Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

AI 为什么说于英文的 Token 占用相对中文较少

Answer

英文的 Token 占用相对中文较少,主要有以下原因:

  1. 英文基于空格和标点符号分词,单词之间有明显的分隔,而中文是连续书写,需要通过算法来识别词汇边界,分词处理相对复杂。
  2. GPT3 和 GPT3.5/4 的 token 计算方式不同,例如 GPT3 用的编码是 p50k/r50k,GPT3.5 是 cl100K_base。
  3. 很多中文长 prompt 会被建议翻译成英文设定然后要求中文输出,因为这样可以节省 token 占用,从而把省出来的 token 留给更多次数的对话。在编写 prompt 时,也需要珍惜 token,尽可能精简表达,尤其是在连续多轮对话中。

如果想要直观查看 GPT 如何切分 token,可以打开:https://platform.openai.com/tokenizer。但请注意,这个网站仅用于 GPT3 对于 token 的计算,方便我们理解概念。目前所使用的 3.5 和 4.0 采用的是另一种编码方式,通过这个工具测算的结果不一定准确。基于这个需求,可以参考官方的开源计算方式:https://github.com/openai/openai-cookbook/blob/main/examples/How_to_count_tokens_with_tiktoken.ipynb ,在本地部署之后可以精确计算目前 4.0 的 token 消耗。

Content generated by AI large model, please carefully verify (powered by aily)

References

关于 token 你应该了解……

如果我们想要直观的查看GPT是如何切分token的话,我们可以打开:[https://platform.openai.com/tokenizer](https://platform.openai.com/tokenizer)在下图可以看到实时生成的tokens消耗和对应字符数量(基于GPT3)在这里值得注意的是,英文的token占用相对于中文是非常少的,这也是为什么很多中文长prompt会被建议翻译成英文设定,中文输出的原因。请注意,这个网站仅用于gpt3对于token的计算,方便我们理解概念。而目前我们所使用的3.5和4.0采用的已经是另一种编码方式,通过下面这个工具测算的结果不一定准确,所以不能把它当做目前的token计算工具来100%参考。(GPT3用的编码是p50k/r50k,GPT3.5是cl100K_base)基于这个需求,我找到了官方的开源计算方式:https://github.com/openai/openai-cookbook/blob/main/examples/How_to_count_tokens_with_tiktoken.ipynb在本地部署之后可以精确计算目前4.0的token消耗:可以进行准确的计算。

小七姐:Prompt 喂饭级系列教程小白学习指南(三)

请注意,GPT3和GPT3.5/4的token计算方式是不一样的。(GPT3用的编码是p50k/r50k,GPT3.5是cl100K_base)在这里值得注意的是,英文的Token占用相对于中文是少很多的,这也是为什么很多中文长Prompt会被建议翻译成英文设定,然后要求中文输出的原因。四、Token限制对Prompt编写有什么影响当你理解了前面的一、二、三之后,这个问题的答案应该已经在你脑子里有雏形了:1、理解Token限制,形成“当前消耗了多少Token ”的自然体感,显然会有利于你在连续对话的时候把握一次有效记忆的长度。这样你就不会傻乎乎在超过9000 Token的时候还在继续问最初的问题,然后得到一个失忆的回答,自己也很懵。2、编写Prompt的时候你需要珍惜你的Token s,尽可能秉承奥卡姆剃刀原理,能不多说一句废话就不多说一句,句子、措辞,都值得精简。尤其是在连续多轮对话中,精简有效的表达习惯是非常重要的。五、基于上述原理有哪些Tips1、熟练使用中英文切换。Prompt本身太长了的话,建议用英文设定,要求它用中文输出即可,这样一来可以把省出来的Token留给更多次数的对话。

【Token趣闻】AI收费为何要按Token计费?一探究竟!

