Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

AI中常说的token是什么

Answer

Token 是大模型语言体系中的最小单元。

在人类语言中,不同语言都有最小的字词单元,如汉语的字/词、英语的字母/单词。而在大模型语言体系中,Token 就相当于这样的最小单元。

当我们向大模型发送文本时,大模型会先将文本转换为它自己的语言,并推理生成答案,然后再翻译为我们能看懂的语言输出。

不同厂商的大模型对中文文本的切分方法不同,通常情况下,1 个 Token 约等于 1 - 2 个汉字。

大模型的收费计算方法以及对输入输出长度的限制,都是以 Token 为单位计量的。

例如,在英文中,单词“hamburger”会被分解成“ham”“bur”和“ger”这样的 Token,而常见的短单词如“pear”则是一个 Token。对于英文文本,1 个 Token 大约相当于 4 个字符或 0.75 个单词。但要注意,在给定的 API 请求中,文本提示词和生成的补合起来不能超过模型的最大上下文长度(对于大多数模型,约为 2048 个 Token 或 1500 个单词)。

Content generated by AI large model, please carefully verify (powered by aily)

References

【Token趣闻】AI收费为何要按Token计费?一探究竟!

听说AI是按Token算钱的?这个用起来很费Token电脑一晚上没关,耗了很多Token,是不是感觉一套房子没了?为啥要用Token来计费呢?听说Token是双向收费的问AI问题收费,回答也收费,这有点过分吧那AI还不可劲说废话呀!Token是单词还是字母呢?汉字怎么计费呢阿拉伯语怎么计费呢Token在企业信息化过程中有何不同意义呢?传统的信息化弄个架构搞搞数据库AI的应用为啥会有Token的问题?本文尝试从这些角度来解答,我们常常听到的Token到底是个什么?文章很长,且看吧。在企业环境中,使用AI技术帮助降本增效,了解Token会帮我们更好理解AI在企业中落地。通俗一些理解它是积木,通过搭建积木来完成我们需要的应用,从而提高效率。

走入AI的世界

首先我们给出一些常见缩写和专业词汇的“人话”解释,它们十分基础,但理解他们至关重要。为了讨论更加聚焦,接下来的内容将主要围绕大语言模型为主进行展开(对于其他模态的大模型,我们暂且放放):LLM:Large language model的缩写,即大语言模型,前面百团大战中的各类大模型,说的都是大语言模型(极其应用)Prompt:中文译作提示词,就是我们输入给大模型的文本内容,可以理解为你和大模型说的话,下达的指令。提示词的质量好坏,会显著影响大模型回答的质量,很多时候如果你觉得大模型回答的太差了,AI味儿太浓了,很可能是你的提示词写的不够好,换言之,不是AI不行,而是你不行😌Token:就像人类有着不同的语言,大模型也有着自己的语言体系,如图9,我们发送文本给大模型时,大模型会先把文本转换为他自己的语言,并推理生成答案,而后再翻译成我们看得懂的语言输出给我们。正如人类不同语言都有最小的字词单元(汉语的字/词,英语的字母/单词),大模型语言体系中的最小单元就称为Token。这种人类语言到大模型语言的翻译规则,也是人类定义的,以中文为例,由于不同厂商的大模型采用了不同的文本切分方法,因此一个Token对应的汉字数量也会有所不同,但在通常情况下,1Token≈1-2个汉字。请注意,大模型的收费计算方法,以及对输入输出长度的限制,都是以token为单位计量的。上下文:英文通常翻译为context,指对话聊天内容前、后的内容信息。使用时,上下文长度和上下文窗口都会影响AI大模型回答的质量。上下文长度限制了模型一次交互中能够处理的最大token数量,而上下文窗口限制了模型在生成每个新token时实际参考的前面内容的范围(关于这一点,你需要看完3.2中关于GPT的讨论,方能更好理解)

