Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

AI 评估 GPU 大模型的性能指标,包括输入 token 和输出 token 能力的区分。

Answer

以下是关于 AI 评估 GPU 大模型性能指标中输入 token 和输出 token 能力区分的相关内容:

大模型是通过输入大量语料进行训练,从而获得类似人类的“思考”能力,能够进行文本生成、推理问答、对话、文档摘要等工作。在大模型的训练和使用过程中:

  1. 训练需要大量计算,GPU 更合适,只有具备大量 GPU 的才有资本训练大模型。
  2. 大模型需要大量数据量,几千亿序列(Token)的输入基本是标配。
  3. 要用合适的算法让大模型更好理解 Token 之间的关系。
  4. 为让大模型更好胜任某一行业,需要进行微调(fine tuning)指导。
  5. 完成上述步骤后,大模型就可以进行如翻译、问答等推导(infer)工作。

Token 是大模型语言体系中的最小单元,人类语言发送给大模型时,会先转换为其自身语言,推理生成答案后再翻译输出。不同厂商的大模型对中文的文本切分方法不同,通常 1Token 约等于 1 - 2 个汉字。大模型的收费计算方法以及对输入输出长度的限制,都是以 token 为单位计量的。

在评估 GPU 大模型性能时,显卡的常规指标很重要。大部分模型默认采用 FP16 的加载方式,因此显卡的性能指标主要关注 FP16 的算力和显存大小。算力影响推理速度,包括输入数据处理和持续吐出数据的速度,会体现在从提示词输入后到第一个输出的 token 的等待时间间隔,以及流式输出下每秒吐字的字数,通常每秒 10 token 以上能获得较好的用户体验。显存大小影响能否装载模型,可通过“参数大小乘 2”简化判断所需显存大小,但实际显存需求还会受其他因素影响。

Content generated by AI large model, please carefully verify (powered by aily)

References

大模型入门指南

通俗来讲,大模型就是输入大量语料,来让计算机获得类似人类的“思考”能力,使之能够理解自然语言,能够进行『文本生成』、『推理问答』、『对话』、『文档摘要』等工作。既然是学习,那我们就可以用『上学参加工作』这件事来类比大模型的训练、使用过程:1.找学校::训练LLM需要大量的计算,因此GPU更合适,因此只有购买得起大量GPU的贵族学校才有资本训练自己的大模型2.确定教材::大模型顾名思义就是大,需要的数据量特别多,几千亿序列(Token)的输入基本是标配3.找老师::即用什么样的算法讲述“书本”中的内容,让大模型能够更好理解Token之间的关系4.就业指导::学完书本中的知识后,为了让大模型能够更好胜任某一行业,需要进行微调(fine tuning)指导5.搬砖::就业指导完成后,下面就要正式干活了,比如进行一次翻译、问答等,在大模型里称之为推导(infer)在LLM中,Token([2])被视为模型处理和生成的文本单位。它们可以代表单个字符、单词、子单词,甚至更大的语言单位,具体取决于所使用的分词方法(Tokenization)。Token是原始文本数据与LLM可以使用的数字表示之间的桥梁。在将输入进行分词时,会对其进行数字化,形成一个词汇表(Vocabulary),比如:The cat sat on the mat,会被分割成“The”、“cat”、“sat”等的同时,会生成下面的词汇表:|Token|ID||-|-||The|345||cat|1256||sat|1726||…|…|

