。 6. 打开刚刚解压保存的 SD 的根目录,找到启动器,鼠标右击启动器——点击“发送到”——桌面快捷方式。这样下次进入就可以直接在桌面双击进入,不用每次都到文件夹里面找啦! 7. 双击启动器,等待更新,接着点击左边第二个“高级选项”。 8. 在显存优化里,根据自己电脑的显存选择(就是上面查看的专用 GPU 内存),自己电脑是多少就选多少。 9. 回到第一个一键启动,点击右下角的一键启动。
2024-08-29
comfyui入门
ComfyUI 是一个基于节点流程式的 stable diffusion AI 绘图工具 WebUI,可想象成集成了 stable diffusion 功能的 substance designer,将 stable diffusion 流程拆分成节点,实现更精准工作流定制和完善的可复现性。 其优势包括: 1. 对显存要求相对较低,启动和出图速度快。 2. 生成自由度更高。 3. 可以和 webui 共享环境和模型。 4. 能搭建自己的工作流程,可导出流程并分享,报错时能清晰发现错误所在。 5. 生成的图片拖进后会还原整个工作流程,模型也会选择好。 劣势有: 1. 操作门槛高,需要有清晰逻辑。 2. 生态没有 webui 多(但常用的都有),也有一些针对 Comfyui 开发的有趣插件。 官方链接:从 github 上下载作者部署好环境和依赖的整合包,按照官方文档安装即可:https://github.com/comfyanonymous/ComfyUI 。 相关学习资料: 1. ComfyUI 官方文档:提供使用手册和安装指南,适合初学者和有经验用户,网站:https://www.comfyuidoc.com/zh/ 。 2. 优设网:有详细的入门教程,适合初学者,地址:https://www.uisdc.com/comfyui3 。 3. 知乎:有用户分享部署教程和使用说明,适合有一定基础并希望进一步了解的用户,地址:https://zhuanlan.zhihu.com/p/662041596 。 4. Bilibili:有一系列涵盖从新手入门到精通各个阶段的视频教程,地址:https://www.bilibili.com/video/BV14r4y1d7r8/ 。 ComfyUI 共学 WaytoAGI 共学计划中的高频问题及自学资料: 1. 知识库跳转,展开菜单。 2. 。 3. 【海辛】因为一直被几个好朋友问 comfyui 怎么入门,给朋友录了几节 comfyui 基础课,顺手分享给大家~看完这 5 节应该就基本入门啦,然后可以看互联网上任何的进阶教程了。 安装部署: 界面介绍: 文生图、图生图: ComfyUI 中使用 ControlNet: ComfyUI 中不同放大图像方式:
2024-12-18
comfyui工作流
ComfyUI 工作流包括以下内容: 低显存运行工作流:目的是让 FLUX 模型能在较低显存情况下运行。分阶段处理思路为,先在较低分辨率下使用 Flux 模型进行初始生成,然后采用两阶段处理,即先用 Flux 生成,后用 SDXL 放大,有效控制显存使用,最后使用 SD 放大提升图片质量。工作流流程包括初始图像生成(Flux)阶段,如加载相关模型、处理输入提示词、生成初始噪声和引导等,以及图像放大和细化(SDXL)阶段,如加载 SDXL 模型、对初始图像进行锐化处理等,并进行最终图像预览。 工作流网站: “老牌”workflow 网站 Openart.ai:https://openart.ai/workflows/,流量较高,支持上传、下载、在线生成,免费账户有 50 个积分,加入 Discord 可再加 100 积分,开通最低每月 6 美元套餐后每月有 5000 积分。 ComfyWorkflows 网站:https://comfyworkflows.com/cloud,支持在线运行工作流,实际下载量和访问量略少于 openart。 Flowt.ai:https://flowt.ai/community 提示词自动生成 ComfyUI 工作流:英伟达整了个花活,通过画图提示词自动生成匹配的 ComfyUI 工作流,命名为 ComfyGen(comfy 生成器),目前仅支持文生图模型。英伟达称其可以生成高质量的图并泛化到其他领域,效果基本与其他模型一致甚至更优,但项目未开源。
2024-12-17
有没有根据布料照片和模特照片生成衣服上身效果的工具或 comfyUI 工作流