快速开始

OpenAI API可以应用于几乎所有涉及生成自然语言、代码或图像的任务。我们提供了一系列不同能力级别的[模型](https://ywh1bkansf.feishu.cn/wiki/R70MwasSpik2tgkCr7dc9eTmn0o),适用于不同任务的,并且能够[微调(Fine-tune)](https://ywh1bkansf.feishu.cn/wiki/ATYCwS5RRibGXNkvoC4ckddLnLf)您自己的自定义模型。这些模型可以用于从内容生成到语义搜索和分类的所有领域。[heading2]提示词Prompts[content]设计提示词本质上就是对模型进行“编程”,这通常是通过提供一些指令或几个示例来完成。这与大多数其他NLP服务不同,后者是为单个任务设计的,例如情绪分类或命名实体识别。相反,补全(Completions)和聊天补全(Chat Completions)几乎可用于任何任务,包括内容或代码生成、摘要、扩展、对话、创意写作、风格转换等。[heading2]标记Token[content]我们的模型通过将文本分解为标记(Token)来理解和处理文本。Token可以是单词,也可以是字符块。例如,单词“hamburger”被分解成标记“ham”、“bur”和“ger”,而很短且常见的单词像“pear”是一个Token。许多Token以空格开头,例如“hello”和“bye”。在给定的API请求中处理的Token数量取决于您的输入和输出长度。作为一个粗略的经验法则,对于英文文本,1个Token大约相当于4个字符或0.75个单词。要记住的一个限制是,您的文本提示词和生成的补全合起来不能超过模型的最大上下文长度(对于大多数模型,这是2048个Token,或大约1500个单词)。可以查看我们的[分词器工具](https://platform.openai.com/tokenizer)来了解有关文本如何转换为Token的更多信息。