走入AI的世界

首先我们给出一些常见缩写和专业词汇的“人话”解释,它们十分基础,但理解他们至关重要。为了讨论更加聚焦,接下来的内容将主要围绕大语言模型为主进行展开(对于其他模态的大模型,我们暂且放放):LLM:Large language model的缩写,即大语言模型,前面百团大战中的各类大模型,说的都是大语言模型(极其应用)Prompt:中文译作提示词,就是我们输入给大模型的文本内容,可以理解为你和大模型说的话,下达的指令。提示词的质量好坏,会显著影响大模型回答的质量,很多时候如果你觉得大模型回答的太差了,AI味儿太浓了,很可能是你的提示词写的不够好,换言之,不是AI不行,而是你不行😌Token:就像人类有着不同的语言,大模型也有着自己的语言体系,如图9,我们发送文本给大模型时,大模型会先把文本转换为他自己的语言,并推理生成答案,而后再翻译成我们看得懂的语言输出给我们。正如人类不同语言都有最小的字词单元(汉语的字/词,英语的字母/单词),大模型语言体系中的最小单元就称为Token。这种人类语言到大模型语言的翻译规则,也是人类定义的,以中文为例,由于不同厂商的大模型采用了不同的文本切分方法,因此一个Token对应的汉字数量也会有所不同,但在通常情况下,1Token≈1-2个汉字。请注意,大模型的收费计算方法,以及对输入输出长度的限制,都是以token为单位计量的。上下文:英文通常翻译为context,指对话聊天内容前、后的内容信息。使用时,上下文长度和上下文窗口都会影响AI大模型回答的质量。上下文长度限制了模型一次交互中能够处理的最大token数量,而上下文窗口限制了模型在生成每个新token时实际参考的前面内容的范围(关于这一点,你需要看完3.2中关于GPT的讨论,方能更好理解)

推理用GPU选购指北

购买GPU实体卡,或者云GPU资源必读。[heading2]显卡的常规指标[content]大部分模型默认采用FP16的加载方式。因此显卡的性能指标主要关注FP16的算力,和显存大小。算力通常影响推理速度,包含输入数据的处理,和持续吐出数据的速度。在LLM的运算中,运算速度会很直观的体现在用户体验上:从提示词输入后到第一个输出的token的等待时间间隔,和流式输出下每秒吐字的字数。--通常流式吐字需要在每秒10 token以上能获得还能过得去的用户体验。显存大小直接影响了你是否能装载模型。在开源模型的说明书上通常都会说明转载所需的显存大小。所需显存大小也可以通过简单的“参数大小乘2”计算来简化判断,例如:chatglm3-6B,至少需要6*2=12G的显存资源。实际显存需求当然还会受其他的影响,比如token计算过程中波动的显存量。因此如前例中,chatglm3-6b通常需要有16G甚至24G的显存,如果仅有12G显存,会很快出现OoM的问题。

