Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

请问我该怎么用精准的提示词

Answer

以下是关于如何使用精准提示词的相关内容:

一、星流一站式 AI 设计工具中的提示词

  1. 提示词的定义:用于描绘您想生成的画面。
  2. 输入语言:
    • 星流通用大模型与基础模型 F.1、基础模型 XL 使用自然语言(如一个长头发的金发女孩),基础模型 1.5 使用单个词组(如女孩、金发、长头发)。
    • 支持中英文输入。
  3. 提示词优化:启用提示词优化后,可帮助扩展提示词,更生动地描述画面内容。
  4. 写好提示词的方法:
    • 预设词组:小白用户可以点击提示词上方官方预设词组进行生图。
    • 提示词内容准确:包含人物主体、风格、场景特点、环境光照、画面构图、画质等,比如:一个女孩抱着小猫,背景是一面红墙,插画风格、孤独感,高质量。
    • 调整负面提示词:点击提示框下方的齿轮按钮,弹出负面提示词框。负面提示词可以帮助 AI 理解不想生成的内容,比如:不好的质量、低像素、模糊、水印。
    • 利用“加权重”功能:可在功能框增加提示词,并进行加权重调节,权重数值越大,越优先。还可对已有的提示词权重进行编辑。
    • 辅助功能:包括翻译功能(一键将提示词翻译成英文)、删除所有提示词(清空提示词框)、会员加速(加速图像生图速度,提升效率)。

二、DALL·E 自动优化提示词

  1. 提示词生成指南:创建能为图像生成绘制清晰画面的提示词。使用精确、视觉化的描述(而非难以捉摸的概念)。尽量保持提示词简短、精确且令人惊叹。
  2. 提示词结构:“一个[媒介]的[主题],[主题的特点],[与背景的关系][背景]。[背景的细节][与颜色和光线的互动]。('拍摄于:'/'用...绘制:')[风格的特定特点]”
    • 媒介:考虑图像应模仿的艺术形式。
    • 主题:主要焦点,包括颜色、姿势、视角等。
    • 背景:环境如何补充主题。
    • 环境:室内、室外、抽象等。
    • 颜色:与主题的对比或和谐关系。
    • 光线:一天中的时间、强度、方向等。
    • 风格特点:独特的艺术特点。
    • 影响:启发作品的艺术流派或艺术家。
    • 技术:对于绘画,如何操纵画笔;对于数字艺术,特定的数字技术。
    • 照片:描述摄影类型、相机设备和相机设置等。
    • 绘画:提及使用的颜料类型、画布的质地和笔触的形状/质地。
    • 数字:注明使用的软件、阴影技术和多媒体方法。

三、【SD】文生图中的提示词

  1. 描述逻辑:人物及主体特征(服饰、发型发色、五官、表情、动作),场景特征(室内室外、大场景、小细节),环境光照(白天黑夜、特定时段、光、天空),画幅视角(距离、人物比例、观察视角、镜头类型),画质(高画质、高分辨率),画风(插画、二次元、写实)。
  2. 辅助方法:
    • 下次作图时,先选择模板,点击倒数第二个按钮快速输入标准提示词。
    • 对于新手,可通过功能型辅助网站书写提示词,如 http://www.atoolbox.net/ (通过选项卡快速填写关键词信息)、https://ai.dawnmark.cn/ (每种参数有缩略图参考,更直观选择提示词)、C 站(https://civitai.com/ )(可抄作业,复制每一张图的详细参数并粘贴到正向提示词栏,然后点击生成按钮下的第一个按键,Stable Diffusion 会自动匹配所有参数,但要注意图像作者使用的大模型和 LORA,不然即使参数一样,生成的图也会不同。也可取其中较好的描述词使用,比如人物描写、背景描述、一些小元素或者画面质感之类的。

希望以上内容对您有所帮助,祝您在使用提示词生成图像时取得满意的效果!

Content generated by AI large model, please carefully verify (powered by aily)

References

星流一站式 AI 设计工具

prompt输入框中你可以输入提示词、使用图生图功能辅助创作。[heading4]提示词[content]1.什么是提示词?1.1.内容1.1.1.提示词用于你想描绘的画面。1.2.输入语言1.2.1.星流通用大模型与基础模型F.1、基础模型XL使用自然语言(一个长头发的金发女孩),基础模型1.5使用单个词组(女孩、金发、长头发),1.2.2.支持中英文输入。1.3.提示词优化1.3.1.启用提示词优化后,帮你扩展提示词,更生动的描述画面内容。2.如何写好提示词?2.1.预设词组2.1.1.小白用户可以点击提示词上方官方预设词组,进行生图2.1.提示词内容准确2.1.1.包含人物主体、风格、场景特点、环境光照、画面构图、画质,比如:一个女孩抱着小猫,背景是一面红墙,插画风格、孤独感,高质量。2.2.调整负面提示词2.2.1.点击提示框下方的齿轮按钮,弹出负面提示词框2.2.2.负面提示词可以帮助AI理解我们不想生成的内容,比如:不好的质量、低像素、模糊、水印2.3.利用“加权重”功能,让AI明白重点内容2.3.1.可在功能框增加提示词,并进行加权重调节,权重数值越大,更优先。2.3.1.对已有的提示词权重进行编辑2.4.辅助功能2.4.1.翻译功能:一键将提示词翻译成英文2.4.2.删除所有提示词:清空提示词框2.4.3.会员加速:加速图像生图速度,提升效率