Others are asking
有免费生成PPT的ai吗
以下是为您推荐的免费生成 PPT 的 AI 工具: 1. Gamma:在各种交流群中被频繁推荐,免费版本能生成质量很高的 PPT,经过不断优化和改进,能满足大多数用户需求。个人使用体验良好,生成效果在内容组织、设计美观度和整体专业感上都表现出色。 2. 歌者 PPT(gezhe.com):是一款永久免费的智能 PPT 生成工具。具有一键生成 PPT 内容、支持多种文件格式转 PPT、多语言支持、海量模板和案例库、在线编辑和分享、增值服务等功能。其优势包括免费使用、智能易用、海量案例、资料转 PPT 专业、AI 翻译等。 3. 讯飞智文:免费,引导较好。 此外,还有一些付费的 PPT 生成工具,如百度文库,付费但质量好。同时也为您提供了一些相关的 PPT 生成网站,如 http://Chatppt.com(付费,自动化程度高)、http://Mindshow.fun(Markdown 导入)、http://Gamma.app(Markdown 导入)、http://Tome.app(AI 配图效果好)。
2025-01-08
有没有能做PPT的ai
以下是一些能做 PPT 的 AI 工具: 1. Gamma:这是一个在线 PPT 制作网站,允许用户通过输入文本和想法提示快速生成幻灯片。它支持嵌入多媒体格式,如 GIF 和视频,以增强演示文稿的吸引力。网址:https://gamma.app/ 2. 美图 AI PPT:由知名图像编辑软件“美图秀秀”的开发团队推出。用户通过输入简单的文本描述来生成专业的 PPT 设计,包含丰富的模板库和设计元素,可根据需求选择不同风格和主题的模板,适用于多种场合。网址:https://www.xdesign.com/ppt/ 3. Mindshow:一款 AI 驱动的 PPT 辅助工具,提供自动布局、图像选择和文本优化等智能设计功能,还包括互动元素和动画效果。网址:https://www.mindshow.fun/ 4. 讯飞智文:由科大讯飞推出的 AI 辅助文档编辑工具,利用科大讯飞在语音识别和自然语言处理领域的技术优势,提供智能文本生成、语音输入、文档格式化等功能。网址:https://zhiwen.xfyun.cn/ 此外,国内的爱设计 PPT 也是值得推荐的选择。它背后拥有强大的团队,成功把握住了 AI 与 PPT 结合的市场机遇,已在国内 AI 生成 PPT 产品中确立了市场领先地位。 卓 sir 还分享了他使用 AI 制作 PPT 的经历,用到的 AI 工具包括 GPT4、WPS AI 和 chatPPT。
2025-01-08
如何想写论文,哪个ai app 更适合拿来使用呢
在论文写作方面,以下是一些适合使用的 AI 应用: 1. 文献管理和搜索: Zotero:结合 AI 技术,可自动提取文献信息,便于管理和整理参考文献。 Semantic Scholar:由 AI 驱动的学术搜索引擎,能提供相关文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:通过 AI 技术进行文本校对、语法修正和写作风格建议,提升语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化论文内容。 3. 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,方便进行数据分析和可视化。 Knitro:用于数学建模和优化的软件,有助于复杂的数据分析和模型构建。 4. 论文结构和格式: LaTeX:虽不是纯粹的 AI 工具,但结合自动化和模板,能高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,有丰富模板库和协作功能,简化论文编写。 5. 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:通过与已发表作品比较,检测潜在抄袭问题。 此外,对于组会准备工作,Claude 和 Gamma.app 是不错的选择。Claude 能帮助快速寻找符合条件的论文、提取精炼论文信息、找到适合的 PPT 制作工具并教会使用。 在 AI 文章排版工具方面: 1. Grammarly:不仅是语法和拼写检查工具,还提供排版功能,改进文档风格和流畅性。 2. QuillBot:AI 驱动的写作和排版工具,改进文本清晰度和流畅性。 3. Latex:广泛用于学术论文排版,使用标记语言描述格式,有许多 AI 辅助的编辑器和插件。 4. PandaDoc:文档自动化平台,使用 AI 帮助创建、格式化和自动化文档生成,适合商业和技术文档。 5. Wordtune:AI 写作助手,重新表述和改进文本,使其更清晰专业。 6. Overleaf:在线 Latex 编辑器,提供丰富模板和协作工具,适合学术写作和排版。 选择合适的工具取决于具体需求,如文档类型、出版标准和个人偏好。学术论文常用 Latex 和 Overleaf,一般文章和商业文档可用 Grammarly 和 PandaDoc 等。
2025-01-08
stable diffusion和国内的这些AI绘画的模型有什么区别
Stable Diffusion 和国内的 AI 绘画模型主要有以下区别: 1. 数据集和学习方式: 在线的国内模型可以访问庞大且不断更新扩展的数据集,还能实时从用户的弱监督学习中获得反馈,从而不断调整和优化绘画策略。而 Stable Diffusion 通常受限于本地设备的计算能力,其数据集和学习反馈相对有限。 2. 计算能力: 在线的国内模型能利用云计算资源进行大规模并行计算,加速模型的训练和推理过程。Stable Diffusion 受本地设备计算能力限制,性能可能不如在线模型。 3. 模型更新: 在线的国内模型可以随时获得最新的版本和功能更新,更好地适应不断变化的绘画风格和技巧。Stable Diffusion 的模型更新相对较慢。 4. 协同学习: 在线的国内模型可以从全球范围内的用户中学习,更好地理解各种绘画风格和技巧。Stable Diffusion 则只能依赖于有限的本地模型,对绘画可能性的了解可能不够全面。 例如,Niji·journey 5 在二次元角色设计领域就展现出比 Stable Diffusion 更强大的性能和实用性。同时,国内还有 DeepSeek、阿里巴巴的 Qwen2 系列、清华大学的 OpenBMB 项目等在不同方面表现出色的模型。
