Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

请简单解释或者举例DeepSeek与ChatGPT的区别,原理

Answer

DeepSeek 与 ChatGPT 的区别主要体现在以下方面:

  1. 在 App Store 排名上,DeepSeek R1 冲到了美国区 App Store 第一名,超越了 ChatGPT。
  2. 口碑与技术实力方面,DeepSeek 没有市场部和市场投放,完全依靠技术实力和口碑获得用户认可。
  3. 性能与成本方面,DeepSeek R1 的效果比肩顶尖闭源模型 o1,但价格仅为 o1 的 27 分之一。
  4. 开源与创新方面,DeepSeek R1 开源让行业认知整体拉齐,得到全世界尊重和喜爱。
  5. 训练方式上,DeepSeek R1 的创新模型 R1 Zero 跳过了监督微调(SFT)阶段,直接采用强化学习(RL)进行训练。
  6. 在回答用户问题时,DeepSeek R1 会先进行“自问自答”式的推理思考,模拟人类的深度思考,以提升最终回答的质量,而 ChatGPT 可能没有这种特定的机制。

原理方面:DeepSeek R1 与 ChatGPT 同属于基于强化学习 RL 的推理模型,但在具体的训练和推理过程中可能存在差异。例如,DeepSeek R1 在训练时可能有独特的方法和策略,使其在性能和表现上与 ChatGPT 有所不同。

Content generated by AI large model, please carefully verify (powered by aily)

References

详解:DeepSeek深度推理+联网搜索 目前断档第一

App Store排名:DeepSeek R1冲到了美国区App Store第一名,超越了OpenAI的ChatGPT。口碑与技术实力:DeepSeek没有市场部,也没有做任何市场投放,完全依靠技术实力和口碑赢得了用户的认可。[heading2]DeepSeek R1的技术特点[content]性能与成本:DeepSeek R1的效果比肩顶尖闭源模型o1,但价格仅为o1的27分之一。开源与创新:DeepSeek R1的开源让行业认知整体拉齐,得到了全世界的尊重和喜爱。[heading2]DeepSeek R1的创新模型R1 Zero[content]训练方式:R1 Zero跳过了监督微调(SFT)阶段,直接采用强化学习(RL)进行训练。研究结论:模型的思考能力是可以自我涌现出来的,这一发现具有革命性。[heading2]DeepSeek R1的影响[content]行业影响:DeepSeek R1的发布引发了美国科技界的恐慌,Meta内部对DeepSeek V3的出色表现感到震惊。市场影响:DeepSeek R1的低成本和高性能使得英伟达的市场地位受到挑战,其股价短期内大跌超3%,市值蒸发超300亿美元(27日盘前又跌14%)。[heading2]DeepSeek R1的未来展望[content]开源模型的进步:开源模型的进步将超越闭源模型,顶级模型的推理价格急速下降,技术更加普惠平权。AI编程与创作:AI编程将随着模型能力的提高,显著提升效率并降低门槛,AI的创作能力将不断提升,催生更多AI创作的可消费内容形式。

详解:DeepSeek深度推理+联网搜索 目前断档第一

App Store排名:DeepSeek R1冲到了美国区App Store第一名,超越了OpenAI的ChatGPT。口碑与技术实力:DeepSeek没有市场部,也没有做任何市场投放,完全依靠技术实力和口碑赢得了用户的认可。[heading2]DeepSeek R1的技术特点[content]性能与成本:DeepSeek R1的效果比肩顶尖闭源模型o1,但价格仅为o1的27分之一。开源与创新:DeepSeek R1的开源让行业认知整体拉齐,得到了全世界的尊重和喜爱。[heading2]DeepSeek R1的创新模型R1 Zero[content]训练方式:R1 Zero跳过了监督微调(SFT)阶段,直接采用强化学习(RL)进行训练。研究结论:模型的思考能力是可以自我涌现出来的,这一发现具有革命性。[heading2]DeepSeek R1的影响[content]行业影响:DeepSeek R1的发布引发了美国科技界的恐慌,Meta内部对DeepSeek V3的出色表现感到震惊。市场影响:DeepSeek R1的低成本和高性能使得英伟达的市场地位受到挑战,其股价短期内大跌超3%,市值蒸发超300亿美元(27日盘前又跌14%)。[heading2]DeepSeek R1的未来展望[content]开源模型的进步:开源模型的进步将超越闭源模型,顶级模型的推理价格急速下降,技术更加普惠平权。AI编程与创作:AI编程将随着模型能力的提高,显著提升效率并降低门槛,AI的创作能力将不断提升,催生更多AI创作的可消费内容形式。

