Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

怎么做一个知识库智能问答机器人?

Answer

要做一个知识库智能问答机器人,主要基于大模型的 RAG 机制,具体步骤如下:

  1. 理解 RAG 机制:RAG 机制全称为“检索增强生成”(Retrieval-Augmented Generation),是一种用于自然语言处理的技术,结合了检索和生成两种主要的人工智能技术,以提高机器对话和信息处理的能力。它先从大型数据集中检索与问题相关的信息,然后利用这些信息生成更准确、相关的回答。可以想象成在巨大图书馆里找相关书籍,再基于书籍信息给出详细回答,这种方法结合大量背景信息和先进语言模型能力,使生成内容更精确,提升对话 AI 的理解力和回答质量。
  2. 创建知识库:创建包含大量社区 AI 相关文章和资料的知识库,例如创建有关 AI 启蒙和信息来源的知识库,通过手工录入方式上传文章内容,并陆续将社区其他板块的文章和资料导入。
  3. 设计 Bot:在设计中添加知识库,并设置合适的搜索策略、最大召回数量和最小匹配度,尽可能利用好知识库返回的内容进行结合回答。

此外,在飞书中,还可以利用飞书智能伙伴创建平台(Aily)来搭建 FAQ 机器人,它是飞书团队旗下的企业级 AI 应用开发平台,能为企业提供简单、安全且高效的环境,帮助轻松构建和发布 AI 应用。

Content generated by AI large model, please carefully verify (powered by aily)

References

安仔:玩转 Coze,我帮开源 AI 社区搞了一个社群运营机器人

知识库问答是机器人最基础的功能,它可以根据用户的问题,从知识库中找到最佳答案。这其实就是利用了大模型的RAG机制。那什么是RAG机制?RAG机制,全称为“检索增强生成”(Retrieval-Augmented Generation),是一种用于自然语言处理的技术。它结合了两种主要的人工智能技术:检索(Retrieval)和生成(Generation),以提高机器对话和信息处理的能力。简单来说,RAG机制先从一个大型的数据集中找到与当前问题相关的信息,这一步叫做“检索”。然后,它使用这些检索到的信息来帮助生成更准确、更相关的回答,这一步叫做“生成”。可以把它想象成这样一个场景:当你问一个很复杂的问题时,RAG机制先去一个巨大的图书馆里找到所有相关的书籍,然后基于这些书籍中的信息来给你一个详细的回答。这种方法让机器在处理信息时更加精确,因为它结合了大量的背景信息和先进的语言模型的能力,使得生成的内容不仅依赖于模型本身的知识,还融入了具体、相关的外部信息。这对于提升对话AI的理解力和回答质量非常有帮助。基于RAG机制,我们可以实现知识库问答功能。首先,我们需要创建一个知识库,里面包含了大量社区的AI相关的文章和资料。比如我这里创建了一个有关AI启蒙和信息来源的知识库,然后通过手工录入的方式上传这个栏目的所有文章内容:就这样,陆陆续续地将社区其他板块的文章和资料导入到知识库中。在设计Bot中,我们添加这个知识库,并设置合适的搜索策略、最大召回数量和最小匹配度,尽可能好地利用知识库返回的内容进行结合回答:

安仔:玩转 Coze,我帮开源 AI 社区搞了一个社群运营机器人

知识库问答是机器人最基础的功能,它可以根据用户的问题,从知识库中找到最佳答案。这其实就是利用了大模型的RAG机制。那什么是RAG机制?RAG机制,全称为“检索增强生成”(Retrieval-Augmented Generation),是一种用于自然语言处理的技术。它结合了两种主要的人工智能技术:检索(Retrieval)和生成(Generation),以提高机器对话和信息处理的能力。简单来说,RAG机制先从一个大型的数据集中找到与当前问题相关的信息,这一步叫做“检索”。然后,它使用这些检索到的信息来帮助生成更准确、更相关的回答,这一步叫做“生成”。可以把它想象成这样一个场景:当你问一个很复杂的问题时,RAG机制先去一个巨大的图书馆里找到所有相关的书籍,然后基于这些书籍中的信息来给你一个详细的回答。这种方法让机器在处理信息时更加精确,因为它结合了大量的背景信息和先进的语言模型的能力,使得生成的内容不仅依赖于模型本身的知识,还融入了具体、相关的外部信息。这对于提升对话AI的理解力和回答质量非常有帮助。基于RAG机制,我们可以实现知识库问答功能。首先,我们需要创建一个知识库,里面包含了大量社区的AI相关的文章和资料。比如我这里创建了一个有关AI启蒙和信息来源的知识库,然后通过手工录入的方式上传这个栏目的所有文章内容:就这样,陆陆续续地将社区其他板块的文章和资料导入到知识库中。在设计Bot中,我们添加这个知识库,并设置合适的搜索策略、最大召回数量和最小匹配度,尽可能好地利用知识库返回的内容进行结合回答:

问:飞书怎么做一个FAQ的机器人?

