Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

deepseek 的提示词应该怎么写?和以往的大语言模型的提示词有什么不同?

Answer

DeepSeek 的提示词具有以下特点:

  1. 语气上还原帝王语气,不过分用力,使用相对古典但兼顾可读性的文字,避免傻气的表达。
  2. 对历史细节熟悉,这可能与支持“深度探索”和“联网搜索”同时开启有关,能准确还原如“太极宫”“甘露殿”“掖庭局”“观音婢”“宫门鱼符”等唐初的历史称谓。
  3. 输出极其具体且充满惊人细节,行文的隐喻拿捏到位,如“狼毫蘸墨时发现指尖残留着未洗净的血痂”“史官们此刻定在掖庭局争吵。该用‘诛’还是‘戮’,‘迫’还是‘承’。‘只是这次,他不敢触碰我甲胄上元吉的掌印’”等句子,虽未直接写“愧疚与野心,挣扎与抱负”,但句句体现。

与以往大语言模型的提示词的不同在于:以往模型可能在语气、历史细节和具体细节的处理上不如 DeepSeek 出色。

Content generated by AI large model, please carefully verify (powered by aily)

References

集合·DeepSeek 提示词方法论

很显然,它的回答是极其优秀的,深入研究,会发现它牛逼在下面几个方面——第一,它首先在语气上还原了一个帝王的语气。而上面其他模型输出尽管表达了意思,但语气完全不对。李世民作为千古一君,绝不可能用上面四家输出结果那样傻的语气说话,而DeepSeek也并没有用力过猛,用相对古典的文字但并没有直接用文言文,体贴地兼顾了可读性。第二,它对历史细节异常熟悉。我猜测这大概率和它支持“深度探索”和“联网搜索”同时开f启有关。“太极宫”、“甘露殿”、“掖庭局”、“观音婢”、“宫门鱼符完全还原了唐初的历史称谓。我特意查了一下,“观音婢”是李世民的长孙皇后的乳名,“掖庭局”是内廷用于史官和其他人员的一个专属机构。"魏徵"我以为是想写“魏征”写错了,后来发现“征”是“徵”的简体字,可以说这个AI非常讲究了。第三,和其他AI泛泛而谈的各种大词不同,Deepseek的输出极其具体而充满惊人的细节。“狼毫蘸墨时发现指尖残留着未洗净的血痂”,“史官们此刻定在掖庭局争吵。该用"诛"还是"戮","迫"还是"承"。“只是这次,他不敢触碰我甲胄上元吉的掌印”这些让画面跃然纸上的句子,每一句都没有写“愧疚与野心,挣扎与抱负”,但每一句都写的是“愧疚与野心,挣扎与抱负”,其中行文的隐喻拿捏非常到位,很高级。

详解:DeepSeek深度推理+联网搜索 目前断档第一

很显然,它的回答是极其优秀的,深入研究,会发现它牛逼在下面几个方面——第一,它首先在语气上还原了一个帝王的语气。而上面其他模型输出尽管表达了意思,但语气完全不对。李世民作为千古一君,绝不可能用上面四家输出结果那样傻的语气说话,而DeepSeek也并没有用力过猛,用相对古典的文字但并没有直接用文言文,体贴地兼顾了可读性。第二,它对历史细节异常熟悉。我猜测这大概率和它支持“深度探索”和“联网搜索”同时开启有关。“太极宫”、“甘露殿”、“掖庭局”、“观音婢”、“宫门鱼符完全还原了唐初的历史称谓。我特意查了一下,“观音婢”是李世民的长孙皇后的乳名,“掖庭局”是内廷用于史官和其他人员的一个专属机构。"魏徵"我以为是想写“魏征”写错了,后来发现“征”是“徵”的简体字,可以说这个AI非常讲究了。第三,和其他AI泛泛而谈的各种大词不同,Deepseek的输出极其具体而充满惊人的细节。“狼毫蘸墨时发现指尖残留着未洗净的血痂”,“史官们此刻定在掖庭局争吵。该用"诛"还是"戮","迫"还是"承"。“只是这次,他不敢触碰我甲胄上元吉的掌印”这些让画面跃然纸上的句子,每一句都没有写“愧疚与野心,挣扎与抱负”,但每一句都写的是“愧疚与野心,挣扎与抱负”,其中行文的隐喻拿捏非常到位,很高级。

详解:DeepSeek深度推理+联网搜索 目前断档第一

很显然,它的回答是极其优秀的,深入研究,会发现它牛逼在下面几个方面——第一,它首先在语气上还原了一个帝王的语气。而上面其他模型输出尽管表达了意思,但语气完全不对。李世民作为千古一君,绝不可能用上面四家输出结果那样傻的语气说话,而DeepSeek也并没有用力过猛,用相对古典的文字但并没有直接用文言文,体贴地兼顾了可读性。第二,它对历史细节异常熟悉。我猜测这大概率和它支持“深度探索”和“联网搜索”同时开启有关。“太极宫”、“甘露殿”、“掖庭局”、“观音婢”、“宫门鱼符完全还原了唐初的历史称谓。我特意查了一下,“观音婢”是李世民的长孙皇后的乳名,“掖庭局”是内廷用于史官和其他人员的一个专属机构。"魏徵"我以为是想写“魏征”写错了,后来发现“征”是“徵”的简体字,可以说这个AI非常讲究了。第三,和其他AI泛泛而谈的各种大词不同,Deepseek的输出极其具体而充满惊人的细节。“狼毫蘸墨时发现指尖残留着未洗净的血痂”,“史官们此刻定在掖庭局争吵。该用"诛"还是"戮","迫"还是"承"。“只是这次,他不敢触碰我甲胄上元吉的掌印”这些让画面跃然纸上的句子,每一句都没有写“愧疚与野心,挣扎与抱负”,但每一句都写的是“愧疚与野心,挣扎与抱负”,其中行文的隐喻拿捏非常到位,很高级。