非技术人 10 分钟读懂 Deepseek R1|天才模型养成与 AI 超越人类的破晓时刻

就我观察而言,大多数人讨论的DeepSeek,基本指的是它的深度思考版本——DeepSeek R1。DeepSeek R1不同于先前的普通模型(如ChatGPT-4、Claude 3.5 sonnet、豆包、通义等),它与OpenAI现在最先进的模型o1、o3一样,同属于一条技术路线:基于强化学习RL的推理(Reasoning)模型。其标志性表现就是,在回答用户问题前,R1会先进行“自问自答”式的推理思考,凭此提升最终回答的质量。这种“自问自答”,并非简单的自言自语,而是AI在模拟人类的深度思考。从用户初始问题“先有鸡还是先有蛋”出发,AI唤醒解决该问题所需的推理逻辑与知识,对问题进行多步推导,为最终回答提供更加完备的思考准备。这种能力,并非凭空而来。如果把AI比作人类,那么DeepSeek R1的“聪明”,源于其背后独特的“教育方式”。——在许多其他的AI模型还在接受“填鸭式教育”时,DeepSeek R1已经率先进入了“自学成才”的新阶段。

Others are asking
deepseek深度思考的机制和ChatGPT的深度思考有什么不一样
DeepSeek R1 与 ChatGPT 的深度思考机制存在以下不同: 1. 技术路线:DeepSeek R1 与 OpenAI 现在最先进的模型 o1、o3 一样,同属于基于强化学习 RL 的推理模型。而 ChatGPT4 采用预训练+监督微调(SFT)。 2. 思考方式:在回答用户问题前,DeepSeek R1 会先进行“自问自答”式的推理思考,从用户初始问题出发,唤醒解决该问题所需的推理逻辑与知识,对问题进行多步推导,为最终回答提供更加完备的思考准备。而 ChatGPT 在此方面的表现有所不同。 3. 应用场景:DeepSeek R1 适用于高难度数学和编程问题,但计算成本更高。日常查询中,ChatGPT 更快、更适合简单咨询。 4. 优势特点:DeepSeek R1 更加透明,研究细节可复现,权重可下载。
2025-02-17
如何高效使用chatgpt
以下是关于高效使用 ChatGPT 的一些方法和建议: 1. 对于产品经理: 步骤 1:进行原 SQL 输入,让 ChatGPT 对需求有初步理解。 步骤 2:将真实的业务需求场景及现存问题输入给 ChatGPT,通过多轮输入输出的讨论,强化其对真实需求的认知,以获取针对性的优化建议,并输出更符合需求的代码。 步骤 3:根据 ChatGPT 给出的结果不断调试和优化,直至生成满足需求的新代码。例如,按照原 SQL 思路更新数据时存在耗时长、资源浪费严重的问题,可参考 ChatGPT 提出的优化建议,如每次更新 1 天而非 30 天的数据、创建中间结果表存储非二次计算的数据等。 2. 对于开发人员: 痛点:在 IDE 和 ChatGPT 两个软件中不断切换、拷贝代码较为麻烦。 解决方案:将 ChatGPT 装进 WebStorm 中,通过右键选中代码,让 ChatGPT 进行优化、找 BUG 等操作,并可在窗口中随时提问。具体操作如下: 第一步:获取 API Keys,可参考文章 第二步:在 WebStorm 中下载 ChatGPT 插件,并将从 OpenAI 开发平台获取到的 API keys 设置进插件的配置中。安装后可实现选中代码找 bug、优化代码、自定义指令等功能,插件底部还有对话框可实时提问,让其解释、重新生成代码等。 此外,ChatGPT 的诞生经历了一系列的研究和改进。OpenAI 团队曾侧重浏览功能,但后来减少了这方面的侧重,将指令型数据和聊天数据混合,创造出既可以处理具体任务又能流畅聊天的模型。GPT4 完成训练后,特别强调指令遵循能力,但仍存在可靠性问题。指令型模型中的某些任务描述不够清晰,增加了模型执行和数据标注的难度,而 ChatGPT 这类聊天模型则更加直观,能更好地理解和处理潜在局限性,展现出更连贯的特征和更稳定的行为。
2025-02-14
豆包、DeepSeek、ChatGPT分别有些什么功能用于解决用户整理对话的需求
以下是豆包、DeepSeek、ChatGPT 在解决用户整理对话需求方面的功能: ChatGPT: 1. 内容生成:可以生成文章、故事、诗歌、歌词等内容。 2. 聊天机器人:作为聊天机器人的后端,提供自然的对话体验。 3. 问答系统:为用户提供准确的答案。 4. 文本摘要:生成文本的摘要或概述。 5. 机器翻译:在这方面有不错的表现。 6. 群聊总结:能够对群聊内容进行总结。 7. 代码生成:生成代码片段,帮助开发者解决编程问题。 8. 教育:帮助学生解答问题或提供学习材料。 9. 浏览器插件:如 webpilot 。 10. PDF 对话:通过相关网站实现与 PDF 的对话。 11. PPT 生成:协助高效制作 PPT 。 12. 音视频提取总结:通过特定网站进行总结。 13. 播客总结:通过特定网站完成总结。 14. 生成脑图:通过相关网站生成。 关于豆包和 DeepSeek 在解决用户整理对话需求方面的功能,上述内容中未提及。
