Navigate to WaytoAGI Wiki →
Home/question.detail.breadcrumb.questionList/question.detail.breadcrumb.questionDetail

目前各大主流模型的 max output token

Answer

以下是目前各大主流模型的 max output token 情况:

  • Claude-2-100 k 模型的上下文上限是 100k Tokens,即 100000 个 token。
  • ChatGPT-16 k 模型的上下文上限是 16k Tokens,即 16000 个 token。
  • ChatGPT-4-32 k 模型的上下文上限是 32k Tokens,即 32000 个 token。

需要注意的是,token 限制同时对一次性输入和一次对话的总体上下文长度生效。不是达到上限就停止对话,而是会遗忘最前面的对话。

如果想直观查看 GPT 如何切分 token,可以打开:https://platform.openai.com/tokenizer 。此外,GPT3 和 GPT3.5/4 的 token 计算方式不同,英文的 Token 占用相对于中文较少,这也是很多中文长 Prompt 会被建议翻译成英文设定然后要求中文输出的原因。

Content generated by AI large model, please carefully verify (powered by aily)

References

关于 token 你应该了解……

从官方文档可以看到我们目前使用的模型有哪些,以及每个模型的token限制。除此之外,最直观能感受到各类模型token限制的其实是poe:在这里我们看到的16K、32K、100K就是指token上限。Claude-2-100 k模型的上下文上限是100k Tokens,也就是100000个tokenChatGPT-16 k模型的上下文上限是16k Tokens,也就是16000个tokenChatGPT-4-32 k模型的上下文上限是32k Tokens,也就是32000个token但似乎很多小伙伴不理解这个限制具体影响在哪些方面。所以我替你们问了一下GPT(真不懂你们为什么不自己问/手动狗头)从回答可以看出,这个token限制是同时对下述两者生效的:1、一次性输入2、一次对话的总体上下文长度,值得注意的是这个长度不是达到上限就停止对话,而是遗忘最前面的对话,你可以理解为鱼的记忆只有7秒,第8秒的时候他会忘记第1秒的事,第9秒的时候……(某些同学是不是恍然大悟了)

小七姐:Prompt 喂饭级系列教程小白学习指南(三)

Claude-2-100 k模型的上下文上限是100k Token s,也就是100000个TokenChatGPT-16 k模型的上下文上限是16k Token s,也就是16000个TokenChatGPT-4-32 k模型的上下文上限是32k Token s,也就是32000个Token但似乎很多小伙伴不理解这个限制具体影响在哪些方面。所以我替你们问了一下GPT从回答可以看出,这个Token限制是同时对下述两者生效的:一次性输入一次对话的总体上下文长度,值得注意的是这个长度不是达到上限就停止对话,而是遗忘最前面的对话,你可以理解为鱼的记忆只有7秒,第8秒的时候他会忘记第1秒的事,第9秒的时候……(某些同学是不是恍然大悟了)三、怎么看我使用了多少Token如果我们想要直观的查看GPT是如何切分token的话,我们可以打开:[https://platform.openai.com/tokenizer](https://platform.openai.com/tokenizer)在下图可以看到实时生成的tokens消耗和对应字符数量请注意,GPT3和GPT3.5/4的token计算方式是不一样的。(GPT3用的编码是p50k/r50k,GPT3.5是cl100K_base)在这里值得注意的是,英文的Token占用相对于中文是少很多的,这也是为什么很多中文长Prompt会被建议翻译成英文设定,然后要求中文输出的原因。四、Token限制对Prompt编写有什么影响当你理解了前面的一、二、三之后,这个问题的答案应该已经在你脑子里有雏形了:

