是的,prompt 的长度会占用 token 数量。
在大型语言模型中,输入的文本会被分词器(tokenizer)拆分成一串 token 序列输入给模型。每个 token 通常对应一个单词或字符串片段。token 的数量就决定了输入序列的长度。
所以,prompt 中包含的每个单词、标点符号等都会被视为一个 token,从而占用 token 数量。
不同的分词器有不同的分词策略和词表,对于同一个 prompt,可能得到不同的 token 数。但总的来说,prompt 越长,占用的 token 数就越多。
很多大模型对输入长度有限制,比如 GPT-3 接受的最大 token 数是 2048。这就要求控制好 prompt 的长度,否则会被截断或产生不准确的结果。
一些技巧可以用来节省 prompt 的 token 数:
总之,prompt 长度对应的 token 数需要根据具体任务合理控制,以在保证效果和节省计算的间权衡取舍。对于特别复杂的输入,可以考虑分步骤输入以规避长度限制。