确定单词的边界:对于英语等使用空格分隔的语言,这相对简单,就像读英文时,我们可以很容易地通过空格知道一个单词结束和另一个开始的地方。对于中文这样的语言,事情就复杂多了,因为中文写作是连续的,没有明显的间隔。这时,我们需要通过其他方法来确定哪些字应该组成一个有意义的词组。使用词典和规则:基于词典的方法:就像查字典一样,我们通过一个大列表(词典)来查找和匹配文本中的词汇。这种方法简单但有局限,因为新词或罕见词可能不在词典中。基于规则的方法:这种方法使用特定的规则来判断字和字之间的关系,比如语法和上下文信息,来确定它们是否应该组成一个词。统计和学习方法:使用统计数据来学习哪些字或字母通常会在一起出现。这种方法通过分析大量的文本数据,学习并预测单词的边界。混合方法:实际应用中,通常会将上述几种方法结合起来,以提高分词的准确性和适用性。简单来说:英文:基于空格和标点符号分词。中文:使用算法识别词汇边界。

Others are asking
AI中常说的token是什么
Token 是大模型语言体系中的最小单元。 在人类语言中,不同语言都有最小的字词单元,如汉语的字/词、英语的字母/单词。而在大模型语言体系中,Token 就相当于这样的最小单元。 当我们向大模型发送文本时,大模型会先将文本转换为它自己的语言,并推理生成答案,然后再翻译为我们能看懂的语言输出。 不同厂商的大模型对中文文本的切分方法不同,通常情况下,1 个 Token 约等于 1 2 个汉字。 大模型的收费计算方法以及对输入输出长度的限制,都是以 Token 为单位计量的。 例如,在英文中,单词“hamburger”会被分解成“ham”“bur”和“ger”这样的 Token,而常见的短单词如“pear”则是一个 Token。对于英文文本,1 个 Token 大约相当于 4 个字符或 0.75 个单词。但要注意,在给定的 API 请求中,文本提示词和生成的补合起来不能超过模型的最大上下文长度(对于大多数模型,约为 2048 个 Token 或 1500 个单词)。
2025-01-08
智谱 注册送2000万 tokens
智谱 BigModel 共学营第二期相关信息如下: 本期共学应用为人人可打造的微信助手。 注册智谱 Tokens:智谱 AI 开放平台的网址为 https://bigmodel.cn/ 。参与课程至少需要有 token 体验资源包,获取资源包有三种方式: 新注册用户,注册即送 2000 万 Tokens。 充值/购买多种模型的低价福利资源包,直接充值现金,所有模型可适用的网址为 https://open.bigmodel.cn/finance/pay 。 共学营报名赠送资源包。 语言资源包:免费 GLM4Flash 语言模型/ 。 多模态资源包: 。 多模态资源包: 。所有资源包购买地址:https://bigmodel.cn/finance/resourcepack 。 先去【财务台】左侧的【资源包管理】看看自己的资源包,本次项目会使用到的有 GLM4、GLM4VPlus、CogVideoX、CogView3Plus 模型。 进入智能体中心我的智能体,开始创建智能体。 会议 ID:185 655 937 ,会议链接:https://vc.feishu.cn/j/185655937 ,共学营互动群。 BigModel 开放平台是智谱一站式的大模型开发及应用构建平台。基于智谱自研的全模型矩阵,面向企业客户及合作伙伴,支持多样化模型和自定义编排。平台提供即插即用的智能工具箱,包括 API 接口、模型微调及部署功能,同时具备流程编排以适应复杂业务场景。还提供免费、好用、高并发的 GLM4Flash 模型,0 元上手大模型,新用户注册登录即送 2000 万 Tokens,调用智谱全家桶模型。更多应用场景包括: 。
2024-12-05
AI 评估 GPU 大模型的性能指标,包括输入 token 和输出 token 能力的区分。