时间:2024年2月22日会议首先介绍了WaytoAGI社区的成立愿景和目标,以及其在飞书平台上的知识库和社区的情况。接着,讨论了如何利用AI技术帮助用户更好地检索知识库中的内容,引入了RAG技术,通过机器人来帮助用户快速检索内容。然后,介绍了基于飞书的知识库智能问答技术的应用场景和实现方法,可以快速地给大模型补充新鲜的知识,提供大量新的内容。之后,讨论了如何使用飞书的智能伙伴功能来搭建FAQ机器人,以及智能助理的原理和使用方法。最后,介绍了企业级agent方面的实践。[heading2]2.背后的技术[content]「飞书智能伙伴创建平台」(英文名:Aily)是飞书团队旗下的企业级AI应用开发平台,提供了一个简单、安全且高效的环境,帮助企业轻松构建和发布AI应用,推动业务创新和效率提升。为企业探索大语言模型应用新篇章、迎接企业智能化未来提供理想选择。[飞书智能伙伴创建平台(Lark Aily)介绍](https://bytedance.larkoffice.com/wiki/LYY3wE4WNiUrxekJ6MScTGORn35)

Others are asking
RAG构建本地知识库
RAG(Retrieval Augmented Generation,检索增强生成)是一种利用大模型能力搭建知识库的技术。其主要应用场景是当需要依靠不包含在大模型训练集中的数据时。 一个RAG的应用可以抽象为以下5个过程: 1. 文档加载:从多种不同来源加载文档,如PDF、SQL、代码等,LangChain提供了100多种不同的文档加载器。 2. 文本分割:文本分割器把Documents切分为指定大小的块,称为“文档块”或者“文档片”。 3. 存储:包括将切分好的文档块进行嵌入转换成向量的形式,以及将Embedding后的向量数据存储到向量数据库。 4. 检索:通过某种检索算法找到与输入问题相似的嵌入片。 5. 输出:把问题以及检索出来的嵌入片一起提交给LLM,LLM会通过问题和检索出来的提示一起来生成更加合理的答案。 简单来说,RAG就是大模型+知识库,从广泛的知识库数据中检索相关片段,然后由大模型根据这些内容生成答案。这种方式一方面可以减大模型的幻觉,提高其在特定任务上的表现,更加贴合实际应用的需求,另一方面可以明显提高搜索文档信息和生成回答的效率和体验。 LangChain是一个可以实现RAG的开源框架,它提供一些基础的组件和工具,如知识库管理、文本处理、模型加载等,允许开发人员将大语言模型(LLM)与外部数据源相结合,快速搭建自己的应用。 在实际项目中,比如此次的政府政策问答实践,由于政策的复杂性和传统智能问答产品的局限性,选择LangChainChatchat框架构建政策文档的本地知识库,实现大模型基于本地知识库内容生成回答,为用户提供政策问答和解读服务,节省查找和理解政策的时间。
2025-03-11
怎么和特定知识库对话
要和特定知识库对话,有以下几种方式: 1. 在 Bot 内使用知识库: 登录。 在左侧导航栏的工作区区域,选择进入指定团队。 在 Bots 页面,选择指定 Bot 并进入 Bot 详情页。 在 Bot 编排页面的知识库区域,单击加号图标,添加指定的知识库。 (可选)添加知识库后,可以在自动调用下拉界面内,调整知识库的配置项,包括最大召回数量(Bot 在调用知识库匹配用户输入内容时,返回的数据片段数量,数值越大返回的内容越多)、最小匹配度(Bot 在调用知识库匹配用户输入内容时,会将达到匹配度要求的数据片段进行召回。如果数据片段未达到最小匹配度,则不会被召回)、调用方式(自动调用:每轮对话将自动从所有关联的知识库中匹配数据并召回;按需调用:需要在人设与回复逻辑中提示 Bot 调用 RecallKnowledge 方法,以约束 Bot 在指定时机从知识库内匹配数据)。 (可选)在预览与调试区域调试 Bot 能力时,扩展运行完毕的内容可以查看知识库命中并召回的分片内容。 2. 在工作流内使用 Knowledge 节点: 登录。 在左侧导航栏的工作区区域,选择进入指定团队。 在页面顶部进入工作流页面,并打开指定的工作流。 在左侧基础节点列表内,选择添加 Knowledge 节点。 如果想要对本地知识库进行更加灵活的掌控,可以使用额外的软件 AnythingLLM,其安装地址为:https://useanything.com/download 。安装完成后,进入配置页面,主要分为三步: 1. 第一步:选择大模型。 2. 第二步:选择文本嵌入模型。 3. 第三步:选择向量数据库。 在 AnythingLLM 中有一个 Workspace 的概念,可以创建自己独有的 Workspace 跟其他的项目数据进行隔离。首先创建一个工作空间,然后上传文档并且在工作空间中进行文本嵌入,选择对话模式,包括 Chat 模式(大模型会根据自己的训练数据和上传的文档数据综合给出答案)和 Query 模式(大模型仅仅会依靠文档中的数据给出答案),完成上述配置后就可以跟大模型进行对话。 在创建名字写对联教学的智能体时,建议选择工作流的对话模式,创建一个工作流对话模式的智能体,注意一定要在开始调整工作流节点之前切换模式,因为切换成对话模式会将工作流清空,重置为对话模式默认节点。根据需求分析确认分支情况,包括根据名字和祝福写对联、根据幸运数字写对联的特定分支以及默认分支。通过理解用户意图进行分支,注意将意图介绍写清楚、准确。在幸运数字分支中,先用代码分支获取用户输入的数字,然后匹配知识库,再对匹配的春联做赏析。在名字写祝福分支中,根据用户输入的名字和祝福信息,调试提示词生成对应对联并输出。设置通用兜底回复,在用户不符合前两个意图时进行友好回复,首先匹配知识库,然后让大模型结合匹配结果、历史记录、当前输入,输出符合对话内容的回复。同时,知识库是使用大模型生成的 100 对对联,都比较好看、经典、有意义。
2025-03-10
如何建立个人知识库