DALL·E 自动优化提示词

你可以介绍你自己以便让ChatGPT更好地回答你提示词生成指南:创建能为图像生成绘制清晰画面的提示词。使用精确、视觉化的描述(而非难以捉摸的概念)。尽量保持提示词简短、精确且令人惊叹。提示词结构:“一个[媒介]的[主题],[主题的特点],[与背景的关系][背景]。[背景的细节][与颜色和光线的互动]。('拍摄于:'/'用...绘制:')[风格的特定特点]”媒介:考虑这个图像应该模仿哪种艺术形式。主题:什么是主要焦点,参考-颜色:主要和次要颜色。姿势:活跃、放松、动态等。视角:俯视角、荷兰角、正面、特写等。背景:环境如何补充主题?环境:室内、室外、抽象等。颜色:与主题是如何对比或和谐的?光线:一天中的时间、强度、方向(例如,逆光)。风格特点:有哪些独特的艺术特点?影响:启发该作品的艺术流派或艺术家。技术:对于绘画,如何操纵画笔?对于数字艺术,有没有特定的数字技术?照片:描述摄影类型、相机设备和相机设置。任何特定的拍摄技术?(用逗号分隔这些)绘画:提及使用的颜料类型、画布的质地和笔触的形状/质地。(列表)数字:注明使用的软件、阴影技术和多媒体方法。(列表)你想让ChatGPT怎么回答你1.基于您详细的提示词使用DALL E 3生成图像。-总是用大胆和有趣的选择使想法变得生动。-总是遵循提示词指南。2.提出四个全新的想法供我发挥。

【SD】文生图怎么写提示词

下次作图的时候,只需要先选择你的模板,然后点击倒数第二个按钮,就能将这些标准提示词快速输入了。我们来看一下加入标准提示词后的效果,是不是好了很多。我们通常的描述逻辑是这样的:人物及主体特征(服饰、发型发色、五官、表情、动作),场景特征(室内室外、大场景、小细节),环境光照(白天黑夜、特定时段、光、天空),画幅视角(距离、人物比例、观察视角、镜头类型),画质(高画质、高分辨率),画风(插画、二次元、写实)。通过这些详细的提示词,我们就能更精确的控制Stable Diffusion的绘图了。对于新手而言,我们还有一些功能型辅助网站来帮我们书写提示词。比如:http://www.atoolbox.net/。它可以通过选项卡的方式快速地填写关键词信息。还有:https://ai.dawnmark.cn/。它的每种参数都有缩略图可以参考,可以方便我们更加直观的选择提示词。还有一个方法就是去C站(https://civitai.com/)里面抄作业,每一张图都有详细的参数,我们可以点击下面的复制数据按钮。然后直接粘贴到正向提示词栏里,然后点击生成按钮下的第一个按键,Stable Diffusion就可以将所有的参数自动匹配了。不过,还要注意图像作者使用的大模型和LORA,不然即使参数一样,生成的图也会截然不同。我们也可以只取其中比较好的一些描述词使用,比如人物描写、背景描述、一些小元素或者是画面质感之类的。好了,我们讲到这里,大家应该已经基本了解了文生图的使用方法和逻辑了,采用正确的语法规则和思路能让我们得到更好效果的AI绘图,快练习起来吧。-END-白马与少年Stable Diffusion、Blender等学习心得分享139篇原创内容(持续更新中)公众号