Others are asking
生成提示词的提示词
以下是关于生成提示词的相关内容: 生成提示词的思路和方法: 可以根据效果好的图片中的高频提示词去反推效果,结合不同字体效果的描述,打包到一组提示词中。提示词给到 AI 后,AI 会根据给定文字的文义,判断适合的情绪风格,然后给出适合情绪的字体和风格描述、情感氛围等,加上一些质量/品质词,形成输出提示词结构。为了让 AI 更能描述清晰风格,可以先给定多种参照举例。 具体操作步骤: 打开 AI 工具的对话框,将相关提示词完整复制粘贴到对话框。推荐使用 ChatGPT 4o。 当 AI 回复后,发送您想要设计的文字。可以仅发送想要的文字,也可以发送图片(适合有多模态的 AI)让 AI 识别和反推。 将 AI 回复的提示词部分的内容复制到即梦 AI。 对生成提示词的一些观点: 提示词生成提示词并非必要,不一定能生成最好的 Prompt 框架,修改过程可能耗时且不一定能修改好,不如花钱找人写。 一句话生成完整符合需求的 Prompt 非常困难,只能大概给出框架和构思,需要更低成本地调整需求和修改 Prompt。 不同生图工具生成提示词的特点: 即使是简短的描述,生成的提示词也非常细节、专业。 会解析需求,找出核心要点和潜在的诠释点,并给出不同的提示词方案。 提示词构建更多在于增强,而不是发散,生成的内容更符合期望。 同时生成中、英双版本,国内外工具通用无压力。 14 款 AI 生图工具实测对比: 本次实测用到的工具包括国内版的即梦 3.0(https://jimeng.jianying.com/aitool/home)、WHEE(https://www.whee.com)、豆包(https://www.doubao.com/chat)、可灵(https://app.klingai.com/cn/texttoimage/new)、通义万相(https://tongyi.aliyun.com/wanxiang/creation)、星流(https://www.xingliu.art)、LibiblibAI(https://www.liblib.art),以及国外版的相关工具。
2025-04-20
大模型的系统提示词
大模型的系统提示词主要包括以下方面: 1. 在“五津:一键生成‘摸鱼打工猫’视频”中,针对用户选择的主题和回答,总结用户的创作意图,如“打工猫摸鱼的 2 小时,在巴厘岛能看一场日落”,并根据此生成 4 组体现幽默风趣、以宫崎骏风格描绘主角为摸秋刀鱼橘猫的绘图提示词,以数组形式输出到“tishici”,将用户意图输出到“biaoti”。 2. 在“云中江树:智能对决:提示词攻防中的 AI 安全博弈”中,系统提示词的相关防御措施分为输入侧、模型侧和输出侧三个部分。输入侧可进行意图识别、语义匹配等综合判断用户输入是否恶意;模型侧对于有能力的厂商应增强安全性并平衡性能,开发者则要在开发中带着安全意识优化系统提示词,加入安全引导和禁止内容等;输出侧可使用传统防御和内容过滤手段,并针对大模型特点进行私有数据泄露等检查。此外,还提到间接注入和提示词泄露的情况,间接注入常发生在应用获取依赖外部数据资源时,攻击者通过隐藏恶意指令完成攻击;提示词泄露指试图操纵模型输出获取部分或全部系统提示词,大模型输出内容可分为系统提示词、用户提示和助手提示词三段,通过攻击手段可获取系统提示词。
2025-04-18
你是福州市政府工作人员,中国移动拟邀请福州市委书记参加中国移动人工智能生态大会并致辞,该大会是第八届数字峰会的组成部分,需要撰写市委书记的致辞稿,需要中国移动准备哪些素材,请告诉我提示词
以下是为您整理的相关内容: 《促进创新的人工智能监管方法》:包含了关于通用人工智能价值链、相关案例研究以及对人工智能监管框架的探讨等内容。 陶力文律师关于律师写好提示词用好 AI 的方法:包括初始化的欢迎语、遵循的规则、获取案例洞察报告和目标群体、输出纲要和写作方案、根据用户反馈调整等流程。 开幕式主持稿:涉及基地代表发言的时间、主题、物料配合和人员配合等信息。 但这些素材似乎与为中国移动准备市委书记致辞稿所需的素材关联不大。一般来说,为撰写市委书记在中国移动人工智能生态大会上的致辞稿,中国移动可能需要准备以下素材: 1. 本次大会的详细介绍,包括主题、目标、议程安排等。 2. 中国移动在人工智能领域的发展成果、战略规划和未来愿景。 3. 中国移动人工智能生态的构建情况,如合作伙伴、合作项目等。 4. 本次大会在第八届数字峰会中的地位和作用。 5. 相关行业的人工智能发展现状和趋势。 6. 福州市在人工智能领域的发展情况和与中国移动合作的展望。
2025-04-18
调教ai的利器,提示词工程