Others are asking
AI中常说的token是什么
Token 是大模型语言体系中的最小单元。 在人类语言中,不同语言都有最小的字词单元,如汉语的字/词、英语的字母/单词。而在大模型语言体系中,Token 就相当于这样的最小单元。 当我们向大模型发送文本时,大模型会先将文本转换为它自己的语言,并推理生成答案,然后再翻译为我们能看懂的语言输出。 不同厂商的大模型对中文文本的切分方法不同,通常情况下,1 个 Token 约等于 1 2 个汉字。 大模型的收费计算方法以及对输入输出长度的限制,都是以 Token 为单位计量的。 例如,在英文中,单词“hamburger”会被分解成“ham”“bur”和“ger”这样的 Token,而常见的短单词如“pear”则是一个 Token。对于英文文本,1 个 Token 大约相当于 4 个字符或 0.75 个单词。但要注意,在给定的 API 请求中,文本提示词和生成的补合起来不能超过模型的最大上下文长度(对于大多数模型,约为 2048 个 Token 或 1500 个单词)。
2025-01-08
智谱 注册送2000万 tokens
智谱 BigModel 共学营第二期相关信息如下: 本期共学应用为人人可打造的微信助手。 注册智谱 Tokens:智谱 AI 开放平台的网址为 https://bigmodel.cn/ 。参与课程至少需要有 token 体验资源包,获取资源包有三种方式: 新注册用户,注册即送 2000 万 Tokens。 充值/购买多种模型的低价福利资源包,直接充值现金,所有模型可适用的网址为 https://open.bigmodel.cn/finance/pay 。 共学营报名赠送资源包。 语言资源包:免费 GLM4Flash 语言模型/ 。 多模态资源包: 。 多模态资源包: 。所有资源包购买地址:https://bigmodel.cn/finance/resourcepack 。 先去【财务台】左侧的【资源包管理】看看自己的资源包,本次项目会使用到的有 GLM4、GLM4VPlus、CogVideoX、CogView3Plus 模型。 进入智能体中心我的智能体,开始创建智能体。 会议 ID:185 655 937 ,会议链接:https://vc.feishu.cn/j/185655937 ,共学营互动群。 BigModel 开放平台是智谱一站式的大模型开发及应用构建平台。基于智谱自研的全模型矩阵,面向企业客户及合作伙伴,支持多样化模型和自定义编排。平台提供即插即用的智能工具箱,包括 API 接口、模型微调及部署功能,同时具备流程编排以适应复杂业务场景。还提供免费、好用、高并发的 GLM4Flash 模型,0 元上手大模型,新用户注册登录即送 2000 万 Tokens,调用智谱全家桶模型。更多应用场景包括: 。
2024-12-05
目前各大主流模型的 max output token
以下是目前各大主流模型的 max output token 情况: Claude2100 k 模型的上下文上限是 100k Tokens,即 100000 个 token。 ChatGPT16 k 模型的上下文上限是 16k Tokens,即 16000 个 token。 ChatGPT432 k 模型的上下文上限是 32k Tokens,即 32000 个 token。 需要注意的是,token 限制同时对一次性输入和一次对话的总体上下文长度生效。不是达到上限就停止对话,而是会遗忘最前面的对话。 如果想直观查看 GPT 如何切分 token,可以打开: 。此外,GPT3 和 GPT3.5/4 的 token 计算方式不同,英文的 Token 占用相对于中文较少,这也是很多中文长 Prompt 会被建议翻译成英文设定然后要求中文输出的原因。
2024-11-24
什么是AI中的Token
Token 在 AI 中,就像人类语言有最小的字词单元,大模型也有自己的语言体系,其中的最小单元被称为 Token。 在将人类发送的文本传递给大模型时,大模型会先把文本转换为自己的语言,推理生成答案后再翻译为人类能看懂的语言输出。不同厂商的大模型对中文的文本切分方法不同,通常情况下,1 Token 约等于 1 2 个汉字。 对于英文文本,1 个 Token 大约相当于 4 个字符或 0.75 个单词。Token 可以是单词,也可以是字符块,例如单词“hamburger”被分解成“ham”“bur”和“ger”,而很短且常见的单词像“pear”是一个 Token。 大模型的收费计算方法以及对输入输出长度的限制,都是以 Token 为单位计量的。
2024-11-20
在调用大模型的过程中,将token设置最大值,大模型回答还是会出现中断的情况,应该怎么避免和解决