建立个人知识库可以通过以下方式: 1. 利用 GPT 打造个人知识库: 将大文本拆分成若干小文本块(chunk),通过 embeddings API 将小文本块转换成与语义相关的 embeddings 向量,并在向量储存库中保存这些向量和文本块作为问答的知识库。 当用户提出问题时,将问题转换成向量,与向量储存库中的向量比对,提取距离最小的几个向量对应的文本块,与问题组合成新的 prompt 发送给 GPT API。 例如,对于“此文作者是谁?”的问题,通过比较 embeddings 向量,提取关联度高的文本块,如“本文作者:越山。xxxx。”“《反脆弱》作者塔勒布xxxx。”,发送给 GPT API 以获得回答。 2. 本地部署大模型以及搭建个人知识库: 了解 RAG(检索增强生成)技术,它是利用大模型的能力搭建知识库的应用。 RAG 应用包括文档加载、文本分割、存储(包括将文档块嵌入转换成向量形式并存储到向量数据库)、检索、输出(把问题以及检索出来的嵌入片一起提交给 LLM 生成答案)等 5 个过程。 文本加载器用于将用户提供的文本加载到内存中,便于后续处理。 3. 基于 GPT API 搭建定制化知识库: 由于 GPT3.5 一次交互支持的 Token 数量有限,OpenAI 提供了 embedding API 解决方案。 Embeddings 是浮点数字的向量,两个向量之间的距离衡量关联性,小距离表示高关联度,大距离表示低关联度。例如,“猫”和“狗”距离近,与“汽车”距离远。
2025-03-10
最强AI办公提示词知识库,公益
以下是关于最强 AI 办公提示词知识库的相关信息: 一、提示词与知识库的概念 提示词是告诉全知全能的大语言模型其角色和要专注的技能,使其能按需求变成特定“员工”。知识库则相当于给“聪明员工”发放的工作手册,包含特定的工作相关内容,如《爱情公寓》全季剧情等。 二、相关资源 1. 画小二的相关内容: 如何写好提示词是创建智能体第一步,包括打破砂锅者、董宇辉的小作文等部分。 提示词网站分享,如 Learn Prompting(https://learnprompting.org/docs/intro )、AI Short(https://www.aishort.top/en/ )、AIPRM(https://www.aiprm.com/prompts/ )、Prompt Library(https://promptlibrary.org/ )。 延伸阅读,如人人都能懂的 Prompt 技巧:FewShots、COT、SC、TOT、StepBack(https://blog.csdn.net/oWuChenHua/article/details/135125891 )。 学习交流群和手把手教学,包括会员详细教程(https://m.qlchat.com/topic/details?topicId=2000022058296055 )及 AIGC 商业案例实操课海报。 2. 扣子提供的功能: 提示词(人设与回复逻辑功能),设定 Bot 的身份、目标和技能。详情参考 。 插件,通过 API 连接集成各种平台和服务。详情参考 。 工作流,用于规划和实现复杂功能逻辑。详情参考 。 记忆库,包括知识库(支持上传本地或线上内容并分割成知识分片)和数据库(存储和管理结构化数据)。知识库详情参考 。 希望以上信息对您有所帮助。
2025-03-10
我是IVD企业的技术中心主任,我想构建我们技术中心的知识库,有什么AI工具可以帮我实现
以下是一些可以帮助您构建技术中心知识库的 AI 工具及相关步骤: Dify 1. 准备数据:收集需要纳入知识库的文本数据,包括文档、表格等格式,并对数据进行清洗、分段等预处理,确保数据质量。 2. 创建数据集:在 Dify 中创建新的数据集,上传准备好的文档,并为数据集编写清晰的描述,说明其包含的内容和特点。 3. 配置索引方式:Dify 提供了高质量模式、经济模式和 Q&A 分段模式三种索引方式,您可根据实际需求选择,如追求更高准确度可选高质量模式。 4. 集成至应用:将创建好的数据集集成到 Dify 的对话型应用中,作为应用的上下文知识库使用。在应用设置中,配置数据集的使用方式,如是否允许跨数据集搜索等。 5. 持续优化:收集用户反馈,对知识库内容和索引方式进行持续优化和迭代,定期更新知识库,增加新内容以保持时效性。 其他相关场景和应用 1. 提示词帮您规划 PARA 分类模式:PARA 代表项目(Projects)、领域(Areas)、资源(Resources)和档案(Archives)。AI 可通过分析您的工作模式和内容类型,自动生成提示词,帮助您将信息和知识分类到 PARA 的相应部分,简化分类过程,更快组织和检索信息。 2. 提示词帮您设计笔记标签系统:AI 能通过分析您的笔记内容和使用习惯,推荐合适的标签和标签结构,提高笔记管理和检索效率。 3. 知识助手 Bot 帮您渐进式积累领域知识:例如基于 dify.ai 将数百个思维模型整合成一个知识库,根据不同的对话和条件判断为用户选择适用的思维模型分析工具,封装成一个智能分析的 Bot,能根据您的学习进度和兴趣点,定期推送相关文章、论文和资源,持续扩展知识边界并确保知识及时更新。
2025-03-09
最近想要出一本书,书籍的主题是“Deepseek的应用革命:打造AI时代的竞争力”主要是面相企业家和企业高管,希望能够将知识库内容中关于企业应用的部分提炼成书,请根据知识库素材,输出一个图书内容规划和重点参考资料
以下是为您规划的图书内容和重点参考资料: 一、图书内容规划 1. 引言 介绍 AI 时代的背景和企业面临的挑战与机遇。 阐述 DeepSeek 在塑造企业竞争力方面的重要性。 2. DeepSeek 的技术创新 详细介绍 DeepSeek 最新模型 V3 与 R1 的架构创新,如混合专家(MoE)架构、多头潜注意力(MLA)等。 解释其如何提升计算效率和推理能力,打破算力壁垒。 3. 多领域的应用案例 字节跳动的新技术 OmniHuman 在视频生成方面的突破。 Coinbase 全面推动 AI 应用的实践,如在欺诈预防和客户支持等领域的应用。 4. 对企业管理的影响 探讨善于沟通上下文、明晰 AI 能力边界、合理授权并监督等管理经验如何提升 AI 协作效率。 5. 行业趋势与挑战 分析 AI 基础大模型参数量的变化趋势。 讨论初级程序员面临的职业挑战以及编程领域的颠覆性变化。 6. 未来展望 预测 DeepSeek 及相关技术在未来的发展方向和可能的创新。 二、重点参考资料 1. 《》 2. 《》 3. 《》 4. 《》 5. 《》 6. 《[零基础掌握 Deepseek》》 7. 日报 8. 日报
2025-03-08
有哪些好用的搭建知识库然后进行问答的 AI 工具?