提示词工程是调教 AI 的重要手段,以下是关于提示词工程的相关知识: 作用:避免 AI 掉入“幻觉”陷阱,引导 AI 生成更可靠的内容。 原理:AI 对提示词的理解能力与幻觉的产生密切相关,清晰、具体的提示词能帮助其更好地理解意图,减少错误。 技巧: 明确要求 AI 引用可靠来源,如在询问历史事件时要求引用权威文献,询问科学事实时要求引用科研论文,询问法律条款时要求引用官方文件。 要求 AI 提供详细的推理过程,如询问数学公式时展示推导过程,询问代码功能时逐行解释含义。 明确限制 AI 的生成范围,如询问名人名言时指定名人姓名和相关主题,询问新闻事件时指定时间范围和关键词。 通过这些清晰、具体、有针对性的提示词技巧,可以引导 AI 生成更准确和可靠的内容。但提示词工程只是辅助手段,从根本上解决 AI 幻觉问题还需从数据、模型、训练方法等多方面努力。 提示词工程就像与博学但有点固执的老教授交流,精心设计输入文本能引导 AI 更好地理解需求并给出更准确有用的回答。比如,问“请用简单的语言,为一个 10 岁的小朋友解释什么是人工智能,并举一个生活中的例子”,AI 更可能给出通俗易懂的解释。 在使用 AI 工具的过程中,可能会出现答非所问、回答格式不标准等问题,为让 AI 更好地服务,需要学习提示词工程。当用户的需求接近 AI 真实范围时,可通过写提示词甚至创建 BOT 来优化使用效果。
2025-04-15
提示词
提示词是让 AI 听懂您的需求并生成想要画面的关键。 基础公式(新手必学):景别+运镜+主体+动作+风格。示例:特写镜头|镜头旋转|发光水晶球悬浮|星尘特效|赛博朋克风格。 进阶公式(提升质感):景别+运镜+主体(细节)+动作(速率)+场景(层次)+氛围+光影。示例:全景俯拍|无人机跟拍|雪山湖泊(镜面倒影)|慢动作|冷色调光线|自然纪录片风格。 在星流一站式 AI 设计工具中,prompt 输入框可输入提示词,使用图生图功能辅助创作。 提示词用于描绘您想生成的画面,支持中英文输入。不同模型对输入语言有不同要求,如通用大模型与基础模型 F.1、基础模型 XL 使用自然语言,基础模型 1.5 使用单个词组。 写好提示词要做到: 1. 内容准确,包含人物主体、风格、场景特点、环境光照、画面构图、画质等,比如:一个女孩抱着小猫,背景是一面红墙,插画风格、孤独感,高质量。 2. 调整负面提示词,点击提示框下方的齿轮按钮,弹出负面提示词框,负面提示词可帮助 AI 理解不想生成的内容,如不好的质量、低像素、模糊、水印。 3. 利用“加权重”功能,让 AI 明白重点内容,可在功能框增加提示词,并进行加权重调节,权重数值越大,越优先。还可对已有的提示词权重进行编辑。 4. 借助辅助功能,如翻译功能可一键将提示词翻译成英文,还有删除所有提示词、会员加速等功能。 如果您接触过大量提示工程相关的示例和应用,会注意到提示词由一些要素组成,包括指令(想要模型执行的特定任务或指令)、上下文(包含外部信息或额外的上下文信息,引导语言模型更好地响应)、输入数据(用户输入的内容或问题)、输出指示(指定输出的类型或格式)。但提示词所需的格式取决于想要语言模型完成的任务类型,并非所有要素都是必须的。
2025-04-15
如何成为提示词工程师
提示词工程师是在与人工智能模型交互时,负责设计和优化提示的专业人员,旨在通过精心构造的提示引导模型产生准确、有用和相关的回答。 其主要职责包括: 1. 设计提示:根据用户需求和模型能力设计有效的提示,考虑提示的长度、结构、措辞和信息量等因素,以清晰传达用户意图并引导模型生成满意结果。 2. 优化提示:通过收集用户反馈、分析模型结果和实验不同的提示策略等方式不断优化提示,提高模型性能。 3. 评估提示:使用各种指标如模型的准确率、流畅度和相关性等来评估提示的有效性。 提示词工程师需要具备以下技能和知识: 1. 领域知识:对所工作的领域有深入了解,以便设计出有效的提示。 2. 自然语言处理(NLP):了解 NLP 的基本原理和技术,能够理解和生成自然语言文本。 3. 人工智能(AI):了解 AI 的基本原理和技术,以便理解和使用 AI 模型。 4. 沟通能力:具备良好的沟通能力,与用户、团队成员和其他利益相关者有效沟通。 以下是一些提示词工程师工作的实际案例,比如在市场营销类和商业类中,有自动优化 Prompt 的案例,如 JackeyLiu 熟悉的转化步骤包括: 1. 角色和能力:基于问题思考 chatGPT 最适合扮演的角色,应是该领域最资深的专家,适合解决问题。 2. 上下文说明:思考提出问题的原因、背景和上下文。 3. 任务陈述:基于问题进行陈述。 提示词工程师是一个新兴职业,随着人工智能技术的不断发展,对其需求将会越来越大。
2025-04-15
deepseek官方教程
以下是关于 DeepSeek 的官方教程相关信息: 火山方舟 DeepSeek 申请免费额度教程,包含多种 API 使用方式,如飞书多维表格调用、Coze 智能体调用、浏览器插件调用。可以使用邀请码 D3H5G9QA,通过邀请链接 https://www.volcengine.com/activity/deepseek?utm_term=202502dsinvite&ac=DSASUQY5&rc=D3H5G9QA 邀请可拿 3000 万 tokens,畅享 671B DeepSeek R1,活动截止至北京时间 20250218 23:59:59。同时,火山方舟大模型服务平台的模型服务计费文档有更新,DeepSeekR1、V3 模型分别提供了 50 万免费额度和 API 半价活动。 有关于一线教师的 AI 需求与高效工具推荐,如让模型创作诗歌、生成宣传标语、提示库(https://apidocs.deepseek.com/zhcn/promptlibrary)、代码解释、内容分类、角色扮演(自定义人设)、散文写作、文案大纲生成、模型提示词生成等。 2 月 14 日的社区动态中,有《突破 DeepSeek R1 能力天花板,火山引擎扣子+飞书一站式企业解决方案》《羊毛快薅|字节火山上线了 DeepSeek 系列模型并悄悄更改了模型服务价格...》等内容,还附上了飞书多维表格、Coze 的接入使用方法等。此外,还有关于 DeepSeek 关键 9 篇论文及创新点的讲解,以及 DeepSeek 官方发布的 R1 模型推荐设置。