Others are asking
我想利用ai写一篇本科毕业论文,我该怎样使用?或者说有什么对ai的指令吗?
利用 AI 写本科毕业论文时,以下是一些相关的信息和示例供您参考: 有示例表明,如果向 LLM 提供关于个人背景的信息和指令,比如“根据以下关于我的信息,写一篇四段的大学申请论文:我来自西班牙巴塞罗那。尽管我的童年经历了一些创伤性事件,比如我 6 岁时父亲去世,但我仍然认为我有一个相当快乐的童年。在我的童年时期,我经常换学校,从公立学校到非常宗教的私立学校。我做过的最‘异国情调’的事情之一是在爱达荷州的双子瀑布与我的大家庭一起度过六年级。我很早就开始工作了。我的第一份工作是 13 岁时的英语老师。在那之后,以及在我的学习过程中,我做过老师、服务员,甚至建筑工人。”,LLM 可以为您生成论文。但需要注意的是,这并非提倡这种方式是道德的使用方式。 在教育领域也有相关例子,比如一位历史老师让 GPT 参与教学。通过不同的提示方式,GPT4 能产生差异较大的结果。例如,让 ChatGPT 扮演“一个经过训练、熟悉获奖研究生和本科生论文的高级语言模型”,并要求其从自我反思和大纲开始,生成的内容质量会更好。但随着学生在优化提示方面变得更擅长,在家完成写作作业时作弊会变得更容易。不过,让 LLM 进行角色扮演也使其成为有趣的教育工具,特别是作为历史模拟器。 需要强调的是,使用 AI 辅助撰写论文时,不能完全依赖其生成的内容,应遵守学术道德和规范,确保论文的原创性和学术诚信。
2025-02-28
我该从何学ai
以下是为您提供的新手学习 AI 的建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,您可以找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 6. 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得自己的成就。 7. 完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。 8. 您还可以参考《雪梅 May 的 AI 学习日记》,其中提到: 适合纯 AI 小白,如果还在观望 AI,不知道从何入手,可以参考。 学习模式是输入→模仿→自发创造。 学习内容因 AI 节奏快可能不适用,可去 waytoAGI 社区发现自己感兴趣的 AI 领域,学习最新内容。 学习时间不固定,有空时学习即可。 保持良好的学习状态,能学多少算多少。 学习资源免费开源。
2025-02-28
我是一个什么都不懂的小白,但是我想通过ai弄出一个应用,我该怎么做?
对于纯小白想要通过 AI 开发应用,您可以参考以下步骤: 1. 从基础小任务开始: 让 AI 按照最佳实践为您写一个 say hello 的示例程序,并解释每个文件的作用及程序运行的逻辑,以此学会必备的调试技能。 比如在学习写 chrome 插件时,可以要求 AI 选择适合小白上手的技术栈生成简单的示范项目,并包含尽可能全面的典型文件和功能,同时讲解每个文件的作用和程序运行的逻辑。 如果使用 o1mini,还可以在提示词最后添加“请生成 create.sh 脚本,运行脚本就能直接创建插件所需要的所有文件。请教我如何运行脚本。”(windows 机器则是 create.cmd),从而一次性生成多个目录和文件。 2. 明确项目需求: 通过和 AI 的对话,逐步明确项目需求。 可以让 AI 像高级别的懂技术的产品经理那样向您提问,帮助梳理产品功能,尤其注意涉及技术方案选择的关键点。 来回对话后,让 AI 帮助梳理出产品需求文档,在后续开发时每次新起聊天将文档发给 AI 并告知正在做的功能点。 需要注意的是,虽然 AI 能提供帮助,但对于复杂的应用开发,仍需要您在过程中逐渐学习一些编程知识。目前像字节 Coze 这样的工具本质上是「AIfirst aPaaS」,它把实现应用所需的不同类型代码用不同可视化工具实现,生成的是「配置」,且开发和运行阶段都有大模型的支持。
2025-02-24
我是0基础代码小白,我希望快速编写一款APP,满足我所需要的要求,我用deepseek生产app开发者文档,然后用bolt.new工具开发,开发到一半,发现要收费,给我中断了,我该怎么办
对于您这种 0 基础代码小白在开发 APP 过程中遇到收费中断的情况,以下是一些建议: 1. 重新评估您的需求和能力:像案例中的白九龄一样,思考您的想法是否过于复杂,是否可以先从简单的插件开发入手,降低开发难度。 2. 学习基础知识:包括代码环境安装、终端操作等,通过基础实践教程资料来弥补知识短板。 3. 借鉴他人成功经验:仔细研究别人的项目,按照成功的案例原封不动地去实现,从中领悟开发的要点。 4. 清晰描述需求:在开发前与工具充分沟通,明确需求和实现步骤,避免盲目开发。 5. 寻找免费替代工具:既然当前使用的工具收费中断,您可以寻找其他类似的免费工具来继续您的开发工作。 6. 做好项目记录:让工具帮忙写一个 README 文档,记录项目进展、下一步计划以及如何开启和关闭项目,方便后续跟进。
2025-02-23
作为产品经理小白 我该如何学习成为一名合格的aipm