以下是关于 AI 评估 GPU 大模型性能指标中输入 token 和输出 token 能力区分的相关内容: 大模型是通过输入大量语料进行训练,从而获得类似人类的“思考”能力,能够进行文本生成、推理问答、对话、文档摘要等工作。在大模型的训练和使用过程中: 1. 训练需要大量计算,GPU 更合适,只有具备大量 GPU 的才有资本训练大模型。 2. 大模型需要大量数据量,几千亿序列(Token)的输入基本是标配。 3. 要用合适的算法让大模型更好理解 Token 之间的关系。 4. 为让大模型更好胜任某一行业,需要进行微调(fine tuning)指导。 5. 完成上述步骤后,大模型就可以进行如翻译、问答等推导(infer)工作。 Token 是大模型语言体系中的最小单元,人类语言发送给大模型时,会先转换为其自身语言,推理生成答案后再翻译输出。不同厂商的大模型对中文的文本切分方法不同,通常 1Token 约等于 1 2 个汉字。大模型的收费计算方法以及对输入输出长度的限制,都是以 token 为单位计量的。 在评估 GPU 大模型性能时,显卡的常规指标很重要。大部分模型默认采用 FP16 的加载方式,因此显卡的性能指标主要关注 FP16 的算力和显存大小。算力影响推理速度,包括输入数据处理和持续吐出数据的速度,会体现在从提示词输入后到第一个输出的 token 的等待时间间隔,以及流式输出下每秒吐字的字数,通常每秒 10 token 以上能获得较好的用户体验。显存大小影响能否装载模型,可通过“参数大小乘 2”简化判断所需显存大小,但实际显存需求还会受其他因素影响。
2024-12-05
目前各大主流模型的 max output token
以下是目前各大主流模型的 max output token 情况: Claude2100 k 模型的上下文上限是 100k Tokens,即 100000 个 token。 ChatGPT16 k 模型的上下文上限是 16k Tokens,即 16000 个 token。 ChatGPT432 k 模型的上下文上限是 32k Tokens,即 32000 个 token。 需要注意的是,token 限制同时对一次性输入和一次对话的总体上下文长度生效。不是达到上限就停止对话,而是会遗忘最前面的对话。 如果想直观查看 GPT 如何切分 token,可以打开: 。此外,GPT3 和 GPT3.5/4 的 token 计算方式不同,英文的 Token 占用相对于中文较少,这也是很多中文长 Prompt 会被建议翻译成英文设定然后要求中文输出的原因。
2024-11-24
什么是AI中的Token
Token 在 AI 中,就像人类语言有最小的字词单元,大模型也有自己的语言体系,其中的最小单元被称为 Token。 在将人类发送的文本传递给大模型时,大模型会先把文本转换为自己的语言,推理生成答案后再翻译为人类能看懂的语言输出。不同厂商的大模型对中文的文本切分方法不同,通常情况下,1 Token 约等于 1 2 个汉字。 对于英文文本,1 个 Token 大约相当于 4 个字符或 0.75 个单词。Token 可以是单词,也可以是字符块,例如单词“hamburger”被分解成“ham”“bur”和“ger”,而很短且常见的单词像“pear”是一个 Token。 大模型的收费计算方法以及对输入输出长度的限制,都是以 Token 为单位计量的。
2024-11-20
在调用大模型的过程中,将token设置最大值,大模型回答还是会出现中断的情况,应该怎么避免和解决
在调用大模型的过程中,将 token 设置最大值但回答仍出现中断的情况,可以从以下几个方面避免和解决: 1. 调整相关参数: Max_output_tokens:根据具体需求设置合适的值。若需要更短响应,设为较低值;若希望更长回答,设为较高值。但注意设置过低可能导致回答在奇怪位置截断。 Temperature:值越小,模型返回结果越确定;值调高,可能更随机和具创造性。对于质量保障等任务设低,诗歌生成等创造性任务可适当调高。 Top_p:用于控制模型返回结果的真实性,需要准确和事实答案时调低,想要更多样化答案时调高。一般改变 Temperature 和 Top_p 其中一个参数即可。 Max Length:调整以控制大模型生成的 token 数,有助于防止生成冗长或不相关响应并控制成本。 Stop Sequences:指定字符串,模型生成文本遇到时停止,可控制响应长度和结构。 Frequency Penalty:对下一个生成的 token 进行惩罚,与 token 在响应和提示中出现次数成比例,减少单词重复。 2. 利用插入文本的最佳实践: 使用 max_tokens > 256,模型插入较长完成时效果更好,且只按实际生成 token 数收费。 优先选择 finish_reason == "stop",表明模型成功连接后缀且完成质量良好。 重新采样 3 5 次,温度较高以增加多样性。若所有返回示例的 finish_reason 都是“length”,可能 max_tokens 太小,需考虑增加再重试。 尝试给出更多线索,通过提供示例帮助模型确定自然停顿处。