2025-02-13
chatgpt公司原研发讲chatgpt的文章网页链接
以下是关于 ChatGPT 公司原研发讲 ChatGPT 的文章网页链接: 1. 育儿相关项目:https://chat.openai.com/share/40f1e3da187a4bef9150f93ca34046f4 ,该项目中使用 ChatGPT 进行了多种操作,如翻译、整理远古动物列表等。 2. AIGC 常见名词解释:https://mp.weixin.qq.com/s/ycDWZ8W46DrsyeNShC1wA ,其中对 ChatGPT 有相关解释。 3. AIGC Weekly01:https://openai.com/blog/chatgpt/ ,介绍了 ChatGPT 的发布情况。
2025-02-13
chatgpt5最新消息
以下是关于 ChatGPT 的最新消息: 有一位狂热的书友在 Reddit 的 ChatGPT 子区分享了借助 ChatGPT 在 5 分钟内阅读并理解任何书籍的方法,并给出了详细的 Prompt,包括“Please summarize ”。评论区的几百条回帖也是干货满满,书友们积极留言分享尝试用 ChatGPT 辅助阅读的经验。 评论区有人指出这种方式可能因 ChatGPT 的“幻觉”而得到错误信息,对于“幻觉”有处理经验的人提出在提问时注意三点:明确告诉它想要准确答案且无幻觉;改变 temperature 参数(如改到 0)或控制创造力水平;得到答案后,要求它为每个引用产生精确的引用和页面以便交叉检查。
2025-02-13
DeepSeek与ChatGPT的区别
DeepSeek 与 ChatGPT 存在以下区别: 1. App Store 排名:DeepSeek R1 冲到了美国区 App Store 第一名,超越了 ChatGPT。 2. 口碑与推广:DeepSeek 没有市场部,也未做市场投放,完全依靠技术实力和口碑赢得用户认可。 3. 技术特点: 性能与成本:DeepSeek R1 效果比肩顶尖闭源模型 o1,价格仅为 o1 的 27 分之一。 开源与创新:DeepSeek R1 开源让行业认知整体拉齐,得到全世界尊重和喜爱。 4. 创新模型 R1 Zero:跳过监督微调(SFT)阶段,直接采用强化学习(RL)进行训练,且发现模型的思考能力可以自我涌现,具有革命性。 5. 影响: 行业影响:DeepSeek R1 的发布引发美国科技界恐慌,Meta 内部对其出色表现感到震惊。 市场影响:DeepSeek R1 的低成本和高性能使英伟达市场地位受挑战,其股价短期内大跌。 6. 未来展望:开源模型进步将超越闭源模型,顶级模型推理价格下降,技术更普惠平权;AI 编程效率提升、门槛降低,创作能力不断提升,催生更多创作形式。 此外,DeepSeek R1 属于基于强化学习 RL 的推理模型,在回答用户问题前会先进行“自问自答”式的推理思考,提升回答质量,模拟人类深度思考。而 ChatGPT 未具备这些特点。
2025-02-11
是否有《普通人如何抓住deepseek红利》清华大学链接
以下是关于《普通人如何抓住 DeepSeek 红利》的相关链接: 清华大学新闻与传播学院撰写的报告:https://waytoagi.feishu.cn/record/T2yDrJ4NjeJFmccnBgzc5A7InIq 相关 PPT 课件:https://bl7rsz9526.feishu.cn/wiki/Gec9wxIGhiqSsAkrqzPc3ObLnpb (由清华大学新闻与传播学院、新媒体研究中心、元宇宙文化实验室、@新媒沈阳团队的陶炜博士生团队制作)
2025-02-20
你知道deepseek吗
DeepSeek 在春节期间非常火爆,不仅在各大平台刷屏,还引起了广泛讨论。 从非技术人的角度来看,对 DeepSeek 的研究主要围绕以下话题: 1. 天才养成记:DeepSeek R1 之所以聪明的原因。 2. “填鸭”之困:传统大模型训练的瓶颈。 3. 自学成才:DeepSeek R1 的破局之道。 4. 纯强化学习:再次带来 AI 超越人类的希望。 DeepSeek 是一个品牌名,需要搭配具体模型,如 DeepSeek V3(类 GPT4o)和 DeepSeek R1(类 OpenAI o1)。DeepSeek 公司名为深度求索,其网页和手机应用目前免费,API 调用收费。DeepSeek 大模型,尤其是有推理功能的 DeepSeek R1 大模型,权重文件开源,可本地部署。
2025-02-20