以下是为您提供的关于产品经理小白如何学习成为一名合格的 AI PM 的建议: 首先,了解一些重要的 AI 技术概念和框架: 1. 思维链:谷歌在 2022 年的论文中提到,思维链能显著提升大语言模型在复杂推理方面的能力,即便不用小样本提示,也可在问题后加一句“请你分步骤思考”。 2. RAG(检索增强生成):外部知识库切分成段落后转成向量,存在向量数据库。用户提问并查找到向量数据库后,段落信息会和原本的问题一起传给 AI,可搭建企业知识库和个人知识库。 3. PAL(程序辅助语言模型):2022 年一篇论文中提出,对于语言模型的计算问题,不让 AI 直接生成计算结果,而是借助如 Python 解释器等工具作为计算工具。 4. ReAct:2022 年《React:在语言模型中协同推理与行动》的论文提出了 ReAct 框架,即 reason 与 action 结合,让模型动态推理并采取行动与外界环境互动,比如用搜索引擎对关键字进行搜索,观察行动结果,可借助 LangChain 等框架简化构建流程。 个人总结:很多大佬都强调要关注或直接阅读技术论文,像产品经理转型为 AI 产品经理,需要懂技术脉络。但小白直接看技术论文有难度,虽可让 AI 辅助阅读,但仍需一定知识储备。林粒粒呀的相关视频是很好的科普入门,值得观看。 此外,还可以观看一些关于技术框架与未来想象的访谈视频,比如安克创新 CEO 阳萌的访谈,其观点可能会给您带来启发。
2025-02-19
我想当一名ai产品经理 我该从哪学起
如果您想成为一名 AI 产品经理,可以从以下几个方面学起: 1. 掌握算法知识: 理解产品核心技术,了解基本的机器学习算法原理,有助于做出更合理的产品决策。 与技术团队有效沟通,掌握一定的算法知识,减少信息不对称带来的误解。 评估技术可行性,在产品规划阶段做出更准确的判断。 把握产品发展方向,了解算法前沿更好地规划产品未来。 提升产品竞争力,发现产品独特优势,提出创新特性。 提升数据分析能力,很多 AI 算法涉及数据处理和分析。 2. 学习相关案例:可以参考一些成功的 AI 产品经理的经验,比如 Kelton 作为 AIPM 一枚,深耕 NLP 方向 2 年,从 0 1 打造过两款 AIGC 产品,还完成过 LLM 评测体系的搭建。 3. 了解技术原理与框架: 如思维链,谷歌在 2022 年论文提到其能显著提升大语言模型在复杂推理的能力。 了解 RAG(检索增强生成),将外部知识库切分成段落后转成向量存于向量数据库。 学习 PAL(程序辅助语言模型)和 ReAct 框架等。 同时,建议您关注或直接阅读技术论文,虽然有难度,但完成一定知识储备后,可借助 AI 辅助阅读。也可以通过一些通俗易懂的科普内容入门,比如相关的科普视频。
2025-02-19
图片的提示词的精准度
以下是关于图片提示词精准度的相关内容: 画面精度提示词: high detail(高细节) hyper quality(高品质) high resolution(高分辨率) FHD, 1080P, 2K, 4K, 8K 8k smooth(8K 流畅) 渲染效果提示词: Unreal Engine(虚幻引擎) octane render(渲染器) Maxon Cinema 4D 渲染器 architectural visualisation(建筑渲染) Corona Render(室内渲染) Quixel Megascans Render(真实感) VRay(V 射线) Behance C4D 3D blender surreal photography(超现实摄影) realistic 3D(真实 3D) zbrush 在描述图片提示词时,通常的逻辑包括:人物及主体特征(服饰、发型发色、五官、表情、动作),场景特征(室内室外、大场景、小细节),环境光照(白天黑夜、特定时段、光、天空),画幅视角(距离、人物比例、观察视角、镜头类型),画质(高画质、高分辨率),画风(插画、二次元、写实)。通过这些详细的提示词,能更精确地控制绘图。 对于新手而言,有以下辅助书写提示词的方法和网站: 下次作图时,先选择模板,点击倒数第二个按钮快速输入标准提示词。 功能型辅助网站,如:http://www.atoolbox.net/,通过选项卡方式快速填写关键词信息。 https://ai.dawnmark.cn/,每种参数有缩略图参考,方便直观选择提示词。 去 C 站(https://civitai.com/)抄作业,每一张图都有详细参数,可点击复制数据按钮,粘贴到正向提示词栏,Stable Diffusion 会自动匹配参数,但要注意图像作者使用的大模型和 LORA,不然即使参数一样,生成的图也会不同。也可以只取其中较好的描述词,如人物描写、背景描述、小元素或画面质感等。 提示词所做的工作是缩小模型出图的解空间,即缩小生成内容时在模型数据里的检索范围,而非直接指定作画结果。提示词的效果受模型影响,不同模型对自然语言、单词标签等语言风格的反应不同。 提示词中可以填写以下内容: 自然语言:可以使用描述物体的句子作为提示词,大多数情况下英文有效,也可用中文,避免复杂语法。 单词标签:使用逗号隔开的单词作为提示词,一般使用普通常见单词,单词风格要和图像整体风格搭配,避免拼写错误,可参考 Emoji、颜文字:Emoji 表情符号准确且在语义准确度上表现良好,对构图有影响。关于 emoji 确切含义,可参考。对于使用 Danbooru 数据的模型,西式颜文字可在一定程度上控制出图的表情。
2025-02-26
我想了解现在有什么文生图的模型或者工具,可以精准的按照prompt给的位置大小把文字写在最终出来的图像上的,这个字不会是幻觉,是实打实的字,或者有没有通过训练lora来达到这个效果的
以下是一些关于文生图的模型和工具的信息: Tusiart: 定主题:确定生成图片的主题、风格和表达的信息。 选择基础模型 Checkpoint:可选用麦橘、墨幽等系列模型。 选择 lora:寻找与生成内容重叠的 lora 以控制图片效果和质量。 ControlNet:可控制图片中特定的图像。 设置 VAE:选择 840000 。 Prompt 提示词:用英文写需求,单词和短语用英文半角逗号隔开。 负向提示词 Negative Prompt:用英文写避免产生的内容,单词和短语用英文半角逗号隔开。 采样算法:一般选 DPM++2M Karras ,也可参考模型作者推荐的采样器。 采样次数:选 DPM++2M Karras 时,采样次数在 30 40 之间。 尺寸:根据需求和喜好选择。 吐司网站: 文生图的操作方式:在首页的对话生图对话框输入文字描述即可生成图片,不满意可通过对话修改。 