2025-04-15
我想让DEEPSEEK帮我写一篇论文,题目已经定好了,怎么给他输入指令
以下是给 DeepSeek 输入指令以帮助您写论文的一些建议: 1. 采用结构化提示词: 优先保留专业领域术语和技术词汇,这些术语通常具有高信息价值。 对不同类型的信息设置权重,按优先级排序:任务定义>关键约束>专业术语>定量信息>方法论>背景。 以完整语义单元为基本保留单位,而非单个词语,确保压缩后的内容仍保持语义完整性。 避免详细指导思考过程,让模型自主生成思维链。 2. 高阶能力调用: 文风转换矩阵:例如“用鲁迅杂文风格写职场 PUA 现象”“将产品说明书改写成《史记》列传格式”“把这篇论文摘要翻译成菜市场大妈能听懂的话”。 领域穿透技术:如行业黑话破解“解释 Web3 领域的'胖协议瘦应用'理论”。 3. 场景化实战策略: 创意内容生成。 技术方案论证。 4. 效能增强技巧: 对话记忆管理:包括上下文锚定(如“记住当前讨论的芯片型号是麒麟 9010”)、信息回溯(如“请复述之前确认的三个设计原则”)、焦点重置(如“回到最初讨论的供应链问题”)。 输出质量控制:针对过度抽象、信息过载、风格偏移等问题,使用相应的修正指令。 5. 特殊场景解决方案: 长文本创作:可采用分段接力法,如“先完成故事大纲→逐章扩展→最后进行伏笔校验”“确保新章节与前文的三处细节呼应”。 敏感内容处理:使用概念脱敏法(如“用经济学原理类比说明网络审查机制”)或场景移植法(如“假设在火星殖民地讨论该议题”)。 在输入指令时,您需要清晰明确地描述论文的题目、研究目的、主要论点、关键论据、期望的结构和风格等重要信息,以便 DeepSeek 能够为您生成符合要求的内容。
2025-04-14
coze搭建工作流调用deepseek如何把模型的输出存入到多维表中
以下是将模型的输出存入到多维表中的步骤: 1. 逐步搭建 AI 智能体: 搭建整理入库工作流。 设置大模型节点提取稍后读元数据,使用 MiniMax 6.5s 245k,设置最大回复长度至 50000,以确保能完整解析长内容网页。 进行日期转时间戳,后续的飞书多维表格插件节点在入库日期字段时只支持 13 位时间戳,需要使用「日期转时间戳time_stamp_13」插件进行格式转化。 把稍后读元数据转换为飞书多维表格插件可用的格式,飞书多维表格插件目前(2024 年 08 月)只支持带有转义符的 string,以 Array<Object>格式输入,所以必须将之前得到的元数据数组进行格式转换。 添加「飞书多维表格add_records」插件,只需要设置{{app_token}}与{{records}}参数,将元数据写入飞书表格。 2. 搭建 Coze 工作流: 打开 Coze 的主页,登录后,在【工作空间】创建一个智能体。 在编排页面,给智能体编辑好人设,可先写一个简单的,然后点右上角自动优化,系统会自动补全更精细的描述。点击工作流的+,创建一个工作流。 大模型节点把 input 给到 DeepSeek,让 DeepSeek 按照提前规定的输出框架生成对应文案。 生图节点将输出给到图像生成组件画图。 结束输出时,两个输出给到最终的 end 作为最终的输出。注意在编写系统提示词时,如果需要 input 可被 DeepSeek 调用,需要用{{input}}作为参数引入,不然大模型不知道自己需要生成和这个 input 相关的结果。编排完,点击【试运行】,调试至满意后点击发布。
2025-04-14
Deepseek自动生成网站前端页面
以下是关于 DeepSeek 自动生成网站前端页面的相关内容: DeepSeek v3 能力更新后虽能生成炫目的前端页面,但多为静态且实用性有限。可结合飞书多维表格将生成的漂亮前端变为真实的系统,如【智能作业分发系统】。 该系统整体包括用户登陆(可加飞书调查表二维码实现注册)、作业类型、作业详情(含连连看游戏、AI 智能问答、考试系统)。其实现逻辑为用户登陆系统后进入页面看到老师分配的作业分类,选择分类进入作业详情页面,详情页有学习单词发音及三个模块。 对于小白,可用飞书作数据源,通过飞书 API 接口获取内容,用 DeepSeek v3 制作前端+后端(用 Trae 更方便)。获取请求参数时,测试成功后的示例代码中有完整的请求参数和请求体可直接复制使用。创建前后端时,若用 DeepSeek 官网搭建需按代码目录结构创建对应文件(用 Trae 可省略),首次运行可能遇到飞书 API 未正确配置 CORS 导致浏览器拦截请求的问题,V3 会给出修改意见。 此外,Same dev 能像素级复制任意 UI 界面并生成前端代码,支持多种文件格式和技术栈代码,但免费额度消耗快,网站被谷歌标记。360 智脑复现了 DeepSeek 强化学习效果并发布开源模型 LightR114BDS。 AI 时代生存法则:会提需求比会写代码更重要,会开脑洞比会复制粘贴更值钱,真正的大佬都是让 AI 当乙方!