在调用大模型的过程中,将 token 设置最大值但回答仍出现中断的情况,可以从以下几个方面避免和解决: 1. 调整相关参数: Max_output_tokens:根据具体需求设置合适的值。若需要更短响应,设为较低值;若希望更长回答,设为较高值。但注意设置过低可能导致回答在奇怪位置截断。 Temperature:值越小,模型返回结果越确定;值调高,可能更随机和具创造性。对于质量保障等任务设低,诗歌生成等创造性任务可适当调高。 Top_p:用于控制模型返回结果的真实性,需要准确和事实答案时调低,想要更多样化答案时调高。一般改变 Temperature 和 Top_p 其中一个参数即可。 Max Length:调整以控制大模型生成的 token 数,有助于防止生成冗长或不相关响应并控制成本。 Stop Sequences:指定字符串,模型生成文本遇到时停止,可控制响应长度和结构。 Frequency Penalty:对下一个生成的 token 进行惩罚,与 token 在响应和提示中出现次数成比例,减少单词重复。 2. 利用插入文本的最佳实践: 使用 max_tokens > 256,模型插入较长完成时效果更好,且只按实际生成 token 数收费。 优先选择 finish_reason == "stop",表明模型成功连接后缀且完成质量良好。 重新采样 3 5 次,温度较高以增加多样性。若所有返回示例的 finish_reason 都是“length”,可能 max_tokens 太小,需考虑增加再重试。 尝试给出更多线索,通过提供示例帮助模型确定自然停顿处。
2024-11-18
上下文窗口和 tokens限制
以下是关于上下文窗口和 tokens 限制的详细解释: Token 方面: Token 是大模型语言体系中的最小单元。人类语言发送给大模型时,会先被转换为大模型自己的语言,大模型推理生成答案后再翻译为人类能看懂的语言输出。 不同厂商的大模型对中文的文本切分方法不同,通常 1Token 约等于 1 2 个汉字。 大模型的收费计算方法以及对输入输出长度的限制,都是以 token 为单位计量的。 上下文方面: 上下文指对话聊天内容前、后的内容信息,其长度和窗口都会影响大模型回答的质量。 上下文长度限制了模型一次交互中能够处理的最大 token 数量,上下文窗口限制了模型在生成每个新 token 时实际参考的前面内容的范围。 目前常见模型的 token 限制: Claude 2 100k 模型的上下文上限是 100k Tokens,即 100000 个 token。 ChatGPT 16k 模型的上下文上限是 16k Tokens,即 16000 个 token。 ChatGPT 4 32k 模型的上下文上限是 32k Tokens,即 32000 个 token。 Token 限制的影响: 对一次性输入和一次对话的总体上下文长度同时生效。 当达到上限时,不是停止对话,而是遗忘最前面的对话,类似于鱼的短暂记忆。 查看 token 使用量: 对于 GPT,可以打开查看实时生成的 tokens 消耗和对应字符数量。 需注意 GPT3 和 GPT3.5/4 的 token 计算方式不同,且英文的 Token 占用相对于中文较少,这也是很多中文长 Prompt 会被建议翻译成英文设定然后要求中文输出的原因。 Token 限制对 Prompt 编写的影响:理解前面的内容后,答案应在您的脑海中有雏形。
2024-11-15
请问有那款ai是能通过Lisp 语言实现一些输出操作的呢?
以下是一些能够通过 Lisp 语言实现输出操作的 AI 示例: 在“AI‘词生卡’的蝴蝶效应:从文字到视觉盛宴跨界蝶变”中提到,古早的 Lisp 语言在 Claude3.5 强大的理解力和绘图支持下焕发了新生,制造了新卡。 在“艾木:提示词编程|有必要用 Lisp 语言写提示词吗?”中,将提示词用 Lisp 语言编写后丢给 Claude,例如输入文本,Claude 大概率会直接输出 SVG 代码。但对于复杂的函数调用,大语言模型处理起来较困难。
2025-01-23
请问 有哪几款ai是可以使用claude语言的呢?