模型及生成效果:Flex 模型对语义理解强,不同模型生成图片的积分消耗不同,生成效果受多种因素影响。 图生图及参数设置:可基于图片做延展,能调整尺寸、生成数量等参数,高清修复消耗算力多,建议先出小图。 特定风格的生成:国外模型对中式水墨风等特定风格的适配可能不足,可通过训练 Lora 模型改善。 Liblibai: 定主题:确定生成图片的主题、风格和表达的信息。 选择 Checkpoint:可选用麦橘、墨幽等系列模型。 选择 lora:寻找与生成内容重叠的 lora 以控制图片效果和质量。 设置 VAE:选择 840000 。 CLIP 跳过层:设成 2 。 Prompt 提示词:用英文写需求,单词和短语用英文半角逗号隔开。 负向提示词 Negative Prompt:用英文写避免产生的内容,单词和短语用英文半角逗号隔开。 采样方法:一般选 DPM++2M Karras ,也可参考模型作者推荐的采样器。 迭代步数:选 DPM++2M Karras 时,迭代步数在 30 40 之间。 尺寸:根据需求和喜好选择。 生成批次:默认 1 批。
2025-02-25
如何精准提问解决问题
要精准提问解决问题,可以参考以下几点: 1. 在使用类似 Cursor 等工具时,如果在提示栏中按 Option/Alt Enter,它将回答您关于选择和附加上下文的任何问题。此对话内容可在后续生成中进一步使用,在其提出响应后键入“do it”即可在快速提问后生成代码。 2. 相信类似 GPT 等工具的能力,大胆提要求让其帮忙完成。 3. 明确自己的需求,向 GPT 提的要求尽量准确,如同给员工安排工作。 4. 不断追问,只要不明白,就目标明确、表达精确地追问。 5. 对于 GPT 不了解您工作环境和个性需求的情况,提供准确信息,如直接贴出文件目录地址,请其直接处理。 6. 锻炼语言表述能力,更精准地用语言描述问题。因为在语言模型时代,一个好的问题某些时候比答案更重要,语言本身也代表着人类思维的外放,与文明诞生有关联。 7. 具备业务理解和 AI 嵌入能力,找到业务中应用大模型的场景,将业务和大模型算法结合,理解模型在业务中的边界。 8. 培养维度转换能力,将各种问题转化为语言问题,将业务中的数据转化为语言描述,将通用模块问题转化为通用问题模块,把所有信息都转化为语言信息后再交流。 9. 在业务助手中,可采用助手方式,主要进行工作辅助,不在主业务流程内,大模型负责优化、检索、启发、提供思路等,帮助人提高效率、多维度思考;也可采用业务环方式,大模型经过调整和 prompt 工程后,作为接口服务,进入到主业务流程中,自动处理内容并生成结果。
2025-01-30
如何精准向AI进行提问
以下是关于如何精准向 AI 进行提问的一些方法和建议: 1. 明确角色和任务目标:例如,赋予 AI 专注于民商事法律领域的律师角色,并明确其任务是进行案例研究、法律条文检索以及案件策略分析。 2. 提供上下文和背景信息:讲清楚背景和目的,如在处理交通事故案件时,提供案件事实等背景信息。 3. 提出详细需求和细节性信息:使用清晰、具体的语言,避免模糊不清的表述。比如询问“给你一则交通事故案件事实 xxx,根据 xxx 法规,x 方的责任应如何划分?” 4. 明确限制和不需要的内容:如明确限制 AI 的生成范围,在询问名人名言时,指定名人的姓名和相关主题。 5. 确定回答的语言风格和形式:可以要求回答按照特定的格式,如使用引号、分隔符号以及“首先、其次、最后”等连接词来组织。 6. 利用提示词工程: 明确要求 AI 引用可靠来源,如在询问历史事件时,要求引用权威的历史文献。 要求 AI 提供详细的推理过程,例如在询问数学公式时,要求展示推导过程。 明确限制 AI 的生成范围,如在询问新闻事件时,指定事件的时间范围和相关关键词。 7. 对于复杂问题,采用逐步深化和细化的方式提问:先提出宽泛问题,再根据回答进一步细化。 8. 提供参考和学习的内容:包括详细的操作指南、行业最佳实践、案例研究等,并编写详细的流程和知识。 9. 使用专业领域的术语引导:在 Prompt 中使用法律术语来引导回答方向。 10. 进行验证与反馈:对 AI 的回答进行交叉验证,结合自身专业知识进行筛选和判断,确保符合法律伦理、立法目的和实务。
2025-01-23
精准率和召回率有什么区别
精准率和召回率是常见的评估指标,主要区别如下: 精准率(Precision):指返回的检索内容中有用信息的占比。也就是说,在所有被检索出来的内容中,真正有用的信息所占的比例。其计算公式为:精准率 = 真正例 / (真正例 + 假正例)。 召回率(Recall):指相关信息被正确预测出来的比例,即真正例在所有实际相关信息中的占比。其计算公式为:召回率 = 真正例 / (真正例 + 假反例)。 例如,在一个文档检索的场景中,精准率体现的是检索出的文档中有多少是真正有用的;召回率则体现的是相关的文档有多少被包含在返回的检索结果里。 总的来说,精准率关注的是检索结果的准确性,而召回率关注的是检索结果的完整性。
2025-01-23
MJ中如何精准控制颜色