2025-01-08
零基础如何学AI
对于零基础学习 AI,您可以参考以下步骤: 1. 了解 AI 基本概念: 建议阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,您将找到一系列为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 此外,还有一些个人的学习经历供您参考: 二师兄来自上海,计算机零基础。2024 年 2 月在售后群接触到 AI 绘画,下载安装包和教学视频,迈出学习第一步。3 月啃完相关教程并开始炼丹。4 月与小伙伴探讨 AI 变现途径,5 月因工作变动在无硬件支持下继续学习。 参加「AI 编程共学」活动,包括 10 月 28 日麦橘的 0 基础做小游戏分享、10 月 29 日梦飞的 0 编程基础入门 Cursor 极简使用指南、10 月 30 日银海的 0 基础学做 AI 拍立得、10 月 31 日的 0 基础做小游戏分享等。
2025-01-08
AI前端开发
以下是关于 AI 前端开发的相关内容: 白九龄在 0 基础使用 Cursor 开发微信小程序时,遇到了诸多问题。如添加背景元素营造氛围、实现自适应和滑动效果、处理意图分析页面的信息展示和排版风格、生成海报时的字数显示和行数限制以及位置和视觉呈现的调整等。由于大模型自身的限制,无法很好地理解一些需求,导致开发过程中出错频繁。此外,还存在模型 token 费用和变现困难等问题。 Yeadon 以“Windsurf 学习共创社区”为例,演示了如何借助 AI 能力快速构建现代化 Web 应用。技术选型为 Vue + TypeScript,目标用户为零基础开发学习者,参考项目为 Cursor101。开发流程包括需求分析与代码生成、环境配置自动化、问题诊断与修复、界面优化与细节打磨、功能迭代与完善。在开发过程中,输入需求让 Windsurf 进行代码生成,可能会出现报错,将报错信息返回给 Cascade 进行自动检查和修复。之后对网页进行细节优化,如导航栏和首页。 齐码蓝开发一个可以承载离谱生物档案的网站,每个页面包含生物介绍、图片、头像、文字介绍,并支持打字和语音对话以及展示相关离谱事件。项目初始化与配置方面,推荐的技术栈包括前端的 React.js 或 Vue.js,后端的 Node.js 加上 Express.js,数据库选择 MongoDB,语音处理使用 Google Cloud SpeechtoText 和 TexttoSpeech API。开发环境配置方面,选择 Visual Studio Code 作为 IDE,安装 Node.js 时会一并安装 npm 用于管理项目依赖。项目目录结构可能如下所示。
2025-01-08
智谱 注册送2000万 tokens
智谱 BigModel 共学营第二期相关信息如下: 本期共学应用为人人可打造的微信助手。 注册智谱 Tokens:智谱 AI 开放平台的网址为 https://bigmodel.cn/ 。参与课程至少需要有 token 体验资源包,获取资源包有三种方式: 新注册用户,注册即送 2000 万 Tokens。 充值/购买多种模型的低价福利资源包,直接充值现金,所有模型可适用的网址为 https://open.bigmodel.cn/finance/pay 。 共学营报名赠送资源包。 语言资源包:免费 GLM4Flash 语言模型/ 。 多模态资源包: 。 多模态资源包: 。所有资源包购买地址:https://bigmodel.cn/finance/resourcepack 。 先去【财务台】左侧的【资源包管理】看看自己的资源包,本次项目会使用到的有 GLM4、GLM4VPlus、CogVideoX、CogView3Plus 模型。 进入智能体中心我的智能体,开始创建智能体。 会议 ID:185 655 937 ,会议链接:https://vc.feishu.cn/j/185655937 ,共学营互动群。 BigModel 开放平台是智谱一站式的大模型开发及应用构建平台。基于智谱自研的全模型矩阵,面向企业客户及合作伙伴,支持多样化模型和自定义编排。平台提供即插即用的智能工具箱,包括 API 接口、模型微调及部署功能,同时具备流程编排以适应复杂业务场景。还提供免费、好用、高并发的 GLM4Flash 模型,0 元上手大模型,新用户注册登录即送 2000 万 Tokens,调用智谱全家桶模型。更多应用场景包括: 。
2024-12-05
AI 评估 GPU 大模型的性能指标,包括输入 token 和输出 token 能力的区分。
以下是关于 AI 评估 GPU 大模型性能指标中输入 token 和输出 token 能力区分的相关内容: 大模型是通过输入大量语料进行训练,从而获得类似人类的“思考”能力,能够进行文本生成、推理问答、对话、文档摘要等工作。在大模型的训练和使用过程中: 1. 训练需要大量计算,GPU 更合适,只有具备大量 GPU 的才有资本训练大模型。 2. 大模型需要大量数据量,几千亿序列(Token)的输入基本是标配。 3. 要用合适的算法让大模型更好理解 Token 之间的关系。 4. 为让大模型更好胜任某一行业,需要进行微调(fine tuning)指导。 5. 完成上述步骤后,大模型就可以进行如翻译、问答等推导(infer)工作。 Token 是大模型语言体系中的最小单元,人类语言发送给大模型时,会先转换为其自身语言,推理生成答案后再翻译输出。不同厂商的大模型对中文的文本切分方法不同,通常 1Token 约等于 1 2 个汉字。大模型的收费计算方法以及对输入输出长度的限制,都是以 token 为单位计量的。 在评估 GPU 大模型性能时,显卡的常规指标很重要。大部分模型默认采用 FP16 的加载方式,因此显卡的性能指标主要关注 FP16 的算力和显存大小。算力影响推理速度,包括输入数据处理和持续吐出数据的速度,会体现在从提示词输入后到第一个输出的 token 的等待时间间隔,以及流式输出下每秒吐字的字数,通常每秒 10 token 以上能获得较好的用户体验。显存大小影响能否装载模型,可通过“参数大小乘 2”简化判断所需显存大小,但实际显存需求还会受其他因素影响。