走入AI的世界

首先我们给出一些常见缩写和专业词汇的“人话”解释,它们十分基础,但理解他们至关重要。为了讨论更加聚焦,接下来的内容将主要围绕大语言模型为主进行展开(对于其他模态的大模型,我们暂且放放):LLM:Large language model的缩写,即大语言模型,前面百团大战中的各类大模型,说的都是大语言模型(极其应用)Prompt:中文译作提示词,就是我们输入给大模型的文本内容,可以理解为你和大模型说的话,下达的指令。提示词的质量好坏,会显著影响大模型回答的质量,很多时候如果你觉得大模型回答的太差了,AI味儿太浓了,很可能是你的提示词写的不够好,换言之,不是AI不行,而是你不行😌Token:就像人类有着不同的语言,大模型也有着自己的语言体系,如图9,我们发送文本给大模型时,大模型会先把文本转换为他自己的语言,并推理生成答案,而后再翻译成我们看得懂的语言输出给我们。正如人类不同语言都有最小的字词单元(汉语的字/词,英语的字母/单词),大模型语言体系中的最小单元就称为Token。这种人类语言到大模型语言的翻译规则,也是人类定义的,以中文为例,由于不同厂商的大模型采用了不同的文本切分方法,因此一个Token对应的汉字数量也会有所不同,但在通常情况下,1Token≈1-2个汉字。请注意,大模型的收费计算方法,以及对输入输出长度的限制,都是以token为单位计量的。上下文:英文通常翻译为context,指对话聊天内容前、后的内容信息。使用时,上下文长度和上下文窗口都会影响AI大模型回答的质量。上下文长度限制了模型一次交互中能够处理的最大token数量,而上下文窗口限制了模型在生成每个新token时实际参考的前面内容的范围(关于这一点,你需要看完3.2中关于GPT的讨论,方能更好理解)