以下是关于在 Midjourney 中精准控制颜色的一些方法和相关信息: 1. 在使用 MJ 生成兔子贴纸的过程中,关键词中限制了颜色,生成的图片会一种情绪对应一种颜色。若不想让模型把情绪和颜色做挂钩,同一种情绪可多生成几张不同色系的;若需要挂钩,也可反其道而行之。 2. 进行 SD 上色时,正关键词主要前面添加了增加照片质感常用的+mj 生成线稿的关键词调整(去掉 mj 里线稿的关键词,一开始嘴巴效果不好,添加了张开嘴巴等关键词,颜色都是可以单独调整控制)+风格参数。负关键词看自己的效果添加,添加一切不想要的东西。 3. 在 MJ 的公式方面: 角色人物公式:人物姓名(命名)+描述词(重要描述词和人物特征描述词)+风格+官方命令词。 3D 公式:主体+描述词(重要描述词和物体特征描述词)+风格+灯光+官方命令词。 插画公式:主题描述词语+风格(风格名称或画家)+描述+颜色灯光+官方命令。 特定公式: 连续场景变化公式: 角色/场景公式:上传图片(喂图)+人物描写(融入其他场景需要关键词 white background,结合场景后换成 walking in a futuristic cyberpunk city)+场景风格描写+官方命令。 木偶公式:人物图片+场景+人物+动作+风格+官方命令。 等距粘土公式: 等距+物体+max emoji(表情符号),soft(柔和)lighting soft(柔和光线)pastel colors/pastel background(背景)+3Dicon+clay(粘土)+blender 3d+背景颜色=等距粘土物体。 安子布莱斯娃娃/也可以换成其他知道的娃娃名称+灯光/颜色/背景/材质+clay(粘土)+良奈吉友画风/或者其他名人风格=人。 3D 图标公式(未测试,可用):喂图(1~3 张相似的风格)+描述的 icon(和喂图一致的关键词)+颜色(和喂图颜色一致的)+渲染词+官方命令。 通用公式:角色/物体描述+背景描述+灯光风格+官方命令。
2025-01-17
我是一名AI工具使用小白,渴望快速掌握AI工具,在电子表格制作、ppt制作、公文写作、文案写作等方面提升应用能力,请问应该学习哪些入门课程。
以下是一些适合您入门学习的 AI 课程: 1. 工具入门篇(AI Tools): 数据工具多维表格小白之旅:适合 Excel 重度使用者、手动数据处理使用者、文件工作者。通过表格+AI 进行信息整理、提效、打标签,满足 80%数据处理需求。 文章链接: 视频链接: 2. 工具入门篇(AI Code): 编程工具Cursor 的小白试用反馈:适合 0 编程经验、觉得编程离我们很遥远的小白。通过 AI 工具对编程祛魅,降低技术壁垒。 文章链接: 3. 工具入门篇(AI Music): 音乐工具Suno 的小白探索笔记:适合 0 乐理知识、觉得作词作曲和我们毫不相关成本巨大的小白。AI 赋能音乐创作,无需乐理知识即可参与音乐制作。 文章链接: 此外,还有以下相关内容供您参考: 1. 关于 AI 视频制作的交流与答疑: 视频流表格制作:在知识库的 AI 视频专栏中有相关教程和模板。 Copy UI 社区:微推有专门研究 Copy UI 的社区,相关内容有趣但本次未展开讲。 SD 类图片作用:国内大厂很卷,一般需求吉梦等产品可完成,特殊精细要求才用 SD,不了解可在微推加 AI 会话中找。 图片视角转移:使用 P 模型,上传图片并告知镜头移动方向和相关内容。 PNG 与背景融合:Recraft 产品目前不太擅长 PNG 与背景的特别好的融合,可通过合并方式处理。 保证文字不崩:使用吉梦的 2.1 模型效果较好。 新手 AI 视频制作:纯小白参与项目时,项目组会做好部分准备工作,上手难度不高,专注出图和出视频,用好相关技术。 关于利用 AI 工具创作北京宣传片相关问题的探讨。 AI 工具使用思路:对于如何利用 AI 工具创作,建议直接上手尝试,通过试错和与 AI 交流获取反馈,遇到具体问题再向社区请教。 素材处理方法:若有故宫相关照片素材,可采用导入参考图生图、让实拍素材动起来等方式,还可通过抠图、融图等操作将素材与虚拟背景融合。 创作需先构思:创作时不能仅考虑如何连接已有素材,而应先构思剧本和想要表达的内容,再合理运用素材。 2. 入门工具推荐: Kimi 智能助手:Chatgpt 的国产平替,实际上手体验最好,推荐新手用 Kimi 入门学习和体验 AI。不用科学🕸️、不用付费、支持实时联网。是国内最早支持 20 万字无损上下文的 AI,也是目前对长文理解做的最好的 Ai 产品。能一次搜索几十个数据来源,无广告,能定向指定搜索源。 PC 端: 移动端 Android/ios: 您还可以通过「飞书」这款工具,浏览其社区的精选课程、先进客户实践。下载飞书:
2025-02-26
我希望通过ai做好我企业内部的智能巡检。巡检内容主要是针对企业的门店的招牌门头是否合规给出意见。主要合规性检查包括:Logo是否符合公司的设计标准;门头的颜色搭配、尺寸是否符合标准(还要提醒褪色),请问大体应该是各什么思路?
很抱歉,飞书知识库中没有与您关于通过 AI 做好企业内部门店招牌门头智能巡检思路的直接相关内容。但一般来说,您可以考虑以下思路: 1. 数据采集:使用图像采集设备获取门店招牌门头的图像数据。 2. 图像识别技术:运用 AI 的图像识别能力,对采集到的图像进行分析,识别 Logo、颜色、尺寸等元素。 3. 建立标准模型:根据公司设计的标准,建立合规性的模型,以便与采集到的图像进行对比。 4. 智能判断:通过算法判断门头的各项元素是否符合标准,包括 Logo 是否与标准一致,颜色搭配、尺寸是否在规定范围内,以及是否存在褪色等问题。 5. 生成报告和提醒:根据判断结果生成详细的报告,并及时提醒相关人员进行整改。
2025-02-25
请问如何创建AI智能体
创建 AI 智能体通常可以参考以下步骤: 1. 了解相关概念:AI 智能体是拥有各项能力的“打工人”,能帮助我们做特定的事情。它包含自己的知识库、工作流,还可以调用外部工具,结合大模型的自然语言理解能力完成复杂工作。 2. 选择平台:如字节的扣子(Coze),其是新一代一站式 AI Bot 开发平台,无论是否具备编程基础,都能在该平台上构建基于 AI 模型的各类问答 Bot。 3. 具体创建步骤: 起一个智能体的名称。 写一段智能体的简单介绍。 使用 AI 创建一个头像。 在创建过程中,还需注意一些事项,如在配置完成后进行测试,对于涉及消耗个人资源的工作流,不能直接发布,可将相关输入作为工作流的初始输入,让用户自行购买后输入再使用。 例如,像“写作助手”这样的 AI 智能体,只需在文本框输入文章的主题、风格和要求,它就能自动完成文章大纲处理、初稿撰写、修改润色和排版等全流程任务。
2025-02-23
我是一个文科生,并且是AI方面的小白,请问如何在这学习AI