2025-04-13
deepseek写论文
以下是关于 DeepSeek 在不同方面应用的相关信息: 应用场景:包括脑爆活动方案、会议纪要、批量处理客户评论、分析总结复盘内容、生成专业软件使用过程、写小说框架、写论文、写文案、写小红书笔记、写周报、做设计头脑风暴、做网站、分析感情问题等。 优势与不足:在写文方面全面领先,但长文可能太发散、文风用力过猛导致审美疲劳,且模型多样性不够,相同 prompt 提问多次答案雷同。 应对策略:写理性文章时,可先与 DeepSeek 讨论思路,再用 Cloud 3.5 批量生成;用 O1 模型对创作的字数控制有一定效果,也可通过多轮对话让 AI 增删改查来调整字数。 创作相关:模仿特定小说家的文学方式创作小说,需在提示词中描述文风特征;邀请大家在腾讯频道发布用 AI 写的小说并鉴赏。 发展历程:DeepSeek 历时 647 天在大语言模型(LLM)领域取得突破,发布 13 篇论文。谷歌 CEO 坦言 Deep Seek 的突破标志着 AI 的全球化进程。
2025-04-13
使用Deepseek写论文有哪些固定指令模板
以下是使用 DeepSeek 写论文的一些指令模板: 1. 进阶控制技巧: 思维链引导: 分步标记法:请逐步思考:1.问题分析→2.方案设计→3.风险评估 苏格拉底式追问:在得出最终结论前,请先列举三个可能存在的认知偏差 知识库调用: 领域限定指令:基于 2023 版中国药典,说明头孢类药物的配伍禁忌 文献引用模式:以 Nature 2022 年发表的论文为参考,解释 CRISPRCas9 最新突破 多模态输出 2. 高级调试策略: 模糊指令优化: 问题类型:宽泛需求 修正方案:添加维度约束 示例对比:原句:“写小说”→修正:“创作以 AI 觉醒为背景的悬疑短篇,采用多视角叙事结构” 问题类型:主观表述 修正方案:量化标准 示例对比:原句:“写得专业些”→修正:“符合 IEEE 论文格式,包含 5 项以上行业数据引用” 迭代优化法: 首轮生成:获取基础内容 特征强化:请加强第三段的技术细节描述 风格调整:改用学术会议报告语气,添加结论部分 最终校验:检查时间逻辑一致性,列出可能的事实性错误 3. 核心原理认知: AI 特性定位: 多模态理解:支持文本/代码/数学公式混合输入 动态上下文:对话式连续记忆(约 8K tokens 上下文窗口,换算成汉字是 4000 字左右) 任务适应性:可切换创意生成/逻辑推理/数据分析模式 系统响应机制: 采用意图识别+内容生成双通道 自动检测 prompt 中的:任务类型/输出格式/知识范围 反馈敏感度:对位置权重(开头/结尾)、符号强调敏感 4. 基础指令框架: 四要素模板 格式控制语法: 强制结构:使用```包裹格式要求 占位符标记:用{{}}标注需填充内容 优先级符号:>表示关键要求,!表示禁止项 5. 高阶能力调用: 文风转换矩阵: 作家风格移植:“用鲁迅杂文风格写职场 PUA 现象” 文体杂交:“将产品说明书改写成《史记》列传格式” 学术口语化:“把这篇论文摘要翻译成菜市场大妈能听懂的话” 领域穿透技术:行业黑话破解→“解释 Web3 领域的‘胖协议瘦应用’理论” 商业决策支持 6. 场景化实战策略: 创意内容生成 技术方案论证 7. 效能增强技巧: 对话记忆管理: 上下文锚定:“记住当前讨论的芯片型号是麒麟 9010” 信息回溯:“请复述之前确认的三个设计原则” 焦点重置:“回到最初讨论的供应链问题” 输出质量控制: 问题类型:过度抽象 修正指令:“请具体说明第三步操作中的温度控制参数” 问题类型:信息过载 修正指令:“用电梯演讲格式重新组织结论” 问题类型:风格偏移 修正指令:“回归商务报告语气,删除比喻修辞” 8. 特殊场景解决方案: 长文本创作: 分段接力法:“先完成故事大纲→逐章扩展→最后进行伏笔校验”“确保新章节与前文的三处细节呼应” 敏感内容处理: 概念脱敏法:“用经济学原理类比说明网络审查机制” 场景移植法:“假设在火星殖民地讨论该议题”
2025-04-13
gpt4o图像生成提示词有哪些
以下是一些 GPT4o 图像生成的提示词示例: 1. 将这张图更改为蓝色氛围,星星图标改为魔法棒图标,同时将里面文案描述的主题改为其他的。 2. 帮我生成一张这样的 UI 设计稿:Peerlist 邀请链接界面分析,界面内容。 3. 一张逼真的照片,描绘了一匹马在宁静的海洋表面从右向左奔驰,准确地描绘了飞溅的水花。 