2024-12-05
目前各大主流模型的 max output token
以下是目前各大主流模型的 max output token 情况: Claude2100 k 模型的上下文上限是 100k Tokens,即 100000 个 token。 ChatGPT16 k 模型的上下文上限是 16k Tokens,即 16000 个 token。 ChatGPT432 k 模型的上下文上限是 32k Tokens,即 32000 个 token。 需要注意的是,token 限制同时对一次性输入和一次对话的总体上下文长度生效。不是达到上限就停止对话,而是会遗忘最前面的对话。 如果想直观查看 GPT 如何切分 token,可以打开: 。此外,GPT3 和 GPT3.5/4 的 token 计算方式不同,英文的 Token 占用相对于中文较少,这也是很多中文长 Prompt 会被建议翻译成英文设定然后要求中文输出的原因。
2024-11-24
什么是AI中的Token
Token 在 AI 中,就像人类语言有最小的字词单元,大模型也有自己的语言体系,其中的最小单元被称为 Token。 在将人类发送的文本传递给大模型时,大模型会先把文本转换为自己的语言,推理生成答案后再翻译为人类能看懂的语言输出。不同厂商的大模型对中文的文本切分方法不同,通常情况下,1 Token 约等于 1 2 个汉字。 对于英文文本,1 个 Token 大约相当于 4 个字符或 0.75 个单词。Token 可以是单词,也可以是字符块,例如单词“hamburger”被分解成“ham”“bur”和“ger”,而很短且常见的单词像“pear”是一个 Token。 大模型的收费计算方法以及对输入输出长度的限制,都是以 Token 为单位计量的。
2024-11-20
在调用大模型的过程中,将token设置最大值,大模型回答还是会出现中断的情况,应该怎么避免和解决
在调用大模型的过程中,将 token 设置最大值但回答仍出现中断的情况,可以从以下几个方面避免和解决: 1. 调整相关参数: Max_output_tokens:根据具体需求设置合适的值。若需要更短响应,设为较低值;若希望更长回答,设为较高值。但注意设置过低可能导致回答在奇怪位置截断。 Temperature:值越小,模型返回结果越确定;值调高,可能更随机和具创造性。对于质量保障等任务设低,诗歌生成等创造性任务可适当调高。 Top_p:用于控制模型返回结果的真实性,需要准确和事实答案时调低,想要更多样化答案时调高。一般改变 Temperature 和 Top_p 其中一个参数即可。 Max Length:调整以控制大模型生成的 token 数,有助于防止生成冗长或不相关响应并控制成本。 Stop Sequences:指定字符串,模型生成文本遇到时停止,可控制响应长度和结构。 Frequency Penalty:对下一个生成的 token 进行惩罚,与 token 在响应和提示中出现次数成比例,减少单词重复。 2. 利用插入文本的最佳实践: 使用 max_tokens > 256,模型插入较长完成时效果更好,且只按实际生成 token 数收费。 优先选择 finish_reason == "stop",表明模型成功连接后缀且完成质量良好。 重新采样 3 5 次,温度较高以增加多样性。若所有返回示例的 finish_reason 都是“length”,可能 max_tokens 太小,需考虑增加再重试。 尝试给出更多线索,通过提供示例帮助模型确定自然停顿处。
2024-11-18
上下文窗口和 tokens限制
以下是关于上下文窗口和 tokens 限制的详细解释: Token 方面: Token 是大模型语言体系中的最小单元。人类语言发送给大模型时,会先被转换为大模型自己的语言,大模型推理生成答案后再翻译为人类能看懂的语言输出。 不同厂商的大模型对中文的文本切分方法不同,通常 1Token 约等于 1 2 个汉字。 大模型的收费计算方法以及对输入输出长度的限制,都是以 token 为单位计量的。 上下文方面: 上下文指对话聊天内容前、后的内容信息,其长度和窗口都会影响大模型回答的质量。 上下文长度限制了模型一次交互中能够处理的最大 token 数量,上下文窗口限制了模型在生成每个新 token 时实际参考的前面内容的范围。 目前常见模型的 token 限制: Claude 2 100k 模型的上下文上限是 100k Tokens,即 100000 个 token。 ChatGPT 16k 模型的上下文上限是 16k Tokens,即 16000 个 token。 ChatGPT 4 32k 模型的上下文上限是 32k Tokens,即 32000 个 token。 Token 限制的影响: 对一次性输入和一次对话的总体上下文长度同时生效。 当达到上限时,不是停止对话,而是遗忘最前面的对话,类似于鱼的短暂记忆。 查看 token 使用量: 对于 GPT,可以打开查看实时生成的 tokens 消耗和对应字符数量。 需注意 GPT3 和 GPT3.5/4 的 token 计算方式不同,且英文的 Token 占用相对于中文较少,这也是很多中文长 Prompt 会被建议翻译成英文设定然后要求中文输出的原因。 Token 限制对 Prompt 编写的影响:理解前面的内容后,答案应在您的脑海中有雏形。
2024-11-15