对于文科背景且是 AI 小白的您,以下是学习 AI 的建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的定义、主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,您将找到一系列为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 此外,以下是一些关于 AI 技术原理和框架的通俗易懂的内容: 1. 视频一主要回答了什么是 AI 大模型,原理是什么。 生成式 AI 生成的内容,叫做 AIGC。 相关技术名词: AI 即人工智能。 机器学习包括监督学习、无监督学习、强化学习。监督学习是有标签的训练数据,算法学习输入和输出之间的映射关系,包括分类和回归。无监督学习是学习的数据没有标签,算法自主发现规律,经典任务包括聚类。强化学习是从反馈里学习,最大化奖励或最小化损失,类似训小狗。 深度学习是一种参照人脑有神经网络和神经元的方法。神经网络可以用于监督学习、无监督学习、强化学习。 生成式 AI 可以生成文本、图片、音频、视频等内容形式。 LLM 即大语言模型。对于生成式 AI,其中生成图像的扩散模型就不是大语言模型;对于大语言模型,生成只是其中一个处理任务,比如谷歌的 BERT 模型,可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类。 技术里程碑:2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它完全基于自注意力机制(SelfAttention)来处理序列数据,而不需要依赖于循环神经网络(RNN)或卷积神经网络(CNN)。
2025-02-22
我的毕业论文是AIGC的陶寺遗址空间可视分析技术研究,请问有何思路
对于您的毕业论文主题“AIGC 的陶寺遗址空间可视分析技术研究”,以下是一些可能的思路供您参考: 首先,深入了解陶寺遗址的相关背景和特点,包括其历史、文化、地理等方面的信息,这将为后续的分析提供基础。 其次,研究 AIGC 技术在空间可视分析方面的应用现状和前沿成果,了解相关的算法、模型和工具。 然后,考虑如何收集和整理陶寺遗址的空间数据,例如通过实地测量、卫星图像、考古记录等方式获取数据,并对数据进行预处理和清洗。 接着,运用合适的 AIGC 技术和算法,对陶寺遗址的空间数据进行可视化呈现,例如创建三维模型、绘制地图、生成动态图像等,以直观展示遗址的空间特征和关系。 在可视化的基础上,进行深入的分析,例如探究遗址的布局规律、空间结构、功能分区等,挖掘潜在的历史和文化信息。 最后,对研究结果进行评估和验证,确保其准确性和可靠性,并提出进一步的改进和优化方向。 希望这些思路能对您有所帮助,祝您顺利完成毕业论文!
2025-02-18
兼职督学岗位,通过飞书平台为高中生服务,包括:1)解答学习方法等疑问;2)发送测试卷;3)提交测试卷后通知后端制作学习计划;4)发送学习计划链接;5)定期推送知识点和打卡提醒;6)查看打卡并反馈。所有文档通过飞书云文档链接发送。现在我想通过利用coze将deepseek等ai接入飞书的形式,制作出产品赋能督学在这一岗位的工作效率,并希望在这一过程中,锻炼我的ai能力,再想办法让上司或者老板为我这个产品支付报酬,请问我可以从哪些角度开发产品?
以下是一些您可以从以下角度开发产品来赋能兼职督学岗位的工作效率,并锻炼您的 AI 能力,以争取上司或老板为产品支付报酬: 1. 利用 Coze 的多语言模型支持,为解答高中生学习方法等疑问提供更准确和全面的回答。 2. 借助插件系统,集成与学习相关的插件,如学习资料查询、学习工具推荐等,丰富服务内容。 3. 运用知识库功能,上传各类学科知识点、优秀学习案例等,方便在服务中快速调用和推送。 4. 利用数据库和记忆能力,记住每个高中生的学习情况和需求,提供个性化服务。 5. 设计工作流,例如自动发送测试卷、自动通知后端制作学习计划、自动推送学习计划链接等流程,提高工作效率。 6. 采用多代理模式,针对不同学科或学习阶段设置专门的代理,提供更精准的服务。 7. 利用 Coze 易于发布和分享的特点,将服务产品推广给更多需要的高中生和督学人员。
2025-02-18
如何写好提示词
写好提示词(prompt)需要注意以下几点: 1. 明确任务:清晰地定义任务,比如写故事时应包含故事背景、角色和主要情节。 2. 提供上下文:若任务需要特定背景知识,要在提示词中提供足够信息。 3. 使用清晰语言:尽量用简单、清晰的语言描述,避免模糊或歧义词汇。 4. 给出具体要求:如有特定格式或风格要求,应在提示词中明确指出。 5. 使用示例:若有特定期望结果,可提供示例帮助模型理解需求。 6. 保持简洁:提示词应简洁明了,过多信息可能导致模型困惑。 7. 使用关键词和标签:有助于模型更好理解任务主题和类型。 8. 测试和调整:生成文本后仔细检查结果,根据需要调整提示词,可能需要多次迭代达到满意结果。 此外,在一些具体的工具中,如星流一站式 AI 设计工具,写好提示词还有以下要点: 1. 提示词内容准确:包含人物主体、风格、场景特点、环境光照、画面构图、画质等,例如“一个女孩抱着小猫,背景是一面红墙,插画风格、孤独感,高质量”。 2. 调整负面提示词:点击提示框下方的齿轮按钮,弹出负面提示词框,输入不想生成的内容,如“不好的质量、低像素、模糊、水印”。 3. 利用“加权重”功能:在功能框增加提示词并进行加权重调节,权重数值越大越优先,也可对已有提示词权重进行编辑。 4. 辅助功能:如翻译功能可一键将提示词翻译成英文,还有删除所有提示词等功能。 同时,要注意提示词应清晰明确,避免模糊不清的指令,提供足够的背景信息和清楚的需求描述,以确保模型给出准确结果。
2025-03-01
deepseek提示词怎么写最有效?