Claude 是由 Anthropic 公司开发的 AI 助手。目前,Claude 本身就是一款独立的 AI,不存在其他可以使用 Claude 语言的 AI。 要注册 Claude.ai,您可以按照以下步骤进行: 1. 访问 Claude 的官方网站。 2. 点击注册或登录界面中的“Sign Up”或“Continue with email”选项。 3. 填写您的邮箱地址并设置密码,然后提交表单。 4. 系统会向您的邮箱发送一封验证邮件,您需要打开邮件并使用其中的验证码来完成邮箱验证。 如果在注册过程中遇到需要海外手机号接收验证码的问题,以下是一些可能的解决方案: 1. 使用虚拟海外号服务,如 SMSActivate、SMSPool 等,购买一个海外虚拟手机号来接收 Claude 的验证码。 2. 借助第三方服务网站如 uiuihao.com 完成注册您的 Claude 账号。 3. 如果您有海外朋友,可以请他们帮忙接收验证码,并将验证码告诉您。 完成注册后,如果您希望升级到 Claude Pro 版本以获取更强大的功能和更高的 API 调用限额,您需要填写支付信息并选择一个合适的订阅计划。值得注意的是,订阅 Claude Pro 可能需要使用海外支付方式。 请注意,Claude.ai 目前处于公开测试阶段,未付费用户使用平台可能会受到一些限制。如果您在注册过程中遇到任何问题,可以参考其他用户分享的详细注册教程和解决策略。
2025-01-23
ai在线课程
以下是为您提供的关于 AI 在线课程的相关信息: 新手学习 AI 的步骤: 1. 了解 AI 基本概念:建议阅读「」部分,熟悉 AI 的术语和基础概念,包括主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。同时浏览入门文章,了解 AI 的历史、当前应用和未来发展趋势。 2. 开始 AI 学习之旅:在「」中,能找到为初学者设计的课程,特别推荐李宏毅老师的课程。您还可以通过在线教育平台(如 Coursera、edX、Udacity)按照自己的节奏学习,并可能获得证书。 3. 选择感兴趣的模块深入学习:AI 领域广泛,比如图像、音乐、视频等,您可根据兴趣选择特定模块深入学习,同时掌握提示词技巧。 4. 实践和尝试:理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。知识库中有很多实践后的作品和文章分享。 5. 体验 AI 产品:与如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解其工作原理和交互方式。 推荐的“野菩萨”AI 课程: 1. 预习周课程:包括 AI 绘画电脑配置要求、高效 AIGC 创意者的数字人工具包、SD 插件安装方法、画静为动的 AIGC 视频制作讲解等。 2. 基础操作课:涵盖 AI 绘画通识课、AI 摄影虚拟的真实、AI 电影 穿越的大门等内容。 3. 核心范式课程:涉及词汇的纸牌屋、核心范式应用、控制随机性等方面。 4. SD WebUi 体系课程:包括 SD 基础部署、SD 文生图、图生图、局部重绘等。 5. ChatGPT 体系课程:有 ChatGPT 基础、核心 文风、格式、思维模型等内容。 6. ComfyUI 与 AI 动画课程:包含部署和基本概念、基础工作流搭建、动画工作流搭建等。 7. 应对 SORA 的视听语言课程:涉及通识 欢迎参加电影的葬礼、影像赏析、基础戏剧影视文学等。 免费获取课程的机会:参与 video battle,获胜者可获得课程。冠军奖励 4980 课程一份,亚军奖励 3980 课程一份,季军奖励 1980 课程一份,入围奖励 598 野神殿门票一张。 “通往 AGI 之路知识库”中的课程: 1. 推荐 B 站 up 主 Nally 的课程,免费且每节 15 分钟。 2. 二十四节气相关教程和关键词已开源,可直接复制使用。 3. 14、15 号左右白马老师和麦菊老师将带大家用 AI 做生图、毛毡字、光影字、机甲字等。16 号晚上中老师将带大家动手操作炼丹。 希望以上信息对您有所帮助,祝您在 AI 学习的道路上不断进步!
2025-01-23
怎么用AI提高团队工作效率,贸易类
以下是一些利用 AI 提高贸易类团队工作效率的方法: 1. 利用 AI“词生卡”技术:将抽象的文字描述转化为直观的逻辑图表和流程图,帮助团队更好地理解和执行复杂任务。团队成员可以通过“词生卡”方式自定义活动海报、商务名片、简历,也可以用于日报、月报等介绍工作进度,实现文图双输出,提高信息传导效率,并为创新思维提供新工具。 2. 参考哈佛商学院的研究:在工作中使用 AI 可以带来工作效率的显著改善。使用 AI 的被测试者比未使用者平均多完成 12.2%的任务,完成速度提高 25.1%,结果质量提高 40%。同时要注意,类似 GPT4 这样的模型有能力边界,过于依赖可能适得其反。能力较弱的被测试者提升较大,高级人才和低级人才的差距会被拉平。 3. 采用合适的协作方式:如“半人马”模式,强调人与 AI 紧密结合但各司其职,人类主导流程,根据任务性质调配资源;“机械人”模式,人与 AI 高度融合,在细节上循环迭代优化,最终实现人机一体化。 总之,合理利用 AI 技术和选择合适的协作方式,能够有效提高贸易类团队的工作效率。