以下是一些与根据布料照片和模特照片生成衣服上身效果相关的工具和工作流: 1. 藏师傅的方法:将第二步的提示词和 Logo 图片放到 Comfyui 工作流就行。Lora 需要用到 InContext LoRA 中的 visualidentitydesign,可从以下地址下载:https://huggingface.co/alivilab/InContextLoRA/tree/main 。工作流下载:https://github.com/op7418/Comfyuiworkflow/blob/main/FLUX/Logo%20%E5%91%A8%E8%BE%B9%E7%94%9F%E6%88%90.json 。 2. 彭青云分享的内容:本地部署 Comfyui 有多种方式,如官方的本地部署包、秋叶整合包和二狗子老师制作的通往 AGI 之路黑猴子流专属包。处理好软件和模型后,打开一键启动,稍等片刻就会进入工作界面。通过正反提示词、文本链接图像,点击右侧队列即可生成图像。 3. ComfyUI BrushNet:原项目 https://tencentarc.github.io/BrushNet/ ,插件地址 https://github.com/kijai/ComfyUIBrushNetWrapper ,模型下载 https://huggingface.co/Kijai/BrushNetfp16/tree/main 。第一次运行会自动下载需要的模型,如果是用的 ComfyUIBrushNetWrapper 节点,模型将自动从此处下载:https://huggingface.co/Kijai/BrushNetfp16/tree/main 到 ComfyUI/models/brushnet,也可手动下载放在这个文件夹里面。另外,BrushNet 提供了三个模型,个人测试下来,random 这个效果比较好。工作流方面,可配合 mj 出底图,在底图不变的基础上,添加文字或者图片内容。还可以使用 GDinoSAm(GroundingDino+Sam),检测和分割底图上的内容,做针对性的修改。
2024-12-13
我想学习comfyui
以下是关于 ComfyUI 的相关学习信息: 学习资料: ComfyUI 官方文档:提供使用手册和安装指南,适合初学者和有经验的用户。网站:https://www.comfyuidoc.com/zh/ 优设网:有详细的入门教程,适合初学者,介绍了特点、安装方法及生成图像等内容。教程地址:https://www.uisdc.com/comfyui3 知乎:有用户分享部署教程和使用说明,适合有一定基础并希望进一步了解的用户。地址:https://zhuanlan.zhihu.com/p/662041596 Bilibili:有一系列涵盖从新手入门到精通阶段的视频教程。地址:https://www.bilibili.com/video/BV14r4y1d7r8/ 自动生成抠图素材: 作者学习使用 ComfyUI 的原因包括更接近 SD 的底层工作原理、自动化工作流、作为强大的可视化后端工具可实现 SD 之外的功能、可根据定制需求开发节点或模块等。 作者的工作室常需要抠图素材,传统途径存在问题,近期在 github 上看到相关项目创建了工作流,可自动生成定制需求的抠图素材,全程只需几秒。 简介: ComfyUI 是基于节点流程式的 stable diffusion AI 绘图工具 WebUI,可想象成集成了 stable diffusion 功能的 substance designer,通过拆分流程为节点实现精准工作流定制和完善的可复现性。 优势:对显存要求相对较低,启动和出图速度快;生成自由度高;可和 webui 共享环境和模型;能搭建工作流程,导出并分享,报错时能清晰发现错误所在;生成的图片拖进后会还原工作流程并选好模型。 劣势:操作门槛高,需要清晰逻辑;生态没有 webui 多,但有针对 Comfyui 开发的有趣插件。 官方链接:从 github 下载作者部署好环境和依赖的整合包,按照官方文档安装。https://github.com/comfyanonymous/ComfyUI 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-12-12
有什么 comfyui 的第三方 api 服务