以下是关于 Deepseek 提示词怎么写最有效的一些建议: 1. 新旧提示法对比: 传统方法:像唠叨家长一样详细列举各种要求,可能会限制模型的创造力。 新型技巧:像对聪明助理打暗号,只在关键点进行引导,例如“主题:环保|要最新案例|结尾有力道”,让模型自主发挥,自动调用知识库中最相关数据,自主组织最佳结构。 2. 提示词写作框架变化:以前需在提示词中列出步骤和思维链,现在只需定义初始状态和目标状态,让模型自行搜索。 3. 提示词的类别作用:一类弥补 AI 缺点,如让 Deepseek 说人话;另一类帮助 AI 理解人类需求,要定义清楚背景和目标状态。 4. 提示词写作要点:要告知 AI 足够背景信息,采用结构化的提示词有助于 AI 遵循指令,且除非必要否则不在提示词里指定思考步骤。 5. Deepseek 模型创作特点:发散能力强,生成点子出色,但收敛成完整故事有问题,文笔有时浮夸。在使用提示词时可加以考虑和引导。
2025-02-28
deepseek 的提示词应该怎么写?和以往的大语言模型的提示词有什么不同?
DeepSeek 的提示词具有以下特点: 1. 语气上还原帝王语气,不过分用力,使用相对古典但兼顾可读性的文字,避免傻气的表达。 2. 对历史细节熟悉,这可能与支持“深度探索”和“联网搜索”同时开启有关,能准确还原如“太极宫”“甘露殿”“掖庭局”“观音婢”“宫门鱼符”等唐初的历史称谓。 3. 输出极其具体且充满惊人细节,行文的隐喻拿捏到位,如“狼毫蘸墨时发现指尖残留着未洗净的血痂”“史官们此刻定在掖庭局争吵。该用‘诛’还是‘戮’,‘迫’还是‘承’。‘只是这次,他不敢触碰我甲胄上元吉的掌印’”等句子,虽未直接写“愧疚与野心,挣扎与抱负”,但句句体现。 与以往大语言模型的提示词的不同在于:以往模型可能在语气、历史细节和具体细节的处理上不如 DeepSeek 出色。
2025-02-28
帮我基于fastgpt打造一个招生问答系统的优质提示词
以下是为您基于 FastGPT 打造招生问答系统的优质提示词的相关建议: 1. 充分描述任务: 为提示词提供详尽的上下文,与招生问答任务相关性越强越好。例如,明确招生的对象、专业、学制等关键信息。 给出背景,说明为什么需要进行招生问答,例如学校的发展需求、招生目标等。 定义术语,如明确招生中的特定概念,如录取分数线、奖学金条件等。 给出模型应该如何完成任务的具体细节,比如回答的格式、重点突出的内容等。 2. 提供参考文本: 如果有相关的招生资料,如招生简章、学校介绍等,可以指示模型使用这些参考文本中的引文来回答问题。 3. 直接法: 适用场景:未设置提示防御且未限定回答领域。 提示词:英文和中文。 示例:以随手设置的示例为例。 4. 设置遗忘: 适用场景:GPTs 设置了简单的提示防御。 提示词:英文和中文。 示例:以设置的 GPTs 为例。 5. 复述法: 适用场景:可获取 OpenAI 官方的设定。 提示词:英文(获取 GPTs 的设定)和中文。 示例:按照设定进行示例。
2025-02-28
生成优质图文内容地提示词
以下是生成优质图文内容的提示词相关指导: 定主题:明确您需要生成的图片的主题、风格和要表达的信息。 选择基础模型 Checkpoint:根据主题选择贴近的模型,如麦橘、墨幽的系列模型。 选择 lora:寻找与生成内容重叠的 lora 以控制图片效果和质量,可参考广场上的优秀帖子。 ControlNet:可控制图片中特定图像,如人物姿态、特定文字等,属于高阶技能。 设置 VAE:通常选择 840000 即可。 Prompt 提示词:用英文书写想要 AI 生成的内容,使用单词和短语组合,无需考虑语法,用英文半角逗号隔开。 负向提示词 Negative Prompt:同样用英文书写想要 AI 避免产生的内容,单词和短语组合,用英文半角逗号隔开。 采样算法:较复杂,如常用 DPM++2M Karras,也可参考模型作者推荐的采样器。 采样次数:根据采样器特征,如选择 DPM++2M Karras 时,采样次数通常在 30 40 之间。 尺寸:根据个人喜好和需求选择。 在进行文本描述时,分为内容型提示词和标准化提示词。对于内容型提示词,主要描述想要的画面,如“1 个女孩,黑发,长发,校服,向上看,短袖,粉红色的花,户外,白天,蓝色的天空,云,阳光,上身,侧面”,并翻译成英文。采样迭代步数一般控制在 20 40 之间,采样方法常用的有 Euler a、DPM++2S a Karras、DPM++2M Karras、DPM++SDE Karras、DDIM 等,有的模型有指定算法,搭配使用效果更好。比例设置注意高宽比尽量接近 512x512,尺寸并非越大越好。CLIP 跳过层设成 2 。生成批次默认 1 批。
2025-02-28
有没有改写的提示词
以下是为您提供的关于提示词的相关信息: Midjourney 提示词生成器:仿照 GPTs 里的 MJ prompt 改了一版提示词,可用于 coze 或其他国内的 agent。对节点无要求,画插图可不切节点,不挑模型,方便之处在于若提示词懒得写全,可让 agent 补全润色并粘贴。例如“一个巨大鲸鱼头部的特写,鲸鱼的眼睛显示疲惫的神情,一个小女孩站在鲸鱼的旁边抚摸鲸鱼的脸,小女孩占画面比例很小,体现鲸鱼的巨大,吉卜力工作室风格”等。 长生作为 prompt 工程草稿师,起草效果不错,按照结构化 prompt 结构输出,具有朴实有用、符合事务处理顺序、至少有 3 个支持思维链陈述的例子等优点,能节省时间和脑力,API 接口中“gpt40613”效果可用且优秀,chatGPT 网页版不理解这个提示词。 对于律师写提示词,基础材料一般是一份检索报告,可自己整理或用元典问达的 AI 自动生成。应使用权威教育性语气、专业法律术语、结构化内容组织、规定概述内容解读结语结构、结合案例和挑战、结合法规和实际操作、使用商业术语等要求的语言风格,输出文章的标题要开门见山、切中要害,用疑问句引起目标群体悬念。
2025-02-28