Others are asking
Minimax是出自那家的产品
MiniMax 是一家通用人工智能时代基础设施建设者和内容应用创造者,成立于 2021 年 12 月。作为国内唯一一家拥有文本、语音、视觉多种模态融合的通用大模型引擎能力并打通产品全链路的科技创业公司,MiniMax 致力于用领先的通用人工智能(AGI)引擎技术,通过多场景和多维度应用及交互,推动通用人工智能技术新范式变革,重塑人工智能商业模式。 以技术和产品为核心驱动力,MiniMax 自研了整套端到端 AGI 引擎系统。核心技术研发成员均来自全球知名高校和全球顶尖科技公司,拥有世界顶尖自然语言处理,语音,计算机视觉,计算机图形学等工业界和学术界经验,拥有多项全球领先的人工智能领域研究成果,具有上百个全球发明专利,1/3 的团队成员拥有世界顶尖技术实验室的博士学位,团队核心成员皆亲历了海内外人工智能 1.0 时代的发展变化,对全球人工智能行业有着深刻的理解。 2023 年 8 月,MiniMax 的 ABAB 大模型正式上线,这是一款基于 Transformer 架构的预训练语言模型,具有很高的语言理解和生成能力。该模型在大规模语料库上进行训练,能够生成自然流畅的文本,并且在多个自然语言处理任务上取得了优秀的性能。
2024-05-28
Error occurred when executing IPAdapterAdvanced: insightface model is required for FaceID models File "D:\AI\comfyui_20240421\execution.py", line 151, in recursive_execute output_data, output_ui = get_output_data(obj, input_data_all) File "D:\AI\co
以下是针对您所遇到的报错问题的一些解决建议: 1. 对于 ipadater 部分报错说 model 不存在的情况,将文中画圈部分修改调整到不报错。Pulid 部分,除了下载好对应的节点以及参考官方网站最下面的安装对应要求外,还要注意上图中的第二要点,对应安装一些内容,具体要求可查看云盘中命名为“pulid 插件模型位置.png”的文件及对应的云盘链接:PulID 全套模型,链接:https://pan.baidu.com/s/1ami4FA4w9mjuAsPK49kMAw?pwd=y6hb,提取码:y6hb。否则将会遇到报错:Error occurred when executing PulidEvaClipLoader。 2. 对于 Ollama 大模型部分,为了应对没下载大模型带来的报错,需要下载大模型。首先,下载 ollama,网站: 。 3. 如果缺少 ipadapter 的模型,可去这个网址下载:https://github.com/cubiq/ComfyUI_IPAdapter_plus 。如果遇到“Error occurred when executing IPAdapterUnifiedLoader:ClipVision model not found.......”类似的报错,可在这个网址里找到多个关于 IPAdapter 报错的解决办法:https://github.com/cubiq/ComfyUI_IPAdapter_plus/issues/313 。 另外,换脸工作流的核心组件是 Apply InstantID Advanced 节点,这个节点的作用就是将源人脸替换到目标图像中。其中,instantID 模型擅长提取图片的高层次特征,包括面部的纹理信息、几何结构、风格特征等,在图中例子是 IPAdpater,用于识别和保留目标图像 image_kps 的风格并迁移到生成图像中。instantID Face Analysis 节点用于提取人脸五官的特征向量,作用是使生成图像时,人脸的眼睛、鼻子、嘴巴等样子仍然符合源人脸 image 的特征。controlnet 模型的作用是识别目标图像 image_kps 的低层次特征,包括骨架、姿势、边缘、结构。controlnet 模型和 instantID 模型起到不同的控制作用,结合使用可以达到将源人脸的五官替换目标图像中五官的效果。
2024-09-03
智谱 注册送2000万 tokens
智谱 BigModel 共学营第二期相关信息如下: 本期共学应用为人人可打造的微信助手。 注册智谱 Tokens:智谱 AI 开放平台的网址为 https://bigmodel.cn/ 。参与课程至少需要有 token 体验资源包,获取资源包有三种方式: 新注册用户,注册即送 2000 万 Tokens。 充值/购买多种模型的低价福利资源包,直接充值现金,所有模型可适用的网址为 https://open.bigmodel.cn/finance/pay 。 共学营报名赠送资源包。 语言资源包:免费 GLM4Flash 语言模型/ 。 多模态资源包: 。 多模态资源包: 。所有资源包购买地址:https://bigmodel.cn/finance/resourcepack 。 先去【财务台】左侧的【资源包管理】看看自己的资源包,本次项目会使用到的有 GLM4、GLM4VPlus、CogVideoX、CogView3Plus 模型。 进入智能体中心我的智能体,开始创建智能体。 会议 ID:185 655 937 ,会议链接:https://vc.feishu.cn/j/185655937 ,共学营互动群。 BigModel 开放平台是智谱一站式的大模型开发及应用构建平台。基于智谱自研的全模型矩阵,面向企业客户及合作伙伴,支持多样化模型和自定义编排。平台提供即插即用的智能工具箱,包括 API 接口、模型微调及部署功能,同时具备流程编排以适应复杂业务场景。还提供免费、好用、高并发的 GLM4Flash 模型,0 元上手大模型,新用户注册登录即送 2000 万 Tokens,调用智谱全家桶模型。更多应用场景包括: 。