2024-11-18
目前写直播脚本的AI工具有哪些
以下是一些可以写直播脚本的 AI 工具: 1. GitHub Copilot:由 GitHub 联合 OpenAI 和微软 Azure 团队推出,支持多种语言和 IDE,能为程序员快速提供代码建议。 2. 通义灵码:阿里巴巴团队推出,提供多种编程相关能力。 3. CodeWhisperer:亚马逊 AWS 团队推出,由机器学习技术驱动,为开发人员实时提供代码建议。 4. CodeGeeX:智谱 AI 推出的开源免费 AI 编程助手,基于 130 亿参数的预训练大模型,可提升开发效率。 5. Cody:代码搜索平台 Sourcegraph 推出,借助强大的代码语义索引和分析能力了解开发者的整个代码库。 6. CodeFuse:蚂蚁集团支付宝团队为国内开发者提供的免费 AI 代码助手。 7. Codeium:由 AI 驱动的编程助手工具,提高编程效率和准确性。 更多辅助编程 AI 产品,还可以查看这里:https://www.waytoagi.com/category/65 。每个工具的功能和适用场景可能不同,您可以根据自身需求选择最适合的工具。
2025-01-19
目前最高效的ai编程应用是什么
以下是一些目前高效的 AI 编程应用: 1. GitHub Copilot:由 GitHub 联合 OpenAI 和微软 Azure 团队推出,支持多种语言和 IDE,能为程序员快速提供代码建议,帮助更快、更少地编写代码。 2. 通义灵码:阿里巴巴团队推出,基于通义大模型,提供多种编程辅助能力。 3. CodeWhisperer:亚马逊 AWS 团队推出,由机器学习技术驱动,为开发人员实时提供代码建议。 4. CodeGeeX:智谱 AI 推出的开源免费 AI 编程助手,基于 130 亿参数的预训练大模型,可提升开发效率。 5. Cody:代码搜索平台 Sourcegraph 推出,借助强大的代码语义索引和分析能力,了解开发者的整个代码库。 6. CodeFuse:蚂蚁集团支付宝团队为国内开发者提供的免费 AI 代码助手,基于自研基础大模型微调。 7. Codeium:一个由 AI 驱动的编程助手工具,通过提供代码建议等帮助提高编程效率和准确性。 更多辅助编程 AI 产品,还可以查看这里:https://www.waytoagi.com/category/65 。每个工具的功能和适用场景可能不同,您可以根据自身需求选择最适合的工具。 生成性 AI 作为程序员的助手是最早的应用之一,其在大量代码库上训练,在程序员编码时给出建议,效果出色。但在编程中正确性至关重要,如研究发现 40%的 AI 生成代码包含漏洞,用户需在生成足够代码提升生产力和检查正确性之间找到平衡。Copilot 帮助提高了开发人员的生产力,估计增长在 2 倍或更少的范围内。 在写作方面,最佳免费选项有 Bing 和 Claude 2,付费选项有带有插件的 ChatGPT 4.0/ChatGPT 。目前 GPT4 仍是功能最强的人工智能写作工具,可在 Bing(选择“创新模式”)免费访问或购买 ChatGPT 订阅访问。Claude 紧随其后,也有有限免费选项。这些工具也被集成到常见办公应用程序中,如 Microsoft Office 将包括由 GPT 提供支持的副驾驶,Google Docs 将整合 Bard 的建议。
2025-01-19
AI怎样改编经典IP创作