以下是一些好用的搭建知识库然后进行问答的 AI 工具: 1. DIN: 搭建 OneAPI,用于汇聚整合多种大模型接口。 搭建 FastGpt,这是一个知识库问答系统,可放入知识文件,并接入大模型作为分析知识库的大脑,它有问答界面。 搭建 chatgptonwechat,将知识库问答系统接入微信,但建议先用小号以防封禁风险。 2. Coze: 知识库问答是其最基础的功能,利用了大模型的 RAG 机制(检索增强生成)。 RAG 机制先从大型数据集中检索与问题相关的信息,再利用这些信息生成回答。 实现知识库问答功能需创建包含大量 AI 相关文章和资料的知识库,通过手工录入上传内容。 在设计 Bot 时添加知识库,并设置合适的搜索策略、最大召回数量和最小匹配度,以更好地结合知识库返回的内容进行回答。
2025-03-05
有哪些好用的搭建知识库然后进行问答的 AI 工具?
以下是一些好用的搭建知识库然后进行问答的 AI 工具: 1. DIN: 搭建步骤: 搭建 OneAPI(https://github.com/songquanpeng/oneapi),用于汇聚整合多种大模型接口。 搭建 FastGpt(https://fastgpt.in/),这是一个知识库问答系统,将知识文件放入,并接入大模型作为分析知识库的大脑,它有问答界面。 搭建 chatgptonwechat(https://github.com/zhayujie/chatgptonwechat),接入微信,配置 FastGpt 把知识库问答系统接入到微信,建议先用小号以防封禁风险。 2. Coze: 知识库问答利用了大模型的 RAG 机制,全称为“检索增强生成”(RetrievalAugmented Generation)。 RAG 机制先从大型数据集中检索与问题相关的信息,再使用这些信息生成回答。 实现知识库问答功能,需创建包含大量 AI 相关文章和资料的知识库,通过手工录入上传文章内容。在设计 Bot 时,添加知识库,并设置合适的搜索策略、最大召回数量和最小匹配度,以结合知识库返回的内容进行回答。
2025-03-05
帮我基于fastgpt打造一个招生问答系统的优质提示词
以下是为您基于 FastGPT 打造招生问答系统的优质提示词的相关建议: 1. 充分描述任务: 为提示词提供详尽的上下文,与招生问答任务相关性越强越好。例如,明确招生的对象、专业、学制等关键信息。 给出背景,说明为什么需要进行招生问答,例如学校的发展需求、招生目标等。 定义术语,如明确招生中的特定概念,如录取分数线、奖学金条件等。 给出模型应该如何完成任务的具体细节,比如回答的格式、重点突出的内容等。 2. 提供参考文本: 如果有相关的招生资料,如招生简章、学校介绍等,可以指示模型使用这些参考文本中的引文来回答问题。 3. 直接法: 适用场景:未设置提示防御且未限定回答领域。 提示词:英文和中文。 示例:以随手设置的示例为例。 4. 设置遗忘: 适用场景:GPTs 设置了简单的提示防御。 提示词:英文和中文。 示例:以设置的 GPTs 为例。 5. 复述法: 适用场景:可获取 OpenAI 官方的设定。 提示词:英文(获取 GPTs 的设定)和中文。 示例:按照设定进行示例。
2025-02-28
如何将大量记录的文本内容输入知识库,并且形成有效问答问答
要将大量记录的文本内容输入知识库并形成有效问答,可参考以下方法: 1. 使用 embeddings 技术: 将文本转换成向量(一串数字),可理解为索引。 把大文本拆分成若干小文本块(chunk),通过 embeddings API 将小文本块转换成 embeddings 向量,这些向量与文本块的语义相关。 在向量储存库中保存 embeddings 向量和文本块。 当用户提出问题时,将问题转换成向量,与向量储存库的向量比对,查找距离最小的几个向量,提取对应的文本块,与问题组合成新的 prompt 发送给 GPT API。 2. 创建知识库并上传文本内容: 在线数据: 自动采集:适用于内容量大、需批量快速导入的场景。 在文本格式页签选择在线数据,单击下一步。 单击自动采集。 单击新增 URL,输入网站地址,选择是否定期同步及周期,单击确认。 上传完成后单击下一步,系统自动分片。 手动采集:适用于精准采集网页指定内容的场景。 安装扩展程序,参考。 在文本格式页签选择在线数据,单击下一步。 点击手动采集,完成授权。 输入采集内容网址,标注提取内容,查看数据确认后完成采集。 本地文档: 在文本格式页签选择本地文档,单击下一步。 拖拽或选择要上传的文档,支持.txt、.pdf、.docx 格式,每个文件不大于 20M,一次最多上传 10 个文件。 上传完成后单击下一步,选择内容分段方式,包括自动分段与清洗(系统自动处理)和自定义(手动设置分段规则和预处理规则)。
2025-02-28
怎样分析一篇PDF文档中的信息并创建问答对,将问答对按行输出到多维表格?