清华出品的deepseek应用手册在哪里下载
清华出品的 DeepSeek 相关应用手册的下载链接如下: 清华大学沈少阳:《 北航&清华大学:《 《 其它一些报告发布在 。
2025-02-20
给出实际的操作案例,结合deepseek、kimi、豆包工具。
以下是结合 deepseek、kimi、豆包工具的实际操作案例: 在 2025 年 1 月的国内月活榜中: deepseek 作为聊天机器人,网址为 chat.deepseek.com,活跃用户达 7068 万人,环比变化为 24.3616%,所属公司为深度求索。 豆包作为聊天机器人,网址为 doubao.com,活跃用户为 779 万人,环比变化为 0.1911%,所属公司为字节跳动。 kimi 作为聊天机器人,网址为 kimi.moonshot.cn,活跃用户为 591 万人,环比变化为 0.1135%,所属公司为月之暗面。 在 2025 年 1 月的国内流量榜中: deepseek 作为聊天机器人,网址为 chat.deepseek.com,访问量达 22541 万,环比变化为 20.4093%,所属公司为深度求索。 豆包作为聊天机器人,网址为 doubao.com,访问量为 3457 万,环比变化为 0.1041%,所属公司为字节跳动。 kimi 作为聊天机器人,网址为 kimi.moonshot.cn,访问量为 3282 万,环比变化为 0.1283%,所属公司为月之暗面。 此外,在使用效果方面,DeepSeek 的思考与表达被认为碾压了包括豆包和 kimi 在内的其他模型,其思考过程细腻、自洽、深刻、全面,输出结果在语气、结构、逻辑上天衣无缝。
2025-02-20
deepseek
DeepSeek 是一家具有独特特点和影响力的公司: 1. 其秘方具有硅谷风格: 不是“中国式创新”的产物,不能简单地将其比喻成“AI 界的拼多多”或认为其秘方只是多快好省。 早在 2024 年 5 月 DeepSeekV2 发布时,就以多头潜在注意力机制(MLA)架构的创新在硅谷引发轰动。 是中国最全球化的 AI 公司之一,赢得全球同行甚至对手尊重的秘方也是硅谷风格。 2. V3 可能是 DeepSeek 的 GPT3 时刻,未来发展充满未知但值得期待。 3. 关于提示词 HiDeepSeek: 效果对比:可通过 Coze 做小测试并对比。 使用方法:包括搜索网站、点击“开始对话”、发送装有提示词的代码、阅读开场白后开始对话等步骤。 设计思路:将 Agent 封装成 Prompt 并储存在文件,实现多种功能,优化输出质量,设计阈值系统,用 XML 进行规范设定等。 完整提示词:v 1.3。 特别鸣谢:李继刚的【思考的七把武器】提供思考方向,Thinking Claude 是设计灵感来源,Claude 3.5 Sonnet 是得力助手。
2025-02-20
deepseek怎么用
以下是关于 DeepSeek 的使用方法: 1. 访问 www.deepseek.com ,点击“开始对话”。 2. 将装有提示词的代码发给 DeepSeek 。 3. 认真阅读开场白之后,正式开始对话。 此外,获取 DeepSeekR1 满血版密钥的步骤如下: 1. 注册并登录火山引擎,点击立即体验进入控制台。链接为:https://zjsms.com/iP5QRuGW/ (火山引擎是字节跳动旗下的云服务平台,在 AI 领域最为大众所熟知的应该是“豆包大模型”,这里就是源头) 2. 创建一个接入点,点击在线推理创建推理接入点。 3. 为接入点命名为 DeepSeekR1。然后可能会提示:“该模型未开通,开通后可创建推理接入点”。如果有提示,就点击“立即开通”,开通一下就可以了。如果无提示则直接到:第 5 步,点击确认接入。 4. 点击“立即开通”跳转到此页面,勾选全部模型和协议,一路点击开通即可。(这里是免费的) 5. 确认以下无误后,点击“确认接入”按钮。 6. 自动返回创建页面。发现多出一行接入点名是“DeepSeekR1”(我们刚才自己设置的命名)。重点来了:这个就是推理点的 ID,复制他放到您的微信里,发给自己保存一下。 7. 保存后再点击【API 调用】按钮,进入后点击【选择 API Key 并复制】。 8. 如果您已经有 API key 了,就直接查看并复制。如果没有,则点击【创建 API key】。 9. 把这个复制好之后,也放到您自己微信里,保存好。 DeepSeek 的设计思路包括: 1. 将 Agent 封装成 Prompt,将 Prompt 储存在文件,保证最低成本的人人可用的同时,减轻自己的调试负担。 2. 通过提示词文件,让 DeepSeek 实现:同时使用联网功能和深度思考功能。 3. 在模型默认能力的基础上优化输出质量,并通过思考减轻 AI 味,增加可读性。 4. 照猫画虎参考大模型的 temperature 设计了阈值系统,但是可能形式大于实质,之后根据反馈可能会修改。 