以下是关于 AI 改编经典 IP 创作的相关内容: 在节目单方面,涵盖了视频与影视、音乐与舞蹈等领域。 视频与影视中,有“赛博朋克与未来:AI 未来变化的畅想”,包括脑洞、炫酷的 AI 图片、AI 视频、想象中的 AI 功能展示等内容;“四大名著重生:AI 重新诠释的中国四大名著”,包含经典桥段分镜、AI 图片、AI 视频等。 音乐与舞蹈方面,有“AI 原创歌:AI 制作的音乐”,涉及原创 AI 音乐、AI 视频、音乐版权、AI 图片生视频或转绘视频等;“原创 RAP:AI Rapper 表演”,涵盖原创 RAP、AI Raper、视频驱动等。 在电影制作方面,以 Junie 的首部 AI 长电影为例,制作初衷是为了好玩和为经典故事注入新意。尽管有人质疑其用 AI 制作反 AI 电影的讽刺性,但它为 AI 创作者提供了共同创作机会,带来启示:人类创造力不会被机器取代,AI 电影是电影领域的一部分,不会取代传统电影,而是开辟新的艺术表达方式。同时,AI 技术快速迭代,类似 Sora 的工具将改变对电影的传统认知。未来,强交互的由 AI Agent 驱动的一对一交互媒介可能成为主流。 在音乐创作方面,以《西游不能停》为例,过去一首歌制作流程复杂,需多个环节和角色协作,现在 AI 合并了很多环节,能帮创作者迅速呈现 idea 的 demo 形式,搭起歌曲骨骼框架,让创作者把更多精力投入到更具个人表达的部分,如歌词、音色、节奏等。但 AI 也有不足和缺陷,如生成结果不可控、保真度低等。
2025-01-19
ai分析视频
以下是为您整理的关于 AI 分析视频的相关内容: 1. ChatGPT 助力数据分析: 直接上视频(时长 1:08),视频中上传和 AI 分析的数据均为假数据仅供测试。 展示内容: 演示 SQL 分析过程,输入想分析的内容,点击分析,输出数据图表和分析结论。 演示个性化分析,上传两个文件案例:单维度数据分析、多维度数据分析,可追加描述内容辅助 ChatGPT 进行分析。由于是图表配置化平台,第一个演示内容是“分析每种图表的使用情况”。 2. 0 基础跨界 AI 编程共学零基础手搓 AI 拍立得 银海: 事业低谷期的尝试与获取:整体表达碎片化且语义不太清晰。提到在试验第五期想拿到某个东西,回忆年前事业低谷期看到一句话后有改变,还提及在失业低谷期曾拿到一个东西,现在想试试看能否拿到 MP4 类型的东西,同时疑惑媒体是否拿不到一个东西。 视频解读可依据画面,三分钟视频已拿到链接将让其解读。提到已拿到视频链接并交给相关人员解读。之前有无声音的 case,相关人员能够解读出来且体感更强。还提到刚刚下载了一个 case,解读是根据视频画面而非声道或音轨,最后表示可以尝试根据画面解读的体感如何。 图像理解相关讨论及视频中的草地情侣场景:首先要求根据视频链接写一篇小说,随后提到工作流中的图像理解,其发挥能力较强。还建议大家尝试智普、通义的 VL 模型,指出 VL Max 版虽成本高但效果好,最后提及图像理解速度快,以及视频理解中有涉及宁静草地上男孩女孩依偎的内容。 拍立得工作流:从图片到文本后看图像风格化转换工作流。 3. DAY3 更热门的多模态交互案例带练,实操掌握 AI 应用开发: 阿里云百炼大模型多模态能力解析中的视频理解:借助视频处理、视频理解、大语言模型的串联能力,实现对视频里指定要点的理解和提取,并按要求生成指定类型的文案、提取标签、洞察分析。 输入一段视频,可集成文本描述和视频内容,使模型能够理解并生成基于文本的摘要、描述或对视频内容的提取、分析。在视觉语言分析阶段,可通过自定义的 prompt 让大模型重点关注和提取视频中的某些特征,或者按要求做视频筛选;在文本处理阶段,则可通过自由定义的 prompt,执行基于上一阶段的抽取、写作、分析等任务,产出视频标签、视频分析总结,或指定文体、风格的各类文章等。 测试视频数据: ,上传视频后,可根据不同场景生成文案描述,可使用通义万相里面生成的视频查看效果。
2025-01-19
AI怎样辅助短视频创作