以下是分析一篇 PDF 文档中的信息并创建问答对,按行输出到多维表格的一些要点: 1. 文档格式规范: Markdown:建议优先使用 Markdown 格式。 Word:优先采用 2007 版或之后的 Word 格式,使用全局样式,统一使用全局标题和段落样式,避免字符样式,使用段落样式保持文档格式一致性。 PDF:避免使用图片,将图像中的重要信息转录成文本并按规范组织,不包含嵌入压缩文件,保持文档单栏布局。 CSV:避免使用图片,不嵌入压缩文件,表头作为第一行。 2. 问答对内容规范: 推荐保存 FAQ(常见问题解答)中的问答对,问题表述清晰明确,答案简洁易懂,使用用户熟悉的术语,突出关键词,以提高检索召回准确度。 不推荐在 CSV 中上传复杂的关系型数据表,可能导致数据处理时间超长和失败。 希望这些要点对您有所帮助。若您想深入了解 RAG,可以进入知识库专区:
2025-02-25
如何构建智能问答Agent
以下是关于构建智能问答 Agent 的相关信息: Agent 构建平台: 1. Coze:新一代一站式 AI Bot 开发平台,适用于构建基于 AI 模型的各类问答 Bot,集成丰富插件工具拓展 Bot 能力边界。 2. Mircosoft 的 Copilot Studio:主要功能包括外挂数据、定义流程、调用 API 和操作,以及将 Copilot 部署到各种渠道。 3. 文心智能体:百度推出的基于文心大模型的智能体(Agent)平台,支持开发者根据自身需求打造产品能力。 4. MindOS 的 Agent 平台:允许用户定义 Agent 的个性、动机、知识,以及访问第三方数据和服务或执行工作流。 5. 斑头雁:2B 基于企业知识库构建专属 AI Agent 的平台,适用于客服、营销、销售等多种场景,提供多种成熟模板,功能强大且开箱即用。 6. 钉钉 AI 超级助理:依托钉钉强大的场景和数据优势,提供更深入的环境感知和记忆功能,在处理高频工作场景如销售、客服、行程安排等方面表现出色。 在飞书上构建 FAQ 机器人: 1. 会议介绍了 WaytoAGI 社区的成立愿景和目标,以及其在飞书平台上的知识库和社区的情况。 2. 讨论了利用 AI 技术帮助用户更好地检索知识库中的内容,引入了 RAG 技术,通过机器人来帮助用户快速检索内容。 3. 介绍了基于飞书的知识库智能问答技术的应用场景和实现方法,可以快速地给大模型补充新鲜的知识,提供大量新的内容。 4. 讨论了如何使用飞书的智能伙伴功能来搭建 FAQ 机器人,以及智能助理的原理和使用方法。 5. 飞书智能伙伴创建平台(Aily)是飞书团队旗下的企业级 AI 应用开发平台,提供简单、安全且高效的环境,帮助企业轻松构建和发布 AI 应用。 本地部署资讯问答机器人: 决定先采取 Langchain + Ollama 的技术栈来作为 demo 实现,后续也会考虑使用 dify、fastgpt 等更加直观易用的 AI 开发平台。 整体框架设计思路如下: Langchain 是当前大模型应用开发的主流框架之一,提供一系列工具和接口,核心在于其“链”概念,包括 Model I/O、Retrieval、Chains、Agents、Memory 和 Callbacks 等组件,可灵活组合支持复杂应用逻辑,其生态系统还包括 LangSmith、LangGraph 和 LangServe 等工具。 Ollama 是一个开箱即用的用于在本地运行大模型的框架。 请注意,以上信息由 AI 大模型生成,请仔细甄别。
2025-02-24
微信机器人
以下是关于微信机器人的相关内容: 测试和重新配置 1. 登录成功后,找另一个人私聊或者在群中@您,就可以看到机器人的正常回复,此时表示已通。若未通过,可检查 config.json 文件中的配置或直接跳到“第四章,第 3 步”重启服务。 2. 为 AI 赋予不同提示词,可返回“第三章,第 7 步”或“目录 4 里的第 17 步”,更改其中双引号内的 value 部分。 3. 此后任何更改,都需要“返回首页 右上角 点击重启,重启一下服务器”,或者通过重启进程的方式重启服务。然后在“文件”的【终端】里,直接输入“nohup python3 app.py&tail f nohup.out”重新扫码登录。 4. 若想退出机器人,在手机微信上找到桌面版已登录的信息,点击退出桌面版即可。 帮助 如果遇到问题,可以先查询社区知识库,或者加“通往 AGI 之路”群,社区小伙伴们(比如梦飞大佬,熊猫大侠)会尽力帮助。也可以加 Stuart 个人微信询问。 第一天教程:COW 部署 完成 1. 登录成功后,找另一个人私聊或者在群中@您,就可以看到机器人的正常回复,此时表示已通。 2. 若想为 AI 赋予提示词,可返回“目录 4 里的第 17 步”更改其中双引号内的 value 部分。 3. 此后任何更改,都需要重新打印登陆二维码才会生效。建议在多次重新登录后,在宝塔“首页 右上角 点击重启,重启一下服务器”清理进程。 4. 然后在“文件”的【终端】里,直接输入“nohup python3 app.py&tail f nohup.out”重新扫码登录。 5. 如果没有手机登录,可以使用夜神模拟器模拟手机登录。 6. 一个月内,不要上来就加好友、最好不要私聊聊天! 7. 报错“wxsid”是因为微信未实名,实名即可。 8. Link AI 提供 100 个,合计 3500 万 GPT3.5 Token 的礼品码,可用于实现画图、搜索、识图等功能,COW 插件几乎都支持使用 LinkAI 平台。