Realistic photograph of a horse galloping from right to left across a vast,calm ocean surface,accurately depicting splashes,reflections,and subtle ripple patterns beneath their hooves.Exaggerate horse movements but everything else should be still,quiet to show contrast with the horse's strength.clean composition,cinematographic.A wide,panoramic composition showcasing a distant horizon.Atmospheric perspective creating depth.zoomed out so the horse appears minuscule compared to vast ocean.horse is right at the horizon where ocean meets sky.use rule of thirds to position horse.size of horse is 1% size of entire image because camera is so far away from subject.camera view is super close to the ground/ocean like a worm's eye view.horse is galloping right where ocean meets the sky 4. 生成一张 2006 年夏天的周六多伦多农夫市场的逼真照片,那天是六月的美好时光,人们在购物和吃三明治。焦点应是一个穿着牛仔工装裤、啜饮草莓香蕉奶昔的年轻亚洲女孩——其余部分可以模糊。照片应让人联想到 2006 年的数码相机拍摄的效果,带有像打印照片一样的日期和时间戳。画幅比例应为 3:2
2025-04-11
常用的提示词有哪些?
以下是一些常用的提示词: AI 绘画方面: 画面构图提示词:Chest Shot脸部特写。 情绪和氛围提示词:moody 暗黑的、happy 鲜艳的/浅色的、dark 黑暗的、epic detail 超细节的、Brutal 残酷的/破碎的、dramatic contrast 强烈对比的、hopeful 充满希望的、anxious 焦虑的、depressed 沮丧、elated 高兴地、upset 难过的、fearful 令人恐惧的、hateful 令人憎恨的、happy 高兴、excited 兴奋、angry 生气、afraid 害怕。 【SD】文生图方面: 正向提示词:, drawing, paintbrush。 反向提示词:NSFw, 。 星流一站式 AI 设计工具方面: 提示词用于描绘想生成的画面,输入语言支持中英文。星流通用大模型与基础模型 F.1、基础模型 XL 使用自然语言(如一个长头发的金发女孩),基础模型 1.5 使用单个词组(如女孩、金发、长头发)。 写好提示词的要点包括:内容准确,包含人物主体、风格、场景特点、环境光照、画面构图、画质,如一个女孩抱着小猫,背景是一面红墙,插画风格、孤独感,高质量;调整负面提示词,可点击提示框下方的齿轮按钮,负面提示词能帮助 AI 理解不想生成的内容,如不好的质量、低像素、模糊、水印;利用“加权重”功能,在功能框增加提示词并进行加权重调节,权重数值越大越优先,还可对已有的提示词权重进行编辑。此外,还有一些辅助功能,如翻译功能可一键将提示词翻译成英文,删除所有提示词可清空提示词框,会员加速能提升图像生图速度和效率。小白用户可以点击提示词上方官方预设词组进行生图。
2025-03-22
我是一名短视频创作者,我自身有自己写的现代诗歌,但是因为自己的声音不好,所以想自己制作一个利用网络音频和AI视频来展示我创作的诗歌的coze工作流,但是我对于ai的提示词有很多不明白的地方,您能够给我帮助吗
以下是为您提供的关于利用网络音频和 AI 视频展示诗歌的 Coze 工作流的相关指导: 1. 整体结构和参数配置: 工作流通常包括开始模块、Get_Video 模块、LinkReaderPlugin 模块、标题大模型、内容大模型、图片 Prompt 大模型、文生图 ImageToolPro 模块和输出结果模块等。 每个模块都有其特定的参数配置,例如在开始模块中选择源语言和目标语言等。 2. 标题大模型参数配置: 您需要作为小红书爆款写作专家,根据输入内容产出 3 个标题,采用二极管标题法创作,并善于使用吸引人的特点和爆款关键词,同时要符合小红书平台的标题特性和创作规则。 3. 内容大模型参数配置: 作为小红书爆款写作专家,根据输入内容产出 1 篇正文,每段话包含适当的 emoji 表情,文末有合适的 tag 标签。写作时要注意风格、开篇方法、文本结构、互动引导方法、一些小技巧、爆炸词等,文章尽量口语化、简短,在 200 字左右。 4. 图片 Prompt 大模型参数配置: 作为绘图 Prompt 大师,将输入内容转成 AI 更容易理解的绘画 Prompt。 5. 工作流创建步骤: 点击工作流后面的“+”添加工作流,然后创建工作流。 给工作流起名字和描述,名字只能用字母、数字和下划线,描述要清晰。 初始化工作流后,会生成开始模块和结束模块,左边有各种插件和搭建 Agent 的工具,可根据需要添加和使用。 希望以上内容对您有所帮助,如果您在具体操作过程中还有其他疑问,请随时向我咨询。