5. 用 XML 来进行更为规范的设定,而不是用 Lisp(对我来说有难度)和 Markdown(运行下来似乎不是很稳定)。 关于 DeepSeek 的使用分享: 1. DP 模型的功能:能进行自然语言理解与分析、编程、绘图,如 SVG、MA Max 图表、react 图表等。 2. 使用优势:可以用更少的词让模型做更多事,思维发散,能给出创意思路和高级内容。 3. 存在问题:思维链长不易控制,可能输出看不懂或胡编乱造的内容,增加纠错成本。 4. 审核方法:可以用其他大模型来解读 DP 模型给出的内容。 5. 使用建议:使用时要有自己的思维雏形,多看思考过程,避免被模型冲刷原有认知。 6. 使用场景:包括阅读、育儿、写作、随意交流等方面。 7. 案例展示:通过与孩子共读时制作可视化互动游戏,以及左脚踩右脚式的模型交互来展示 DP 模型的应用。 另外,DeepSeek 文档可以在 3 群和 4 群分享中获取,也可在 v to a gi 的飞书知识库中搜索获取。未来活动预告:明天后天在摩纳社区提供免费算力资源带大家学习炼丹,周一晚上学习多维表格中接入 DeepSeek 。
2025-02-20
可以举例具体的公司吗
以下是一些与 AI 相关的公司举例: 百度:在人工智能领域有一定的投入和发展。 大型科技消费公司:擅长通过策略性数据采集,并利用免费产品采集数据在别处盈利。 Steamship 等初创公司:为 LLM 应用程序提供端到端托管,包括编排、多租户数据上下文、异步任务、向量存储和密钥管理。 Anyscale 和 Modal 等公司:允许开发人员在一个地方托管模型和 Python 代码。
2025-02-06
举例说明,意图和FAQ训练的区别
意图和 FAQ 训练是两种不同的概念。 意图训练主要侧重于理解用户的核心意图或目的。例如,在一个客服场景中,用户的意图可能是查询产品信息、寻求技术支持或进行投诉等。通过对大量的用户交互数据进行分析和学习,模型能够识别出这些不同的意图类别。 FAQ 训练则侧重于常见问题及其对应的标准答案。比如常见的“产品如何退换货”“售后服务的联系方式是什么”等问题,以及相应的准确回答。 总的来说,意图训练更注重对用户目的的分类和理解,而 FAQ 训练更侧重于对特定常见问题的准确回答。
2025-01-13
举例说明,医疗人工智能应用的风险及其法理防范
医疗人工智能应用存在以下风险: 1. 可能对受欧盟法律保护的公共利益和基本权利造成损害,包括身体、心理、社会或经济方面的损害。 2. 在决定是否给予、拒绝、减少、取消或收回医疗保健服务等福利时,可能对人们的生计产生重大影响,并侵犯基本权利,如社会保护权、不受歧视权、人的尊严权或有效补救权。 3. 用于评估自然人信用分数或信用度的人工智能系统可能导致对个人或群体的歧视,并延续历史上的歧视模式或造成新形式的歧视性影响。 法理防范措施包括: 1. 为所有高风险人工智能系统制定统一的规则,这些规则应与《宪章》保持一致,是非歧视性的,并符合欧盟的国际贸易承诺,同时考虑相关的伦理准则。 2. 明确价值链上相关经营者的作用和具体义务,促进对法规的遵从,确保法律的确定性。 3. 在特定条件下,明确高风险人工智能系统提供者的责任和义务。 需要注意的是,欧盟法律规定的用于检测提供金融服务过程中的欺诈行为以及用于计算信贷机构和保险企业资本要求的尽职审慎目的的人工智能系统,以及用于自然人健康和人寿保险风险评估和定价的人工智能系统,在符合一定条件时不视为高风险系统。
2025-01-02
结合欧盟《人工智能法案》和我国《生成式人工智能服务管理暂行办法》的对照,论述欧盟人工智能法案对我国相关立法的启示。可以举例
欧盟《人工智能法案》对我国相关立法的启示主要体现在以下方面: 1. 监管框架出发点:中国针对不同的涉及算法的互联网信息服务,以落实主体责任为基本落脚点,将“服务提供者”作为相关义务的履行主体,如《互联网信息服务算法推荐管理规定》《生成式人工智能服务管理办法》等。而欧盟《人工智能法案》首先确立以风险为基准的人工智能治理框架,通过对人工智能系统进行评估,划分为不同风险层级,并匹配不同责任措施和差异化监管。 2. 风险分级管理:我国与欧盟在立法理念上有共通之处,如风险分级管理、高风险项目的“备案”“评估”“透明”等原则,在我国相关法律法规中已有所体现。 3. 对拓展市场的影响:如果我国的AI项目有意拓展欧洲市场,由于针对不同市场重新训练特有模型的效率不高,将因“木桶原理”而不得不根据欧盟《人工智能法案》对产品进行调整。 总之,欧盟的《人工智能法案》对我国人工智能立法工作具有重要参考意义。
2024-12-31
欧盟《人工智能法案》在中国适用过程中的积极影响与不利影响,请举例说明