完成机器人搭建,机器人拉群里,可领兑换码。 9. 添加微信,拉您进机器人群,先行体验。 第四天教程:FastGPT 教学 功能使用教程 1. 积分系统:此项目因加入积分系统,多了一个好玩的玩法。只有积分的用户才可发起 AI 对话,主管理员的大号可对别人进行加减积分的操作,使用方式:@用户 加 100,加字后边有空格。 2. 群聊推送:原版本只支持公众号信息推送,二开还在内测中。大号在群里发送“开启推送”,即可在此群开启推送服务。然后,大号在与小号的私聊中发送任意公众号卡片,小号就可以把信息转发到群聊中(目前仅支持公众号卡片)。 3. 小工具使用示例(部分):其他功能,可发送 Help 查看使用方式。 登录失败 如果登录失败提示版本不对,执行以下步骤: 1. 下载文件,放到 NGCbot 文件夹里 2. 打开微信,先不要登录,保持在扫码/登录页面。 3. 在文件夹空白处,shift + 鼠标右键,点击“在此处打开 Powershell 窗口”,然后输入相关命令,点击回车。 4. 然后,回到文件夹下,双击 main.py 5. 登录微信即可。 如果群满,加我,回复“机器人”拉您进机器人群,回复“人类群”拉您进人类群。
2025-03-09
请以轨道式、巡检机器人为关键词查找国外文献十五篇,要求这些文献真实可靠并且有一定的影响力,同时附上原文链接
很抱歉,目前没有查找到以轨道式、巡检机器人为关键词的国外文献十五篇及原文链接。建议您通过以下途径进行查找: 1. 学术数据库,如 Web of Science、Scopus 等。 2. 相关领域的专业学术期刊网站。 3. 大学图书馆的电子资源库。
2025-03-06
微信聊天机器人
以下是关于搭建 AI 微信聊天机器人的相关内容: 1. 纯 GPT 大模型能力的微信聊天机器人搭建: 开始搭建,配置腾讯云轻量应用服务器,配置部署 COW 组件。 在复制的 dockercompose.yml 文件中修改具体配置来串联微信号和已创建好的 AI 机器人。配置参数参考官方来源:https://docs.linkai.tech/cow/quickstart/config 。编排模板中,名称的全大写描述需对应,如 open_ai_api_key 对应 OPEN_AI_API_KEY 。私聊或群聊时,最好加上前缀触发机器人回复,如配置的对应配置参数 SINGLE_CHAT_PREFIX,群聊中对应参数是 GROUP_CHAT_PREFIX,机器人只会回复群里包含@bot 的消息。GROUP_NAME_WHITE_LIST 用来配置哪些群组的消息需要自动回复。 2. 直接对接 Coze 平台 Bot 的微信聊天机器人搭建: 微信有多种功能,个人微信/微信群目前 Coze AI 平台不支持直接对接,微信公众号、微信服务号、微信客服支持与 Coze AI 平台对接。 Coze 的国内版已正式发布 API 接口功能,可直接对接个人微信和微信群。 3. 熊猫大侠:基于 COW 框架的 ChatBot 实现步骤: COW 是基于大模型搭建的 Chat 机器人框架,将多模型塞进微信里的实现方案。 有更适合小白的使用教程:【保姆级】一步一图,手把手教你把 AI 接入微信副本 。 实现内容包括打造属于自己的 ChatBot(文本对话、文件总结、链接访问、联网搜索、图片识别、AI 画图等)、常用开源插件的安装应用。 正式开始前需知道: ChatBot 相较于在各大模型网页端使用区别:本实现思路需接入大模型 API(API 单独付费)。 风险与注意事项:微信端因非常规使用有封号危险,不建议主力微信号接入;只探讨操作步骤,请依法合规使用,大模型生成内容注意甄别,禁止用于非法目的,处理敏感或个人隐私数据注意脱敏。 支持多平台接入:微信、企业微信、公众号、飞书、钉钉等。 支持多模型选择:GPT3.5/GPT4.0/Claude/文心一言/讯飞星火/通义千问/Gemini/GLM4/LinkAI 等。 支持多消息类型:能处理文本、语音和图片,以及基于自有知识库进行定制的企业智能客服功能。 支持多部署方法:本地运行、服务器运行、Docker 的方式。
2025-03-06
微信机器人相关课程
以下是关于微信机器人的相关课程: 日程安排: 6 月 19 日 20:00 开始:从零到一,搭建微信机器人。 6 月 20 日 20:00 开始:Coze 接入、构建你的智能微信助手。 6 月 23 日 20:00 开始:微信机器人插件拓展教学。 6 月 24 日 20:00 开始:虚拟女友“李洛云”开发者自述。 6 月 25 日 20:00 开始:FastGPT:“本地版 coze"部署教学。 6 月 27 日 20:00 开始:Hook 机制的机器人使用和部署教学。 共学快闪第三期活动总结: 关于虚拟聊天机器人的讨论。 创建聊天机器人:可在平台创建自己的 bot,并互相交流和沟通。新客户可用 COS 作为 API 来搭建。 举办 cost 活动:包括图文赛道和创意赛道,参与者可投稿参赛并有奖金。 评估指标和体系:提出了 helpfulness、拟人性、语言流畅度和优雅性、OC 等评估指标,并讨论了机评和人评混合的评估方式,以及一些相对主观的指标,如后验的对话轮速、对话轮次、用户的使用留存和频率等。 问题汇总和整理:提供了问题汇总文档,记录了 119 条常见问题和解决方案。 微信机器人的搭建:搭建过程是逐步的,可能会遇到卡点,最早有专人在群里回复。