2025-01-23
langchain开发手册
LangChain 是专注于大模型应用开发的平台,提供一系列组件和工具助您轻松构建 RAG 应用。 组件包括: 1. 数据加载器(DocumentLoader):能从数据源加载数据并转为文档对象,文档包含 page_content(文本内容)和 metadata(元数据如标题、作者、日期等)。 2. 文本分割器(DocumentSplitter):将文档分割成多个小文档,方便后续检索和生成,因大模型输入窗口有限,短文本更易找相关信息。 3. 文本嵌入器(Embeddings):将文本转为高维向量的嵌入,用于衡量文本相似度以实现检索功能。 4. 向量存储器(VectorStore):存储和查询嵌入,常使用 Faiss 或 Annoy 等索引技术加速检索。 5. 检索器(Retriever):根据文本查询返回相关文档对象,常见实现是向量存储器检索器,利用向量存储器相似度搜索功能检索。 6. 聊天模型(ChatModel):基于大模型如 GPT3 实现文本生成,根据输入序列生成输出消息。 使用 LangChain 构建 RAG 应用的一般流程: 1. 加载数据:根据数据源类型选择合适的数据加载器,如网页可用 WebBaseLoader。 2. 分割文档:根据文本特点选择合适的文本分割器,如博客文章可用 RecursiveCharacterTextSplitter。 3. 转换和存储嵌入:选择合适的文本嵌入器和向量存储器,如 OpenAI 的嵌入模型和 Chroma 的向量存储器。 4. 创建检索器:使用向量存储器检索器,传递向量存储器和文本嵌入器对象创建。 5. 创建聊天模型:根据性能和成本选择,如 OpenAI 的 GPT3 模型。 以下是使用 LangChain 构建 RAG 应用的示例代码。
2025-01-23
给我写一段AI产品经理板块的介绍,一小段话,用于在公司内部的科技论坛上
在公司内部的科技论坛上,为您介绍 AI 产品经理板块: AI 产品经理可大致分为三个层级: 1. 入门级:能通过 WaytoAGI 等开源网站或课程了解 AI 概念,使用 AI 产品并动手实践应用搭建。 2. 研究级:有技术研究和商业化研究两条路径,能根据需求场景选择解决方案,或利用 Hugging face 等工具验证想法。 3. 落地应用级:有成功落地应用案例并产生商业化价值。 传统互联网 PM 也有类似的三个层级: 1. 负责功能模块与执行细节。 2. 负责整体系统与产品架构。 3. 熟悉行业竞争格局与商业运营策略。 对 AI 产品经理的要求是懂得技术框架,关注场景、痛点和价值。同时,为您列举一些岗位技能要求,如本科及以上学历,计算机科学等相关专业背景,熟悉多种 AI 工具的使用及原理,具备创新思维等。我们身边也有相关案例,如枫 share、行远等都是从事相关工作的产品经理。
2025-01-23
RuntimeError: All input tensors need to be on the same GPU, but found some tensors to not be on a GPU
以下是对您所遇到的报错“RuntimeError: All input tensors need to be on the same GPU, but found some tensors to not be on a GPU”的一些可能的解决方案: 1. 检查您的代码和模型设置,确保所有输入张量都被正确地分配到同一个 GPU 上。 2. 对于与显存相关的问题,如爆显存的情况,在训练时可以尝试调小批量大小,在推理时可以使用强制切片。 3. 调大虚拟内存,可能有助于解决一些与内存相关的报错。 同时,在处理与 AI 相关的报错时,还可能会遇到其他类似的问题,例如: 1. 页面文件太小,无法完成操作。解决方法是增大系统虚拟内存大小。 2. 出现“torch.cuda.OutOfMemoryError: CUDA out of memory”报错,通常是爆显存了。 3. 遇到“DataLoader workerexited unexpectedly”报错,可把虚拟内存再调大一点。 4. “CUDA error: CUBLAS_STATUS_NOT_INITIALIZED when calling 'cublasCreate'”报错,一般也是爆显存。 5. “'HParams' object has no attribute 'xxx'”报错,可能是无法找到音色,一般是配置文件和模型没对应,打开配置文件拉到最下面查看是否有训练的音色。 