2024-12-05
AI 评估 GPU 大模型的性能指标,包括输入 token 和输出 token 能力的区分。
以下是关于 AI 评估 GPU 大模型性能指标中输入 token 和输出 token 能力区分的相关内容: 大模型是通过输入大量语料进行训练,从而获得类似人类的“思考”能力,能够进行文本生成、推理问答、对话、文档摘要等工作。在大模型的训练和使用过程中: 1. 训练需要大量计算,GPU 更合适,只有具备大量 GPU 的才有资本训练大模型。 2. 大模型需要大量数据量,几千亿序列(Token)的输入基本是标配。 3. 要用合适的算法让大模型更好理解 Token 之间的关系。 4. 为让大模型更好胜任某一行业,需要进行微调(fine tuning)指导。 5. 完成上述步骤后,大模型就可以进行如翻译、问答等推导(infer)工作。 Token 是大模型语言体系中的最小单元,人类语言发送给大模型时,会先转换为其自身语言,推理生成答案后再翻译输出。不同厂商的大模型对中文的文本切分方法不同,通常 1Token 约等于 1 2 个汉字。大模型的收费计算方法以及对输入输出长度的限制,都是以 token 为单位计量的。 在评估 GPU 大模型性能时,显卡的常规指标很重要。大部分模型默认采用 FP16 的加载方式,因此显卡的性能指标主要关注 FP16 的算力和显存大小。算力影响推理速度,包括输入数据处理和持续吐出数据的速度,会体现在从提示词输入后到第一个输出的 token 的等待时间间隔,以及流式输出下每秒吐字的字数,通常每秒 10 token 以上能获得较好的用户体验。显存大小影响能否装载模型,可通过“参数大小乘 2”简化判断所需显存大小,但实际显存需求还会受其他因素影响。
2024-12-05
什么是AI中的Token
Token 在 AI 中,就像人类语言有最小的字词单元,大模型也有自己的语言体系,其中的最小单元被称为 Token。 在将人类发送的文本传递给大模型时,大模型会先把文本转换为自己的语言,推理生成答案后再翻译为人类能看懂的语言输出。不同厂商的大模型对中文的文本切分方法不同,通常情况下,1 Token 约等于 1 2 个汉字。 对于英文文本,1 个 Token 大约相当于 4 个字符或 0.75 个单词。Token 可以是单词,也可以是字符块,例如单词“hamburger”被分解成“ham”“bur”和“ger”,而很短且常见的单词像“pear”是一个 Token。 大模型的收费计算方法以及对输入输出长度的限制,都是以 Token 为单位计量的。
2024-11-20
在调用大模型的过程中,将token设置最大值,大模型回答还是会出现中断的情况,应该怎么避免和解决
在调用大模型的过程中,将 token 设置最大值但回答仍出现中断的情况,可以从以下几个方面避免和解决: 1. 调整相关参数: Max_output_tokens:根据具体需求设置合适的值。若需要更短响应,设为较低值;若希望更长回答,设为较高值。但注意设置过低可能导致回答在奇怪位置截断。 Temperature:值越小,模型返回结果越确定;值调高,可能更随机和具创造性。对于质量保障等任务设低,诗歌生成等创造性任务可适当调高。 Top_p:用于控制模型返回结果的真实性,需要准确和事实答案时调低,想要更多样化答案时调高。一般改变 Temperature 和 Top_p 其中一个参数即可。 Max Length:调整以控制大模型生成的 token 数,有助于防止生成冗长或不相关响应并控制成本。 Stop Sequences:指定字符串,模型生成文本遇到时停止,可控制响应长度和结构。 Frequency Penalty:对下一个生成的 token 进行惩罚,与 token 在响应和提示中出现次数成比例,减少单词重复。 2. 利用插入文本的最佳实践: 使用 max_tokens > 256,模型插入较长完成时效果更好,且只按实际生成 token 数收费。 优先选择 finish_reason == "stop",表明模型成功连接后缀且完成质量良好。 重新采样 3 5 次,温度较高以增加多样性。若所有返回示例的 finish_reason 都是“length”,可能 max_tokens 太小,需考虑增加再重试。 尝试给出更多线索,通过提供示例帮助模型确定自然停顿处。
2024-11-18
上下文窗口和 tokens限制
以下是关于上下文窗口和 tokens 限制的详细解释: Token 方面: Token 是大模型语言体系中的最小单元。人类语言发送给大模型时,会先被转换为大模型自己的语言,大模型推理生成答案后再翻译为人类能看懂的语言输出。 不同厂商的大模型对中文的文本切分方法不同,通常 1Token 约等于 1 2 个汉字。 大模型的收费计算方法以及对输入输出长度的限制,都是以 token 为单位计量的。 上下文方面: 上下文指对话聊天内容前、后的内容信息,其长度和窗口都会影响大模型回答的质量。 上下文长度限制了模型一次交互中能够处理的最大 token 数量,上下文窗口限制了模型在生成每个新 token 时实际参考的前面内容的范围。 目前常见模型的 token 限制: Claude 2 100k 模型的上下文上限是 100k Tokens,即 100000 个 token。 ChatGPT 16k 模型的上下文上限是 16k Tokens,即 16000 个 token。 ChatGPT 4 32k 模型的上下文上限是 32k Tokens,即 32000 个 token。 Token 限制的影响: 对一次性输入和一次对话的总体上下文长度同时生效。 当达到上限时,不是停止对话,而是遗忘最前面的对话,类似于鱼的短暂记忆。 查看 token 使用量: 对于 GPT,可以打开查看实时生成的 tokens 消耗和对应字符数量。 需注意 GPT3 和 GPT3.5/4 的 token 计算方式不同,且英文的 Token 占用相对于中文较少,这也是很多中文长 Prompt 会被建议翻译成英文设定然后要求中文输出的原因。 Token 限制对 Prompt 编写的影响:理解前面的内容后,答案应在您的脑海中有雏形。