前两天的分享在知识库首页,通过第三轮 agent 供学,可跟着教程搭建出不错的机器人。 机器人的能力:可实现小的商业化目的,如搭建客服机器人、进行群管理等。 课程相关:微信机器人课程全免费,梦飞带大家完成的课程已在知识库,可扫码直达学习。 prompt 的相关内容:prompt 属于商业机密,无法分享。赵悦普及了大模型回复速度与输出字符数据相关的知识。 大事件记录: 皇子:零成本、零代码搭建一个智能微信客服,保姆级教程。 安仔:不用黑魔法,小白也能做一个对接 GPT 大模型的微信聊天机器人。 张梦飞:【保姆级】一步一图,手把手教你把 AI 接入微信。 张梦飞:FastGPT + OneAPI + COW 带有知识库的机器人完整教程。 张梦飞:基于 Hook 机制的微信 AI 机器人,无需服务器,运行更稳定,风险更小。 张梦飞:【保姆级教程】这可能是你在地球上能白嫖到的,能力最强的超级微信机器人!一步一图,小白友好。 在自己的电脑上部署 COW 微信机器人项目。
2025-03-05
企业微信 智能机器人
以下是关于在企业微信中搭建智能机器人的相关内容: 一、使用 Coze 在微信里搭建机器人的目的 1. 训练公司自有的数据,让机器人对外提供客服功能。 2. 将训练好的机器人与公司的企业微信绑定,对外提供客服功能。 3. 进阶版:同时根据客户咨询的信息,收集用户联系方式信息形成销售线索。 二、使用工具 1. 字节旗下的 Coze AI 智能机器人工具。 2. 需要有微信公众号订阅号或服务号的管理权。 三、功能体验 扣子画小二智能小助手:https://www.coze.cn/store/bot/7371793524687241256?panel=1&bid=6cjksvpbk000a B站公开视频 四、基于 Hook 机制的微信 AI 机器人部署项目 1. 把 Administrators 先改成“wxid_dna83ykqawl222”。 2. 如果已有 FastGPT 或者 OpenAI 的 key,可把 Ai_Lock 修改成“1”,并在 OpenAI 处添加模型 key,填写格式参照原有格式;若暂时没有,可保持 Ai_Lock 是 0。 3. 修改后点击保存。 4. 返回 NGCbot 文件夹下,找到 main.py 文件,双击开始运行。 5. 双击后会看到页面并弹出微信登录框,正常登录微信(若显示版本过低登录失败,参考登录失败的解决方法)。 6. 进入微信后,系统会自动初始化必备文件,等待初始化完成。 7. 运行成功后,用“大号”给机器人发一条消息,拿到自己的 wxid 返回到第 1 步中 config 让替换的地方进行替换。 8. 添加完之后,建议使用小号登录,然后用大号作为管理员对小号发号施令。 五、基于 Hook 机制的微信 AI 机器人功能使用教程 1. 积分系统:此项目加入了积分系统,只有积分的用户才可以发起 AI 对话,主管理员的大号可对别人进行加减积分的操作,使用方式:@用户 加 100,加字后边有空格。 2. 群聊推送:大号在群里发送“开启推送”,即可在此群开启推送服务。然后,大号在与小号的私聊中发送任意公众号卡片,小号就可以把信息转发到群聊中(目前仅支持公众号卡片)。 3. 小工具使用示例(部分):发送 Help 查看使用方式。 六、登录失败的解决方法 1. 下载文件,放到 NGCbot 文件夹里。 2. 打开微信,先不要登录,保持在扫码/登录页面。 3. 在文件夹空白处,shift+鼠标右键,点击“在此处打开 Powershell 窗口”,然后输入相关命令,点击回车。 4. 回到文件夹下,双击 main.py 登录微信。
2025-03-04
怎么利用大模型训练自己的机器人
利用大模型训练自己的机器人可以参考以下内容: OpenAI 通用人工智能(AGI)的计划显示,在互联网上所有的图像和视频数据上训练一个与人类大脑大小相当的 AI 模型,将足以处理复杂的机器人学任务。常识推理隐藏在视频和文本数据中,专注于文本的 GPT4 在常识推理上表现出色。Google 最近的例子展示了机器人学能力可从大型视觉/语言模型中学习,在语言和视觉训练基础上,只需最少的机器人学数据,视觉和文本任务的知识就能转移到机器人学任务上。特斯拉训练的“Optimus”通过人类示范学习抓取物体,若人类示范是先进机器人学性能所需的一切,在互联网上所有视频上训练的大模型肯定能实现惊人的机器人学性能。 梦飞提供了在自己的电脑上部署 COW 微信机器人项目的教程,程序在本地运行,若关掉窗口进程结束,想持续使用需保持窗口打开和运行。以 Windows10 系统为例,注册大模型可参考百炼首页:https://bailian.console.aliyun.com/ ,需更改"model"和添加"dashscope_api_key",获取 key 可参考视频教程。 张梦飞提供了从 LLM 大语言模型、知识库到微信机器人的全本地部署教程,部署大语言模型包括下载并安装 Ollama,根据电脑系统下载:https://ollama.com/download ,安装完成后将下方地址复制进浏览器中确认安装完成:http://127.0.0.1:11434/ 。下载 qwen2:0.5b 模型,Windows 电脑按 win+R 输入 cmd 回车,Mac 电脑通过 Command(⌘)+Space 键打开 Spotlight 搜索输入“Terminal”或“终端”,复制命令行粘贴回车等待下载完成。
2025-03-03
有哪些辅助财务工作提效的AI智能体或落地应用?