6. “The expand size of the tensor at nonsingleton dimension 0”报错,可把 dataset/44k 下的内容全部删除,重新走一遍预处理流程。 7. “Given groups=1, weight of size to have 256 channels, but got 768 channels instead”报错,可能是 vec256 的模型用了 vec768 的配置文件,反之亦然,请参考旧模型兼容,确认配置文件和模型维度对应。 8. “配置文件中的编码器与模型维度不匹配”报错,可能是在修改配置文件中的“speech_encoder”时修改错了,检查配置文件中的“ssl_dim”一项,如果这项是 256,那您需要确认配置文件和模型维度的对应关系。
2025-01-17
常见GPU卡介绍与比较
以下是常见 GPU 卡的介绍与比较: 在选择 GPU 作为 AI 基础设施时,需要考虑多个因素: 训练与推理方面:训练大型 Transformer 模型通常需要在机器集群上完成,最好是每台服务器有多个 GPU、大量 VRAM 以及服务器之间的高带宽连接。许多模型在 NVIDIA H100 上最具成本效益,但获取较难且通常需要长期合作承诺。如今,NVIDIA A100 常用于大多数模型训练。对于大型语言模型(LLM)的推理,可能需要 H100 或 A100,而较小的模型如 Stable Diffusion 则对 VRAM 需求较少,初创公司也会使用 A10、A40、A4000、A5000 和 A6000 甚至 RTX 卡。 内存要求方面:大型 LLM 的参数数量众多,无法由单张卡容纳,需要分布到多个卡中。 硬件支持方面:虽然绝大多数工作负载在 NVIDIA 上运行,但也有公司开始尝试其他供应商,如谷歌 TPU 和英特尔的 Gaudi2,但这些供应商面临的挑战是模型性能高度依赖软件优化。 延迟要求方面:对延迟不太敏感的工作负载可使用功能较弱的 GPU 以降低计算成本,而面向用户的应用程序通常需要高端 GPU 卡来提供实时用户体验。 峰值方面:生成式 AI 公司的需求经常急剧上升,在低端 GPU 上处理峰值通常更容易,若流量来自参与度或留存率较低的用户,以牺牲性能为代价使用较低成本资源也有意义。 此外,算力可以理解为计算能力,在电脑中可直接转化为 GPU,显卡就是 GPU,除了 GPU 外,显存也是重要参数。GPU 是一种专门做图像和图形相关运算工作的微处理器,其诞生是为了给 CPU 减负,生产商主要有 NVIDIA 和 ATI。
2025-01-06
GPU的计算特性
GPU(图形处理器)具有以下计算特性: 1. 专门在个人电脑、工作站、游戏机和一些移动设备(如平板电脑、智能手机等)上做图像和图形相关运算工作的微处理器。 2. 诞生源自对 CPU 的减负,使显卡减少了对 CPU 的依赖,并进行部分原本 CPU 的工作,尤其是在 3D 图形处理时。 3. 所采用的核心技术有硬件 T&L(几何转换和光照处理)、立方环境材质贴图和顶点混合、纹理压缩和凹凸映射贴图、双重纹理四像素 256 位渲染引擎等,硬件 T&L 技术可以说是 GPU 的标志。 4. 生产商主要有 NVIDIA 和 ATI。 5. 在矩阵乘法方面表现出色,早期使用游戏用的 GPU 能使运算速度提高 30 倍。 6. 随着 AI 领域的发展而不断发展,例如在训练神经网络方面发挥重要作用。
2025-01-06
常见GPU卡介绍与比较
以下是常见 GPU 卡的介绍与比较: 在 AI 基础设施的考虑因素中,比较 GPU 时需要关注以下几个方面: 训练与推理: 训练 Transformer 模型除了模型权重外,还需要存储 8 字节的数据用于训练。内存 12GB 的典型高端消费级 GPU 几乎无法用于训练 40 亿参数的模型。 训练大型模型通常在机器集群上完成,最好是每台服务器有多个 GPU、大量 VRAM 以及服务器之间的高带宽连接。 许多模型在 NVIDIA H100 上最具成本效益,但截至目前很难找到在 NVIDIA H100 上运行的模型,且通常需要一年以上的长期合作承诺。如今,更多选择在 NVIDIA A100 上运行大多数模型训练,但对于大型集群,仍需要长期承诺。 内存要求: 大型 LLM 的参数数量太多,任何卡都无法容纳,需要分布到多个卡中。 即使进行 LLM 推理,可能也需要 H100 或 A100。但较小的模型(如 Stable Diffusion)需要的 VRAM 要少得多,初创公司也会使用 A10、A40、A4000、A5000 和 A6000,甚至 RTX 卡。 硬件支持: 虽然绝大多数工作负载都在 NVIDIA 上运行,但也有一些公司开始尝试其他供应商,如谷歌 TPU、英特尔的 Gaudi2。 