ComfyUI 是一个开源的用于生成 AI 图像的图形用户界面,主要基于 Stable Diffusion 等扩散模型。以下是关于 ComfyUI 的一些详细信息: 生图原理: 1. 在去噪过程中,模型使用编码后的文本向量来引导图像生成,以确保生成的图像与输入的文本描述相符。 2. 提供了多种采样算法(如 Euler、DDIM、DPM++等)来控制去噪过程,不同采样器可能产生不同结果或影响生成速度。 3. VAE 由编码器和解码器组成。编码器输入图像并输出表示其特征的概率分布,解码器将概率分布映射回图像空间。 4. 最终生成的图像显示在界面上,用户可保存、编辑或用于其他目的。 5. 支持多种高级功能,如图像到图像、Lora、ControlNet、ipadapter、放大和后处理等。 节点认识: 1. 核心是节点式界面,用户可通过拖放和连接各种节点创建自定义图像生成工作流。 2. 节点类型包括输入节点(如文本提示节点、图像输入节点、噪声节点)、处理节点(如采样器节点、调度器节点、CFG Scale 节点、步数节点)、输出节点(如图像输出节点)、辅助节点(如批处理节点、图像变换节点、图像融合节点)。 3. 用户可通过拖动节点间的连接线构建工作流,连接线代表数据流动。 4. 除内置节点,用户还可创建自定义节点扩展功能,自定义节点安装目录为 D:\\ComfyUI\\custom_nodes。 5. 提供丰富的节点管理功能,包括保存/加载节点图、复制/粘贴节点、批量编辑等。 其他原理: 1. 涉及 Pixel Space(像素空间)和 Latent Space(潜在空间),输入图像的像素空间对应于可能通过“图像输入”模块或直接从文本提示生成的随机噪声图像,许多操作在潜在空间中进行。 2. 扩散过程表示从噪声生成图像的过程,通过调度器控制,可选择不同调度器控制在潜在空间中处理噪声及逐步去噪回归到最终图像,生成图像时会进行多个去噪步,可通过控制步数影响图像生成的精细度和质量。
2024-12-10
COMFYui安装包
以下是关于 COMFYui 安装包的相关信息: 1. 安装地址: https://github.com/comfyanonymous/ComfyUI 可以下载安装包也可以直接 Git clone https://github.com/comfyanonymous/ComfyUI.git 或者下载安装包。 安装包文件:ComfyUI.zip 、 2. 安装步骤: 下载安装包并解压至本地除 C 盘外的任意盘。 找到文件名称为 run_nvidia_gpu 的文件双击并启动,启动完成即进入基础界面。 3. 相关环境安装(安装过 WebUI 的同学请忽略): 依次下载并安装 python(版本 3.10 以上)、VSCode、Git,安装过程中一直点击勾选对应选项,一直下一步。 安装 Python: 安装 VSCode: 安装 Git: 4. 节点存放目录:comfyUI 的节点包括后面安装的拓展节点都存放在本目录下:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\custom_nodes 5. 模型存放目录: 大模型:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\checkpoints Lora:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\loras Vae:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\vae 6. 模型共用:已经安装了 SDWebUI 的同学可以通过修改文件路径和 WebUI 共用一套模型即可,这样就不用重复下载模型了。找到已安装好的 ComfyUI 目录文件下的 extra_model_paths.yaml.example 文件,将后缀.example 删除,然后右键用记事本打开。 目前安装 ComfyUI 的方法有在本地安装和在云端安装两种,本部分主要介绍本地安装方法,包括命令行安装和安装包安装。命令行安装普适性最强但有一定门槛,ComfyUI 的源码地址在 https://github.com/comfyanonymous/ComfyUI ,安装方法写在了 Readme 中。安装包安装比较简单,下载就能用。ComfyUI 的官方安装包下载地址是 https://github.com/comfyanonymous/ComfyUI/releases ,目前仅支持 Windows 系统,且显卡必须是 Nivida。