2025-03-12
我是一名短视频创作者,我自身有自己写的现代诗歌,但是因为自己的声音不好,所以想自己制作一个利用网络音频和AI视频来展示我创作的诗歌的coze工作流,但是我对于ai的提示词有很多不明白的地方,您能够给我帮助吗
以下是为您提供的关于利用网络音频和 AI 视频展示诗歌的 Coze 工作流的相关指导: 1. 整体结构和参数配置: 工作流通常包括开始模块、Get_Video 模块、LinkReaderPlugin 模块、标题大模型、内容大模型、图片 Prompt 大模型、文生图 ImageToolPro 模块和输出结果模块等。 每个模块都有其特定的参数配置,例如在开始模块中选择源语言和目标语言等。 2. 标题大模型参数配置: 您需要作为小红书爆款写作专家,根据输入内容产出 3 个标题,采用二极管标题法创作,并善于使用吸引人的特点和爆款关键词,同时要符合小红书平台的标题特性和创作规则。 3. 内容大模型参数配置: 作为小红书爆款写作专家,根据输入内容产出 1 篇正文,每段话包含适当的 emoji 表情,文末有合适的 tag 标签。写作时要注意风格、开篇方法、文本结构、互动引导方法、一些小技巧、爆炸词等,文章尽量口语化、简短,在 200 字左右。 4. 图片 Prompt 大模型参数配置: 作为绘图 Prompt 大师,将输入内容转成 AI 更容易理解的绘画 Prompt。 5. 工作流创建步骤: 点击工作流后面的“+”添加工作流,然后创建工作流。 给工作流起名字和描述,名字只能用字母、数字和下划线,描述要清晰。 初始化工作流后,会生成开始模块和结束模块,左边有各种插件和搭建 Agent 的工具,可根据需要添加和使用。 希望以上内容对您有所帮助,如果您在具体操作过程中还有其他疑问,请随时向我咨询。
2025-03-12
写短视频的提示词有哪些比较好用?
以下是一些写短视频提示词的好用方法和示例: Pikadditions 功能: 1. 上传基础视频:点击页面下方的【Pikaddition】按钮,拖拽或点击上传本地视频。若自己没有视频,可在“templates”板块使用官方示例视频做测试。 2. 添加主角图片:点击【Upload Image】上传角色图片文件。 3. 编写视频提示词:若需要参考角色在视频里的相关互动,需在输入框用英文描述期望效果(支持 Emoji 辅助),然后点击生成按钮。 提示词公式参考: 事件驱动句式:As... 空间锁定技巧:使用场景物体作坐标轴,如 on the.../behind the.../from the... 动态呼应原则:角色动作与视频元素联动,如 swaying with.../reacting to.../matching... 美女转绘: 使用麦?的写实模型和墨幽人造人模型,不推荐使用质量词。提示词先使用反推,Deepbooru,借助提示词插件删除无用提示词,保留和画面主体相关的提示词,如人物主体描述、皮肤质感增强、整体细节增强的 Loar。 正向提示词示例:1girl,solo,black_hair,midriff,autolinklora:林鹤皮肤质感调整器差异炼丹功能性 lora 模型_林鹤 v1:0.6autolink 负向提示词示例:NSFW,logo,text,blurry,low quality,bad anatomy SD 新手入门: 根据想画的内容写提示词,多个提示词之间使用英文半角符号。一般概念性、大范围、风格化的关键词写在前面,叙述画面内容的其次,最后是描述细节的。提示词顺序很重要,越靠后权重越低。关键词要具有特异性,措辞越具体越好,可使用括号人工修改提示词的权重。
2025-03-11
提示词有哪些逻辑框架
提示词常见的逻辑框架包括以下方面: 1. Vidu Prompt 基本构成: 提示词基础架构:包括主体/场景、场景描述、环境描述、艺术风格/媒介。在描述时需调整句式和语序,避免主体物过多/复杂、分散的句式,避免模糊术语,使用流畅准确的口语化措辞,避免过度文学化叙述,丰富、准确和完整的描述有助于生成特定艺术风格、满足需求的视频。 提示词与画面联想程度:通过单帧图像示例介绍关系,如基础词“玻璃桌上的咖啡杯,杯子外面写着单词 LOVE”,适度联想扩充为“花园里的透明玻璃桌上的咖啡杯,杯子外面写着单词 LOVE,周围满是盛开的鲜花,和煦的阳光洒满整个花园,Claude Monet,印象派风格”。联想关键点包括具体详实的位置描述/环境描述,可帮助构建画面基本呈现效果,以及艺术风格描述,可进一步提升效果和氛围,统一画面风格。 2. Super Prompt: 来源:在 X 上爆火,有相关链接。 原文包括 prompt、flowchart、结合提示词的思考过程解释等。 提示词结构及作用:个人感受是只给方向的逻辑框架很棒,省 Token,可沿用深化和迭代。 逐句解析包括 META_PROMPT1 的多个部分以及二进制编码部分和 META_PROMPT2 等。最后的灵感来源有参考价值,是指导 LLM 思考逻辑的索引,在有具体应用场景时可针对性引入,抽象规则是指路灯。
2025-02-28
通义千问Qwen2.5-VL、阶跃星辰step-1.5v-mini、Gemini-2.0-Flash,这3个视觉理解大模型哪个最厉害?