这些供应商面临的挑战是,模型的性能往往高度依赖于芯片的软件优化是否可用,可能需要执行 PoC 才能了解性能。 延迟要求: 对延迟不太敏感的工作负载(如批处理数据处理或不需要交互式 UI 响应的应用程序)可以使用功能较弱的 GPU,能将计算成本降低多达 3 4 倍。 面向用户的应用程序通常需要高端 GPU 卡来提供引人入胜的实时用户体验,优化模型是必要的,以使成本降低到可管理的范围。 峰值: 生成式 AI 公司的需求经常急剧上升,新产品一经发布,请求量每天增加 10 倍,或者每周持续增长 50%的情况并不罕见。 在低端 GPU 上处理这些峰值通常更容易,因为更多的计算节点可能随时可用。如果这种流量来自于参与度较低或留存率较低的用户,那么以牺牲性能为代价使用较低成本的资源也是有意义的。 此外,算力可以直接转化成 GPU,电脑里的显卡就是 GPU。一张显卡除了 GPU 外,显存也是很重要的参数。GPU 的生产商主要有 NVIDIA 和 ATI。GPU 作为一种专门在个人电脑、工作站、游戏机和一些移动设备上做图像和图形相关运算工作的微处理器,其诞生源自对 CPU 的减负,使显卡减少了对 CPU 的依赖,并进行部分原本 CPU 的工作。
2025-01-06
GPU的计算特性
GPU(图形处理器)具有以下计算特性: 1. 专门在个人电脑、工作站、游戏机和一些移动设备(如平板电脑、智能手机等)上做图像和图形相关运算工作的微处理器。 2. 诞生源自对 CPU 的减负,使显卡减少了对 CPU 的依赖,并进行部分原本 CPU 的工作,尤其是在 3D 图形处理时。 3. 所采用的核心技术有硬件 T&L(几何转换和光照处理)、立方环境材质贴图和顶点混合、纹理压缩和凹凸映射贴图、双重纹理四像素 256 位渲染引擎等,硬件 T&L 技术可以说是 GPU 的标志。 4. 生产商主要有 NVIDIA 和 ATI。 5. 在矩阵乘法方面表现出色,早期使用 GPU 训练神经网络,能使运算速度提高 30 倍。
2025-01-06
比H200更先进的GPU是什么
目前比 H200 更先进的 GPU 是英伟达推出的 Blackwell B200 GPU。 Blackwell B200 GPU 具有以下优势: 1. 性能强大:拥有 2080 亿个晶体管,能提供高达 20 petaflops 的 FP4 性能,而 H100 仅为 4 petaflops,性能提升达 5 倍。 2. 效率提升:将两个 B200 与单个 Grace CPU 相结合的 GB200,能为 LLM 推理工作负载提供 30 倍的性能,同时大大提高效率,成本和能耗降低了 25 倍。 3. 训练能力:可以训练更大、更复杂的模型,一个 GB200 NVL72 机柜可以训练 27 万亿参数的模型,相当于能训练近 15 个 GPT4 这样的模型。 它采用台积电 4NP 工艺节点,其中一个关键改进是采用了第二代 Transformer 引擎,对每个神经元使用 4 位(20 petaflops FP4)而不是 8 位,直接将算力、带宽和模型参数规模提高了一倍。此外,还推出了由 Blackwell 组成的 DGX 超算,如 DGX GB200 系统,具有强大的计算和扩展能力。
2024-12-23
(二) 性能指标(包括服务性能指标、网络性能指标、云性能指标)
对比不同大语言模型的性能需要从多个维度进行考量,具体包括: 1. 理解能力:评估模型对语言的理解程度,涵盖语法、语义、上下文及隐含意义的理解。 2. 生成质量:检查生成文本的质量,如流畅性、相关性和准确性。 3. 知识广度和深度:衡量模型对广泛主题的知识掌握情况,以及对特定领域或话题的理解深度。 4. 泛化能力:测试模型处理未见过任务或数据时的表现,反映其泛化能力。 5. 鲁棒性:查看模型对错误输入、对抗性输入或模糊指令的应对能力。 6. 偏见和伦理:评估生成文本是否存在偏见,以及是否遵循伦理标准。 7. 交互性和适应性:评估在交互环境中的表现,包括对用户反馈的适应性和持续对话能力。 8. 计算效率和资源消耗:考虑模型大小、训练和运行所需的计算资源。 9. 易用性和集成性:评估是否易于集成到不同应用和服务中,以及提供的 API 和工具的易用性。 为了进行有效的比较,可以采用以下方法: 1. 标准基准测试:使用标准的语言模型评估基准,如 GLUE、SuperGLUE、SQuAD 等,这些基准提供统一的测试环境和评分标准。 2. 自定义任务:根据特定需求设计任务,评估模型在特定领域的表现。 3. 人类评估:结合人类评估者的主观评价,特别是在评估文本质量和伦理问题时。 4. A/B 测试:在实际应用场景中,通过 A/B 测试比较不同模型的表现。 5. 性能指标:使用包括准确率、召回率、F1 分数、BLEU 分数等在内的性能指标来量化比较。
2024-12-26