2024-12-05
我想用AI完成一个编程项目,帮我从零到一完成一个个人介绍网站,我现在使用vo.dev完成了一个网站,但是不可以供我使用我上传github后再vercel运行发现会出现404请问我该怎么办
很抱歉,暂时没有关于您所描述问题的相关内容。出现 404 错误通常是由于页面未找到导致的。您可以先检查一下以下几个方面: 1. 确认您在 GitHub 上的代码上传是否完整且正确,包括相关的配置文件和依赖项。 2. 检查 Vercel 的部署设置,确保配置正确,例如域名绑定、环境变量等。 3. 查看服务器的日志,以获取更详细的错误信息,从而确定问题的具体原因。 希望这些建议能对您有所帮助,如果问题仍未解决,建议您进一步查阅相关的技术文档或向技术社区寻求帮助。
2024-12-19
Coze代码测试成功,运行示例时报错
关于您提到的 Coze 代码测试成功但运行示例时报错的问题,以下是相关的信息和可能的解决办法: 图片生成方面:理想生成图片只实现了一次,其他几次生成文字加链接,链接需点进去查看且图片需渲染或加载,无互动趣味性,增加等待时间。因为默认返回的是 markdown 格式,微信不支持 markdown 格式,可在 github 上搜索 nicecoze 插件,基于 cow,把 markdown 转换为图片消息。 模型配置方面:Coze 里面模型配置用的 GPT4o,程序运行调用的是 GPT3.5 Turno。这是因为没有查询到 4o 的 token 计算方式,所以采用 3.5 的,但依然使用的是 GPT4o,只是 token 计算方式用的 3.5。 插件功能方面:Coze 加入了插件 Data Analysia(数据分析)、Browser 和 GPT4v 互动过程无法实现功能。这需要在 coze 里进行鼓捣,和 cow 的 config 无关。 外层 bot 方面:在外层 bot 进行运行时容易出现报错,暂时无法确定原因,猜测可能是外层 bot 的并发不够稳定,不如直接在工作流编辑面板中获取精度结果。如果自行实验时多次报错且无法定位问题原因,不要急着怪自己,相关 bug 已提交给 Coze 团队,希望能加紧优化。
2024-11-19
本地运行Llama3需要的电脑是什么配置的?
本地运行 Llama3 所需电脑配置的相关信息如下: 1. 安装 Docker Desktop: 点击/复制到浏览器下载:https://docs.docker.com/desktop/install/windowsinstall/ 。 下载后,双击下载项目,出现相关界面点击 ok 开始加载文件。注意下载相对较快,完成后不要点击“close and restart”,以免导致 llama3 下载中断。等待终端的模型下载完成后再点击重启。 重启后,点击“Accept”,选择第一个,点击“Finish”。 然后会提示注册账号,若打不开网页,可能需要科学上网。按照正常流程注册账号并登录 Docker 即可。 2. 下载 Llama3 模型: 打开终端。如果是 Windows 电脑,点击 win+R,输入 cmd 点击回车;如果是 Mac 电脑,按下 Command(⌘)+ Space 键打开 Spotlight 搜索,输入“Terminal”或“终端”,然后从搜索结果中选择“终端”应用程序。 复制相关命令行,粘贴进入并回车,会开始自动下载,文件下载较慢,可同时进行安装 Docker 的步骤。 3. 下载 Open WebUI: 回到桌面,再打开一个新的终端窗口。如果是 Windows 电脑,点击 win+R,输入 cmd 点击回车;如果是 Mac 电脑,按下 Command(⌘)+ Space 键打开 Spotlight 搜索,输入“Terminal”或“终端”,然后从搜索结果中选择“终端”应用程序。 将相关命令输入,等待下载。 点击或复制相关地址进入浏览器,进行注册登录。 登入后,点击顶部的 Model,选择“llama3:8b”。 需要注意的是,模型的回复速度取决于您电脑的配置。另外,您还可以参考开源项目 。同时,有教程提到可以通过购买算力解决本地电脑配置不够的问题,但需要充值 50 元。
2024-11-14
coze 是否可以通过LLM生成python代码运行查询excel表格信息?