2024-11-15
在tensorflow中实现分词器tokenizer
在 TensorFlow 中实现分词器(tokenizer)的方法如下: 1. 对文本数据进行预处理,添加开始和结束特殊标记。 2. 通过使用 TensorFlow 的文本矢量化模块,可以创建分词器。创建分词器后,可以将文本中的词转换为索引,例如像“开始标记”“猫”“狗”等。 3. 在 Stable Diffusion 中,Tokenizer 首先将 Prompt 中的每个词转换为一个称为标记(token)的数字,这是计算机理解单词的方式。然后,通过 text_encoder 将每个标记都转换为一个 768 值的向量,称为嵌入(embedding),用于 UNet 的 condition。 4. 需要注意的是,prompt 的长度会占用 token 数量。在大型语言模型中,输入的文本会被分词器拆分成一串 token 序列输入给模型,每个 token 通常对应一个单词或字符串片段。不同的分词器有不同的分词策略和词表,对于同一个 prompt,可能得到不同的 token 数。很多大模型对输入长度有限制,比如 GPT3 接受的最大 token 数是 2048。因此,要控制好 prompt 的长度,可使用一些技巧来节省 token 数,如使用简洁的词语、缩写/代词替代复杂词组、去除不必要的标点和空格、小写替代部分大写单词等。对于特别复杂的输入,可以考虑分步骤输入以规避长度限制。
2024-09-23
类似 智能驾驶、智能客服 等,AI 在各大行业的主要应用(成熟一点的)有哪些
以下是 AI 在各大行业的一些主要成熟应用: 智能办公: 快速总结群聊内容或会议信息。 为写公文提供结构模板参考。 智能客服: 借助 agent 接入企业的 QA 知识库,回应用户信息,并依据回答下达诸如取消订单、催快递之类的 action 指令。 AI 导购: 依据用户问题,结合产品介绍和评论信息等,为用户推荐更准确、精准的产品。 医疗保健: 医学影像分析,辅助诊断疾病。 加速药物研发,识别潜在药物候选物和设计新治疗方法。 个性化医疗,分析患者数据提供个性化治疗方案。 机器人辅助手术,提高手术精度和安全性。 金融服务: 风控和反欺诈,识别和阻止欺诈行为。 信用评估,帮助金融机构做出贷款决策。 投资分析,分析市场数据辅助投资决策。 提供 24/7 客户服务,回答常见问题。 零售和电子商务: 产品推荐,分析客户数据推荐可能感兴趣的产品。 改善搜索结果和提供个性化购物体验。 动态定价,根据市场需求调整产品价格。 汽车行业: 自动驾驶技术,利用 AI 进行图像识别、传感器数据分析和决策制定。 车辆安全系统,如自动紧急制动、车道保持辅助和盲点检测。 个性化用户体验,根据驾驶员偏好和习惯调整车辆设置。 预测性维护,分析车辆实时数据预测潜在故障和维护需求。 生产自动化,用于自动化生产线,提高生产效率和质量控制。 销售和市场分析。
2024-09-05
国内各大主流AI的特点及优势对比分析,请用表格形式展示
|AI名称|特点|优势| |||| |XiaoHu.AI|提供实时互动学习体验|测试版模型在高中和初中数学问题上的准确率比 GPT4 高 20%,数学推理方面比 GPT4o 高 15%,已被全球 200 多个国家的 40 万名学生使用,创始人是 14 岁考入大学的女学霸| |阿里 CosyVoice 语音合成模型|精细控制、自然模拟、情感和风格|生成符合性别、年龄和个性特征的声音,模拟笑声、咳嗽和呼吸等人类语音自然特征,为声音添加情感和风格,更具表现力| |百度“文心 4.0”|/|是当前国内能力最好的模型之一| |阿里“通义千问” QwenVLMAX 和 Qwen2.0|/|有比较好的指标,与钉钉的结合可圈可点| |字节“云雀”|/|/| |腾讯“混元”|/|/|
2024-08-10
Ai+宗教佛学自媒体,用mj生成图片加runway动起来在配合剪映制作成视频,最后配上符合佛学的宁静音乐。用它制作视频,上传到各大平台,分析此赛道并复现
这个赛道结合了多种技术和内容,需要进行以下步骤来实现: 1. 准备素材: 收集宗教佛学相关的图片、视频素材,以及符合佛学理念的宁静音乐。这些素材可以来自于网络上的免费资源或者自己制作,确保版权合法。 2. 使用 MJ 生成图片: 利用 Midjourney(MJ)生成符合宗教佛学主题的图片。可以在 MJ 平台上选择合适的模板和风格,生成高质量的图片素材。 3. 使用 Runway 生成动画: 使用 Runway 将生成的图片转换为动态效果。Runway 是一个 AI 动画生成工具,可以为静态图片添加生动的动画效果,增强视觉效果。 4. 使用剪映制作视频: 将生成的动态图片和视频素材导入到剪映等视频编辑软件中,进行剪辑和编辑。根据需要调整剪辑顺序、添加过渡效果、字幕等,制作成符合宗教佛学主题的视频内容。 5. 配音乐: 在视频编辑过程中,将符合佛学理念的宁静音乐添加到视频中。选择合适的音乐可以增强视频的氛围和情感,让观众更好地沉浸其中。 6. 导出和上传: 完成视频编辑后,将视频导出为常见的视频格式,如MP4等。然后上传到各大视频平台,如YouTube、抖音、Bilibili等,分享给目标受众。 7. 分析和优化: 视频上传后,关注观看量、点赞数、评论等指标,分析观众反馈和视频效果。根据分析结果,优化视频内容和推广策略,提升视频的影响力和曝光度。 以上就是实现该赛道的步骤,需要整合利用 MJ、Runway、剪映等工具和平台,以及宗教佛学素材和宁静音乐,制作出符合佛学理念的高质量视频内容,并通过上传到各大平台进行推广和分享。
2024-04-20