欧盟《人工智能法案》在中国适用过程中的积极影响与不利影响举例如下: 积极影响: 1. 对中小企业的兼顾激励与监管:欧盟的法案顾及到了中小企业在人工智能领域的弱势地位,适当地将对中小企业的合规义务豁免规定以及合规支持规定纳入未来的人工智能立法中,有利于形成健康有序的公平竞争秩序,激发中小企业的科技创新活力,同时防止过度监管。例如,2023 年《AI 法案》折衷草案通过制约单方面强加给中小企业和初创企业的不公平合同条款、促进监管沙盒广泛而平等的参与、降低评估费用等措施降低中小企业的合规成本。 2. 纳入道德伦理和人权考量:《人工智能法案》将人工智能系统对伦理道德和基本人权的影响有机纳入规制框架和评估框架中,我国《科技伦理审查办法》也是将伦理纳入包括人工智能开发在内的科技活动的积极探索。 不利影响: 1. 以风险为基准的管理框架存在不确定性:伦理道德和人权具有高度概括性、抽象性和不确定性,如何将其融入人工智能治理考验立法技术。《人工智能法案》对“不可接受的风险”和“高风险”的人工智能系统的界定和解释存在相当大的不确定性和模糊性,可能难以统一进行风险分类,成效有待进一步观望和研讨。 2. 可能无法完全适应中国国情:中国和欧盟在人工智能发展的阶段、市场环境、企业结构等方面存在差异,欧盟的法案在具体适用时可能需要进行较大的调整和适配,否则可能无法有效发挥作用。
2024-12-29
欧盟《人工智能法案》在我国适用过程中的影响,请举例说明(注意,简洁凝练)
欧盟《人工智能法案》在我国适用过程中的影响主要体现在以下方面: 1. 立法参考:我国与欧盟在人工智能立法工作上“齐头并进”,且立法理念有共通之处,如风险分级管理、高风险项目的“备案”“评估”“透明”等原则。该法案对我国人工智能立法工作具有重要参考意义。 2. 市场拓展:若我国的 AI 项目有意拓展欧洲市场,可能因针对不同市场重新训练特有模型效率不高,而不得不根据欧盟法案对产品进行调整。 同时,我国是第一个开始制定生成式人工智能监管框架的国家,从 2022 年开始陆续出台全面指南,如今审查机构已介入。我国持续生产 SOTA 模型,由国家互联网信息办公室监督。政府希望模型避免给政治问题提供“错误”答案,发布模型前须提交测试以校准拒绝率。虽然禁止 Hugging Face 等国外网站访问,但官方批准的“主流价值观语料库”可作为训练数据源。此外,伦理道德和人权向来是人工智能技术发展绕不开的终极话题,我国《科技伦理审查办法》也是将伦理纳入包括人工智能开发在内的科技活动的积极探索。但由于该《办法》适用于所有科技活动,人工智能的特殊性可能无从得到体现,且如何界定和解释“不可接受的风险”和“高风险”的人工智能系统也面临相当大的不确定性和模糊性。
2024-12-29
RAG的原理是啥
RAG(RetrievalAugmented Generation,检索增强生成)是一种结合检索和生成能力的自然语言处理架构,其原理如下: 对于大语言模型(LLM),RAG 的作用类似于开卷考试对学生的作用。在开卷考试中,学生可借助参考资料查找解答问题的相关信息,重点考察推理能力而非记忆能力。同样,在 RAG 中,事实性知识与 LLM 的推理能力相分离,被存储在易于访问和及时更新的外部知识源中,包括参数化知识(模型在训练中学习得到,隐式存储在神经网络权重中)和非参数化知识(存储在外部知识源,如向量数据库中)。 回顾 LLM 的原理,是将互联网文献材料降维到 latent space 中,并通过 transformer 方式学习其中的“经验”。但固定文献资料可能导致无法回答某些问题,RAG 的出现解决了这一问题,它允许模型到搜索引擎上搜索问题相关资料,并结合自身知识体系综合回复。 RAG 中的“检索”环节并非简单操作,涉及传统搜索的逻辑,如对输入问题的纠错、补充、拆分,以及对搜索内容的权重逻辑等。例如,对于“中国界世杯夺冠那年的啤酒销量如何”的问题,会先纠错为“中国世界杯夺冠那年的啤酒销量如何”,然后拆分为两个问题进行综合搜索,再将搜索到的资料提供给大模型进行总结性输出。 LLM 需要 RAG 是因为 LLM 存在一些缺点: 1. 无法记住所有知识,尤其是长尾知识,对长尾知识的接受能力不高。 2. 知识容易过时且不好更新,微调效果不佳且有丢失原有知识的风险。 3. 输出难以解释和验证,存在黑盒、不可控和幻觉等问题。 4. 容易泄露隐私训练数据。 5. 规模大,训练和运行成本高。 而 RAG 具有以下优点: 1. 数据库对数据的存储和更新稳定,不存在模型学不会的风险。 2. 数据库的数据更新敏捷,增删改查可解释,不影响原有知识。 3. 数据库内容明确、结构化,结合模型理解能力,降低大模型输出出错的可能。 4. 知识库存储用户数据,便于管控用户隐私数据,且可控、稳定、准确。 5. 数据库维护可降低大模型训练成本,新知识存储在数据库即可,无需频繁更新模型。
2025-02-20
我是一个有23年软件系统开发和设计经验的架构师,但是对AI还没有系统化了解过,请问我该如何开始?如何在短时间内掌握AI的使用、原理以及二次开发?