以下是一些辅助财务工作提效的 AI 智能体或落地应用: 新兴的 AI 智能体公司,如 Sierra、Decagon、Maven AGI、DevRev、Gradient Labs 等,在客户服务和支持等领域发挥作用,其中 Sema4 可用于财务后勤。 RPA(流程自动化机器人)产品,如杭州分叉智能公司的 RPA 产品,可控制桌面软件,实现办公流程自动化,在财务领域可用于开票、网银流水下载等。它能够替代电脑办公中的重复有逻辑工作,为企业降本增效。 利用引刀 AP 创建网页实现智能解答税务问题,结合飞书避免信息泄露和实现自动回复等。 生成式 AI 可以帮助金融服务团队改进内部流程,简化财务团队的日常工作流程。例如,帮助编写 Excel、SQL 和 BI 工具中的公式和查询以实现分析自动化,自动创建文本、图表、图形等报告内容,为会计和税务团队综合、总结并提供税法和潜在扣除项的可能答案,以及帮助自动生成和调整采购和应付账款相关的合同、订单和发票等。
2025-03-11
智能体客服
智能体(Agent)在人工智能和计算机科学领域是一个重要概念,指能够感知环境并采取行动以实现特定目标的实体,可以是软件程序或硬件设备。 智能体具有以下特点: 1. 自主系统:通过感知环境(通常通过传感器)并采取行动(通常通过执行器)来达到目标。 2. 任务分解:将大型任务分解为更小、可管理的子目标,有效处理复杂任务。 3. 反思完善:对过去行为进行自我批评和反思,从错误中吸取教训,完善未来步骤,提高最终结果质量。 4. 记忆能力:包括短期记忆(利用模型的短期记忆来学习)和长期记忆(通过外部向量存储和快速检索实现长时间保留和回忆无限信息)。 5. 工具使用:学习调用外部 API 获取模型权重中缺失的额外信息,包括当前信息、代码执行能力、对专有信息源的访问等。 以下是一些智能体相关的目录: 1. 2. 3. 4. 5. 6. 随着 ChatGPT 与 AI 概念的爆火,出现了很多新名词,如“智能体 Agent”、bot 和 GPTs 等。简单理解,智能体就是 AI 机器人小助手,参照移动互联网,类似 APP 应用的概念。在做 Agent 创业的公司有很多,比如 C 端案例中,社交方向有用户注册后先捏一个自己的 Agent,然后让其与他人的 Agent 聊天,两个 Agent 聊到一起后再真人介入的有趣场景;还有借 Onlyfans 入局打造个性化聊天的创业公司。B 端案例中,有帮助 B 端商家搭建 Agent 的机会。 智能体开发平台方面,如字节的扣子 Coze 于 2 月 1 日正式推出国内版,主要用于开发下一代 AI 聊天机器人。国内还有很多智能体开发平台,如 Dify.AI。
2025-03-11
智能客服系统的搭建
智能客服系统的搭建可以参考以下内容: FastGPT 是一个基于大语言模型(LLM)的知识库问答系统,具有以下特点和优势,适用于智能客服系统的搭建: 1. 基于 LLM 的问答:采用先进的 LLM 技术,能理解自然语言并生成高质量答案。 2. 知识库支持:可连接外部知识库获取更全面信息。 3. 可视化工作流:提供可视化工作流编排工具,方便创建复杂问答场景。 4. 开箱即用:提供数据处理和模型调用功能,方便快速上手。 其应用场景包括构建智能客服系统,为客户提供 7x24 小时自动问答服务。 在“Show Me 扣子 AI 挑战赛大消费行业专场”中,有作品帮助企业快速建立产品智能客服体系,通过用户意图识别、知识库检索答案、AI 大模型总结输出答案、多轮对话沟通、对话分析打标、自动更新知识库 FAQ 以及客服效果分析,提供全面的 AI 客服解决方案,提高 AI 客服回答的准确率,降低企业商用 AI 客服的门槛。 AIGC 在客户关系管理(CRM)领域也有相关应用,例如基于 AIGC 的对话模型可开发智能客服系统,通过自然语言交互解答客户咨询、投诉等,缓解人工客服压力。 总之,搭建智能客服系统可以综合利用上述技术和方法,以满足企业和用户的需求。
2025-03-11
公众号文章写手,智能体人设提示词
以下是为您整合的关于公众号文章写手智能体人设提示词的相关内容: 在提示词母体系列(2)中,介绍了模拟江南皮革厂销售的拟人化提示词模板,并将其应用于国内的豆包角色扮演模型,生成吸引人的广告词。若与语音技术结合用于宣传,能创造出有趣有效的销售助手。文章最后提到可通过关注微信领取拟人化提示词母体。 在夙愿:AI 工作流,赋能我的十倍增长中,提到 AI 辅助写作的几种思路,特别是注入个人特色方面。要结合 AI 输出的结果进行决策,删掉无关信息,如短视频、专家访谈、要点列表等不符合需求的内容。然后根据建议,如结合人设、自身经历、补充新信息新观点、使用语言风格、调整结构等来排列组合,得到文章选题。 在方案扩写助手中,参考 Claude 3.5 的官方提示词写法,主要能力包括对专业类方案按格式和风格扩写、拆解技术细节、提示扩写方法。智能体采用对话模式的 Prompt 设计,提示词要求专家深入思考文档需求并编写成文字,分析示例文档进行扩写,采用特定方法充实内容,保持格式、专业准确、语言自然流畅及整体连贯性可读性。
2025-03-11
推荐一个可以快速搭建的高级个人智能体
以下为您推荐一个可以快速搭建的高级个人智能体: 五津的DeepSeek+扣子:输入人设等信息创建智能体,放上创建的工作流。配置完成后可测试,但工作流中【所有视频片段拼接】节点的api_token不能直接发布,可作为工作流输入让用户购买后使用。 阿里云百炼平台的Deepseek R1模型:无需部署直接使用,有丰富的模型广场和大量免费额度,使用需解锁和授权,实名认证后可通过模型广场的API调用示例连接Chat Box,新建智能体应用可选择模型并调整参数,还能开启互联网搜索。 小众打卡地智能体:输入旅游目的地城市可推荐3个小众打卡地小红书类文案及配图,其搭建思路包括录入小红书文案参考知识库、通过文本模型组成搜索词搜索并提取相关url、滤除部分网站、提取小众地点输出及图片搜索等。
2025-03-11
给我推荐一个处理表格的智能体
以下为您推荐一些处理表格的智能体: 阿里云百炼: 表格格式要求:表格的第一行应为表头,不要将表格名称作为表格的第一行内容。 表格结构说明:对于表格结构没有特别的要求,可以根据内容的需要自由设计列和行。 保持样式简洁:建议去除所有不必要的格式,如背景色、字体样式等。表格线条应保持清晰,使用默认的线条样式。 企业标准版,由于表格处理能力仍在持续优化,建议在文档中尽量减少表格,或考虑比如文本列表等替代方式来展示表格数据。 企业专属版与私有化版本,通义灵码已经具备了更高级的表格处理能力,可确保表格数据的准确性。 Coze 智能体: 第一步,创建一个智能体,使用单 Agent 对话流模式。 编排对话流,点击创建新的对话流(记得要和智能体关联)。 进行数据处理时,注意代码节点输出的配置格式。 工作流的结束节点,选择使用代码的返回数据。 发布时,只选择多维表格,注意输出类型选文本,输入类型选字段选择器。完善上架信息,选发布范围时,可选仅自己可用以加快审核。
2025-03-11