以下是对通义千问 Qwen2.5VL 模型的介绍: 版本:有 3B、7B 和 72B 三个尺寸版本。 主要优势: 视觉理解能力:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。 视频理解能力:支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。 万物识别:擅长识别常见物体及分析图像中的文本、图表、图标、图形和布局。 精准的视觉定位:采用矩形框和点的多样化方式对通用物体定位,支持层级化定位和规范的 JSON 格式输出。 全面的文字识别和理解:提升 OCR 识别能力,增强多场景、多语言和多方向的文本识别和文本定位能力。 Qwen 特色文档解析:设计了更全面的文档解析格式,称为 QwenVL HTML 格式,能够精准还原文档中的版面布局。 增强的视频理解:引入动态帧率(FPS)训练和绝对时间编码技术,支持小时级别的超长视频理解,具备秒级的事件定位能力。 开源平台: Huggingface:https://huggingface.co/collections/Qwen/qwen25vl6795ffac22b334a837c0f9a5 Modelscope:https://modelscope.cn/collections/Qwen25VL58fbb5d31f1d47 Qwen Chat:https://chat.qwenlm.ai 然而,对于阶跃星辰 step1.5vmini 和 Gemini2.0Flash 模型,目前提供的信息中未包含其与通义千问 Qwen2.5VL 模型的直接对比内容,因此无法确切判断哪个模型在视觉理解方面最厉害。但从通义千问 Qwen2.5VL 模型的上述特点来看,其在视觉理解方面具有较强的能力和优势。
2025-04-15
目前全世界最厉害的对视频视觉理解能力大模型是哪个
目前在视频视觉理解能力方面表现出色的大模型有: 1. 昆仑万维的 SkyReelsV1:它不仅支持文生视频、图生视频,还是开源视频生成模型中参数最大的支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其具有影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等优势。 2. 通义千问的 Qwen2.5VL:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。擅长万物识别,能分析图像中的文本、图表、图标、图形和布局等。
2025-04-15
目前全世界最厉害的视频视觉理解大模型是哪个
目前全世界较为厉害的视频视觉理解大模型有以下几个: 1. 昆仑万维的 SkyReelsV1:不仅支持文生视频、图生视频,是开源视频生成模型中参数最大且支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其优势包括影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等。 2. 腾讯的混元:语义理解能力出色,能精准还原复杂的场景和动作,如特定品种的猫在复杂场景中的运动轨迹、从奔跑到跳跃的动作转换、琴音化作七彩音符等。 3. Pixverse V3.5:全球最快的 AI 视频生成模型,Turbo 模式下可在 10 秒内生成视频,最快仅需 5 6 秒。支持运动控制更加稳定、细节表现力强、首尾帧生成功能,具备顶尖动漫生成能力。
2025-04-15
目前全世界最厉害的视觉理解大模型是哪个
目前在视觉理解大模型方面,较为突出的有 DeepSeek 的 JanusPro 模型,它将图像理解和生成统一在一个模型中;还有通义千问的视觉理解模型,其价格有较大降幅。此外,Pixverse V3.5 是全球最快的 AI 视频生成模型,在某些方面也展现出了出色的能力。但很难确切地指出全世界最厉害的视觉理解大模型,因为这取决于不同的评估标准和应用场景。
2025-04-15
大模型对话产品的优劣
大模型对话产品具有以下优点: 1. 具有强大的语言理解和生成能力。 2. 能够提供类似恋爱般令人上头的体验,具有一定的“想象力”和“取悦能力”。 3. 可以通过陪聊建立人和 AI 之间的感情连接,产品粘性不完全依赖技术优越性。 4. 能够为用户提供产品咨询服务,适用于有企业官网、钉钉、微信等渠道的客户。 5. 具有多种应用场景,如私有领域知识问答、个性化聊天机器人、智能助手等。 大模型对话产品也存在一些缺点: 1. 存在记忆混乱的问题。 2. AI 无法主动推动剧情,全靠用户脑补,导致用户上头期短,疲劳度高,长期留存低。 3. 无法回答私有领域问题(如公司制度、人员信息等)。 4. 无法及时获取最新信息(如实时天气、比赛结果等)。 5. 无法准确回答专业问题(如复杂数学计算、图像生成等)。
2025-04-14