以下是为您提供的在短时间内系统化学习 AI 的建议: 一、了解 AI 基本概念 首先,建议阅读「」部分,熟悉 AI 的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。同时,浏览入门文章,这些文章通常会介绍 AI 的历史、当前的应用和未来的发展趋势。 二、开始 AI 学习之旅 在「」中,您将找到一系列为初学者设计的课程。这些课程将引导您了解生成式 AI 等基础知识,特别推荐李宏毅老师的课程。您还可以通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 三、选择感兴趣的模块深入学习 AI 领域广泛(比如图像、音乐、视频等),您可以根据自己的兴趣选择特定的模块进行深入学习。我建议您一定要掌握提示词的技巧,它上手容易且很有用。 四、实践和尝试 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 五、体验 AI 产品 与现有的 AI 产品进行互动是学习 AI 的另一种有效方式。尝试使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。通过与这些 AI 产品的对话,您可以获得对 AI 在实际应用中表现的第一手体验,并激发您对 AI 潜力的认识。 如果希望继续精进,对于 AI,可以尝试了解以下内容作为基础: 1. AI 背景知识 (1)基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。 (2)历史发展:简要回顾 AI 的发展历程和重要里程碑。 2. 数学基础 (1)统计学基础:熟悉均值、中位数、方差等统计概念。 (2)线性代数:了解向量、矩阵等线性代数基本概念。 (3)概率论:基础的概率论知识,如条件概率、贝叶斯定理。 3. 算法和模型 (1)监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 (2)无监督学习:熟悉聚类、降维等算法。 (3)强化学习:简介强化学习的基本概念。 4. 评估和调优 (1)性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 (2)模型调优:学习如何使用网格搜索等技术优化模型参数。 5. 神经网络基础 (1)网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 (2)激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。 此外,以证件照为例,Code AI 应用开发教学中,智能体开发从最初的 chatbot 只有对话框,到有了更多交互方式,因用户需求扣子推出了 AI 应用,其低代码或零代码的工作流等场景做得较好。但 AI CODING 虽强,目前适用于小场景和产品的第一个版本,复杂应用可能导致需求理解错误从而使产品出错。在创建 AI 应用时,要学习操作界面、业务逻辑和用户界面,包括布局、搭建工作流、用户界面及调试发布,重点熟悉桌面网页版的用户界面。
2025-02-17
大模型的基本原理
大模型的基本原理如下: 1. 模仿人类大脑结构,表现出人的特征,应对大模型回答不及预期的解决之道与人与人交流沟通的技巧相似。 2. GPT 全称是生成式预训练转换器模型(Generative Pretrained Transformer): 生成式(Generative):大模型根据已有的输入为基础,不断计算生成下一个字词(token),逐字完成回答。例如,从提示词“How”开始,依次推理计算出“are”“you”等,直到计算出下一个词是的概率最大时结束输出。 3. 通俗来讲,大模型通过输入大量语料来让计算机获得类似人类的“思考”能力,能够进行文本生成、推理问答、对话、文档摘要等工作。其训练和使用过程可类比为上学参加工作: 找学校:训练大模型需要大量计算,GPU 更合适,只有购买得起大量 GPU 的才有资本训练。 确定教材:大模型需要大量数据,几千亿序列(Token)的输入基本是标配。 找老师:用合适算法讲述“书本”内容,让大模型更好理解 Token 之间的关系。 就业指导:为让大模型更好胜任某一行业,需要进行微调(fine tuning)指导。 搬砖:就业指导完成后进行推导(infer),如进行翻译、问答等。 4. 在 LLM 中,Token 被视为模型处理和生成的文本单位,可代表单个字符、单词、子单词等,在将输入进行分词时会对其进行数字化,形成词汇表。 5. 相关技术名词及关系: AI 即人工智能。 机器学习包括监督学习、无监督学习、强化学习,监督学习有标签,无监督学习无标签自主发现规律,强化学习从反馈里学习。 深度学习参照人脑有神经网络和神经元,神经网络可用于多种学习方式。 生成式 AI 可生成多种内容形式,LLM 是大语言模型,生成只是大语言模型的一个处理任务。 6. 技术里程碑:2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出 Transformer 模型,基于自注意力机制处理序列数据,不依赖 RNN 或 CNN。