AI 可以通过以下方式辅助短视频创作: 1. 工具利用: ChatGPT + 剪映:ChatGPT 生成视频小说脚本,剪映根据脚本分析出视频所需要素并生成素材和文本框架,实现从文字到画面的快速转化。 PixVerse AI:在线 AI 视频生成工具,支持将多模态输入转化为视频。 Pictory:AI 视频生成器,用户提供文本描述即可生成相应视频内容。 VEED.IO:提供 AI 图像和脚本生成器,帮助从图像制作视频并规划内容。 Runway:将文本转化为风格化视频内容,适用于多种场景。 艺映 AI:提供文生视频、图生视频、视频转漫等服务,可根据文本脚本生成视频。 2. 趋势与应用: 推理经济性:AI 视频生成成本逐渐降低,有望低于现有成本。 短视频领域:短剧和 TVC 生产流程可实现 AI 工具全替代。 长视频领域:AI 技术尚在工具层面,对工作流实现部分替代、降低成本,暂无法全流程替代传统工作方式。 3. 创作思路: 故事来源:包括原创(自身经历、梦境、想象等)和改编(经典 IP、名著、新闻、二创等)。 剧本写作:编剧有一定门槛,短片创作可从自身或朋友经历改编入手,也可对短篇故事进行改编,多与他人讨论故事以修改和进步。
2025-01-19
AI怎样赋能本地旅行社业务
AI 可以通过多种方式为本地旅行社业务赋能: 1. 个性化推荐:利用 AI 算法分析客户的偏好和历史数据,为客户提供个性化的旅游线路和服务推荐,提高客户满意度和预订率。 2. 智能客服:通过自然语言处理技术,实现 24/7 的智能客服,快速准确地回答客户的咨询和问题,减轻人工客服的压力。 3. 市场预测:借助 AI 对大量的市场数据进行分析,预测旅游趋势和需求,帮助旅行社提前规划和调整产品策略。 4. 营销优化:利用 AI 进行精准营销,将广告和推广信息准确地推送给潜在客户,提高营销效果和投资回报率。 5. 风险管理:通过 AI 分析各种风险因素,如天气变化、政治局势等,提前制定应对策略,降低业务风险。 6. 流程自动化:例如自动化订单处理、客户信息管理等重复性工作,提高工作效率,减少人为错误。
2025-01-19
用邻接矩阵法存储图,占用的存储空间数只与图中结点个数有关,而与边数无关。
这种说法是不准确的。用邻接矩阵法存储图时,占用的存储空间数不仅与图中结点个数有关,也与边数有关。在邻接矩阵中,如果图有 n 个结点,那么矩阵的大小就是 n×n。如果边数较多,矩阵中表示边存在的元素就会较多,从而占用更多的存储空间;反之,如果边数较少,占用的存储空间相对较少。
2024-11-21
autodl如何解决时常出现的,实例GPU被占用导致需要更改实例时,数据的转移复制问题,怎样提高效率
很抱歉,目前知识库中没有关于 autodl 在实例 GPU 被占用导致需要更改实例时数据转移复制问题及提高效率的相关内容。但一般来说,您可以考虑以下几种可能的解决方法: 1. 提前规划和备份:在可能出现 GPU 占用需要更改实例的情况前,提前对重要数据进行备份,以便在需要时快速恢复。 2. 优化数据存储结构:采用更高效的数据存储方式,减少数据转移复制的时间和工作量。 3. 利用数据同步工具:寻找适合的专业数据同步工具,提高数据转移的效率和准确性。 4. 监控和预警:建立有效的监控机制,及时发现 GPU 占用情况,并提前做好数据转移的准备工作。 以上建议仅供参考,您可以根据实际情况进行尝试和调整。
2024-08-15
prompt长度是否占用token?
是的,prompt 的长度会占用 token 数量。 在大型语言模型中,输入的文本会被分词器(tokenizer)拆分成一串 token 序列输入给模型。每个 token 通常对应一个单词或字符串片段。token 的数量就决定了输入序列的长度。 所以,prompt 中包含的每个单词、标点符号等都会被视为一个 token,从而占用 token 数量。 不同的分词器有不同的分词策略和词表,对于同一个 prompt,可能得到不同的 token 数。但总的来说,prompt 越长,占用的 token 数就越多。 很多大模型对输入长度有限制,比如 GPT3 接受的最大 token 数是 2048。这就要求控制好 prompt 的长度,否则会被截断或产生不准确的结果。 一些技巧可以用来节省 prompt 的 token 数: 1. 使用简洁的词语,避免冗余 2. 缩写/代词替代复杂词组 3. 去除不必要的标点和空格 4. 小写替代部分大写单词 总之,prompt 长度对应的 token 数需要根据具体任务合理控制,以在保证效果和节省计算的间权衡取舍。对于特别复杂的输入,可以考虑分步骤输入以规避长度限制。
2024-04-23