在 Coze 中,可以通过以下步骤实现相关操作: 1. 进入 Coze,点击「个人空间 工作流 创建工作流」,打开创建工作流的弹窗。 2. 根据弹窗要求,自定义工作流信息,点击确认完成工作流的新建。 3. 新建后的编辑视图与功能中,左侧「选择节点」模块根据子任务需要,实际用到的有: 插件:提供一系列能力工具,拓展 Agent 的能力边界。如本案例中的思维导图、英文音频,无法通过 LLM 生成,需依赖插件实现。 大模型:调用 LLM,实现各项文本内容的生成。如本案例中的中文翻译、英文大纲、单词注释等依赖大模型节点。 代码:支持编写简单的 Python、JS 脚本,对数据进行处理。 4. 编辑面板中的开始节点、结束节点,分别对应分解子任务流程图中的原文输入和结果输出环节。 5. 按照流程图,在编辑面板中拖入对应的 LLM 大模型、插件、代码节点,即可完成工作流框架的搭建。 需要注意的是,因为前面需要对多维表格操作,所以要先在 http://open.feishu.cn 上建一个飞书机器人,并添加知识库或多维表格编辑权限,具体可参考飞书文档。
2024-10-16
手机怎么运行ai模型
以下是在手机上运行 AI 模型的方法: 1. AnLinux 安装:AnLinux 是一个能让安卓手机或平板电脑变身为小型 Linux 电脑的工具,有条件可自行下载 termux,软件地址为 https://github.com/EXALAB/AnLinuxApp,也可选择安装包自行安装,如 file:apprelease.apk 。 2. termux 安装:termux 是一款基于 Android 平台的开源终端模拟器,可使用手机操作相关命令以跑通大模型。有条件可自行下载,软件地址 https://termux.dev/en/ ,也可选择安装包自行安装,如 file:termuxapp_v0.118.0+githubdebug_arm64v8a.apk 。 此外,Phi3mini 是微软发布的一个小语言模型,有 38 亿参数,能在端侧流畅运行。可以使用开源工具 Ollama,从官网下载安装包后一路点下一步进行安装。之后打开终端,运行“ollama run phi3”系统就会自动下载 Phi3 并安装。还可以通过套一层 Web UI 解决终端里给出答案无法格式化 markdown 的内容,如开源社区的 Open WebUI 就可以与 Ollama 无缝集成。相关链接:Ollama.https://ollama.com Open WebUI.https://github.com/openwebui/openwebui 。 更多报道介绍: 微软发布 Phi3,性能超 Llama3,可手机端运行 https://mp.weixin.qq.com/s/kb_gfaYkXiW_cR22K2bX9g 微软发布 Phi3 Mini:3.8B 参数小到能塞进手机,性能媲美 GPT3.5 https://mp.weixin.qq.com/s/lfDqYBLTaZ5D4IUW18NJQ 微软的 SLMs 之路:对 Phi3 的看法&使用体验 https://mp.weixin.qq.com/s/wnAeBG5AYPCkpMNtlF1IQ Phi3:小模型,大未来!(附魔搭社区推理、微调实战教程) https://mp.weixin.qq.com/s/pgvt5m4JnpX3kCkVI_wK8g 大语言模型的深度比较:Mixtral 8x22B、Llama 3 与 Phi3 https://mp.weixin.qq.com/s/KiXKc_Xbs5g0XMhF96ICEA 在 Macbook 上运行 Phi3 https://mp.weixin.qq.com/s/akoUNFJe8gAlC5xLI8vlIw
2024-09-30