2025-02-17
ai修图的原理
AI 修图的原理主要包括以下几个方面: 1. 对于 Stable Diffusion 这类软件,其工作原理类似于学习画画。就像学习梵高的风格,需要大量临摹,而 AI 则通过对成千上万美术风格作品的学习形成大模型,如 Checkpoint。用户要想获得满意的作品,需选择合适的大模型。大模型可在 C 站下载,但需科学上网。 2. ComfyUI 是一个开源的用于生成 AI 图像的图形用户界面,主要基于 Stable Diffusion 等扩散模型。其原理包括 Pixel Space(像素空间)和 Latent Space(潜在空间)。像素空间对应输入图像或随机噪声图像,最终生成的图像也会转换回像素空间。许多操作在潜在空间进行,如通过 KSampler 节点执行采样过程,可通过节点调整潜在空间的操作,如噪声添加、去噪步数等。 3. 扩散过程是从噪声生成图像的过程,通过调度器控制,如 Normal、Karras 等,可选择不同调度器控制在潜在空间中处理噪声及逐步去噪回归到最终图像。时间步数也会影响图像生成的精细度和质量。 在实际的 AI 修图过程中,还涉及到提示词编写、对输出图片的二次和多次微调、确定情绪和风格等锚点再发散联想等操作,以获得更符合需求的修图效果。
2025-02-13
agi的方法原理
OpenAI 能够跑通所有 AGI 技术栈的方法原理主要基于以下几个方面: 1. 方法论明确:有着清晰的逻辑结构和明确的推论,甚至可以用公理化的方式描述。 公理 1:The bitter lesson。长期来看,AI 领域所有的奇技淫巧都比不过强大的算力夹持的通用的 AI 算法,强大的算力加持的通用的 AI 算法才是 AGI 路径的正道。 公理 2:Scaling Law。一旦选择了良好且通用的数据表示、标注和算法,就能找到一套通用规律,保证数据越多、模型越大、效果越好,甚至能在训练模型之前预知效果。 公理 3:Emerging properties。这是一条检验公理,用于判断 scaling law 带来的是质变而非量变,即随着 scaling law 的进行,模型会突然稳定掌握之前不能掌握的能力。 2. 具体实践: 在 GPT 中,良好且通用的数据表示是 tokenizer 带来的 embedding,数据标注是文本清理和去重的一套方法,算法是大家熟知的 transformers + autoregressive loss。 在 Sora 中,良好且通用的数据表示是 video compress network 带来的 visual patch,数据标注是 OpenAI 自己的标注器给视频的详细描述,算法是大家熟知的 transformers + diffusion。 3. 数据和任务: 大量数据从世界本身获取,世界产生的数据是 AGI 需要的数据的最小集合,OpenAI 未来会执着于持续获得或者构造数据。 要最有效地利用数据,需要做生成模型,能够模拟和生成整个世界,OpenAI 未来还会在更多的模态和数据上去做生成模型。 通用模型也是 OpenAI 追求的方向。
2025-02-12
deepseek技术原理
DeepSeek 技术原理包括以下方面: 核心原理认知: AI 特性定位:支持文本/代码/数学公式混合输入,具有动态上下文(约 4K tokens 上下文窗口)和任务适应性(可切换创意生成/逻辑推理/数据分析模式)。 系统响应机制:采用意图识别+内容生成双通道理,自动检测 prompt 中的任务类型、输出格式、知识范围,对位置权重(开头/结尾)、符号强调敏感。 基础指令框架: 可以套用框架指令,如四要素模板。 格式控制语法包括强制结构(使用```包裹格式要求)、占位符标记(用{{}}标注需填充内容)、优先级符号(>表示关键要求,!表示禁止项)。 进阶控制技巧: 思维链引导:分步标记法,如请逐步思考:1.问题分析→2.方案设计→3.风险评估;苏格拉底式追问,即在得出最终结论前,请先列举三个可能存在的认知偏差。 知识库调用:领域限定指令,如基于 2023 版中国药典,说明头孢类药物的配伍禁忌;文献引用模式,如以 Nature 2022 年发表的论文为参考,解释 CRISPRCas9 最新突破。 多模态输出。 此外,1 月 30 日社区动态速览中提到了 DeepSeek 相关的基本术语,阐述其省钱原因,包括高效硬件使用、创新训练方法、高效模型压缩、避免无效尝试等,还提及成本对比及创新蒸馏技术。接着从核心思想、技术实现方式(知识表示、温度调节)、训练过程(基本流程、关键点)、DeepSeek 的创新及有效性原因(信息压缩、概率分布学习、泛化能力)等方面详细讲述了蒸馏工作原理。1 月 26 日社区动态速览中提到 Deepseek 提示词框架的四大模块:任务目的(Purpose)、计划规则(Planning Rules)、格式规则(Format Rules)、输出说明(Output)。
2025-02-11