Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

stable diffusion和国内的这些AI绘画的模型有什么区别

Answer

Stable Diffusion 和国内的 AI 绘画模型主要有以下区别:

  1. 数据集和学习方式:
    • 在线的国内模型可以访问庞大且不断更新扩展的数据集,还能实时从用户的弱监督学习中获得反馈,从而不断调整和优化绘画策略。而 Stable Diffusion 通常受限于本地设备的计算能力,其数据集和学习反馈相对有限。
  2. 计算能力:
    • 在线的国内模型能利用云计算资源进行大规模并行计算,加速模型的训练和推理过程。Stable Diffusion 受本地设备计算能力限制,性能可能不如在线模型。
  3. 模型更新:
    • 在线的国内模型可以随时获得最新的版本和功能更新,更好地适应不断变化的绘画风格和技巧。Stable Diffusion 的模型更新相对较慢。
  4. 协同学习:
    • 在线的国内模型可以从全球范围内的用户中学习,更好地理解各种绘画风格和技巧。Stable Diffusion 则只能依赖于有限的本地模型,对绘画可能性的了解可能不够全面。

例如,Niji·journey 5 在二次元角色设计领域就展现出比 Stable Diffusion 更强大的性能和实用性。同时,国内还有 DeepSeek、阿里巴巴的 Qwen-2 系列、清华大学的 OpenBMB 项目等在不同方面表现出色的模型。

Content generated by AI large model, please carefully verify (powered by aily)

References

AI原画设计 | AI二次元设计王者:Niji·journey 5指南

庞大的数据集和用户的弱监督学习对在线二次元绘画AI有着重要的作用。这两者可以让在线的Niji·journey比本地部署的Stable Diffusion更强大,原因如下:1.更丰富的数据集:在线二次元绘画AI可以访问到庞大的、涵盖各种绘画风格和技巧的数据集。这些数据集不断地更新和扩展,使得在线AI能够不断学习到最新的绘画技巧和风格。2.实时更新:在线二次元绘画AI可以实时地从用户的弱监督学习中获得反馈,从而不断调整和优化其绘画策略。3.计算能力:在线二次元绘画AI可以利用云计算资源进行大规模并行计算,从而加速模型的训练和推理过程。相比之下,Stable Diffusion通常受限于本地设备的计算能力,这可能导致其性能不如在线AI。4.模型更新:在线二次元绘画AI可以随时获得最新的模型版本和功能更新。这意味着它能够更好地适应不断变化的绘画风格和技巧。Stable Diffusion的模型更新相对较慢,可能无法紧跟潮流。5.协同学习:在线二次元绘画AI可以从全球范围内的用户中学习,从而更好地理解各种绘画风格和技巧。Stable Diffusion则只能依赖于有限的本地模型,可能无法全面了解二次元绘画的各种可能性。综上所述,庞大的数据集和用户的弱监督学习使得在线二次元绘画AI具有更强大的学习能力和更广泛的适应性。这些优势让Niji·journey在二次元绘画方面相较于Stable Diffusion具有更高的性能和实用性。下面我将通过一些例子,来说明运用Niji·journey产出二次元角色设计的方法和技巧:

2024人工智能报告|一文迅速了解今年的AI界都发生了什么?

**中国开源项目在今年赢得全球粉丝,并且已经成为积极开源贡献者。**其中几个模型在个别子领域中脱颖而出,成为强有力的竞争者。DeepSeek在编码任务中已成为社区的最爱,其组合了速度、轻便性和准确性而推出的deepseek-coder-v2。阿里巴巴最近发布了Qwen-2系列,社区对其视觉能力印象深刻,从具有挑战性的OCR任务到分析复杂的艺术作品,都完成的非常好。在较小的一端,清华大学的自然语言处理实验室资助了OpenBMB项目,该项目催生了MiniCPM项目。这些是可以在设备上运行的小型<2.5B参数模型。它们的2.8B视觉模型在某些指标上仅略低于GPT-4V。2024年是AI图像视频迅速发展的一年,这个赛道竞争异常激烈国外Stability AI发布的Stable Video Diffusion,是第一个能够从文本提示生成高质量、真实视频的模型之一,并且在定制化方面取得了显著的进步。并且在今年3月,他们推出了Stable Video 3D,该模型经过第三个对象数据集的微调,可以预测三维轨道。OpenAI的Sora能够生成长达一分钟的视频,同时保持三维一致性、物体持久性和高分辨率。它使用时空补丁,类似于在变压器模型中使用的令牌,但用于视觉内容,以高效地从大量视频数据集中学习。除此之外,Sora还使用了其原始大小和纵横比的视觉数据进行训练,从而消除了通常会降低质量的裁剪和缩放。Google DeepMind的Veo将文本和可选图像提示与嘈杂压缩视频输入相结合,通过编码器和潜在扩散模型处理它们,以创建独特的压缩视频表示。然后系统将此表示解码为最终的高分辨率视频。

教程:深入浅出完整解析Stable Diffusion(SD)核心基础知识 - 知乎

码字不易,希望大家能多多点赞!Rocky持续在撰写Stable Diffusion XL全方位解析文章,希望大家能多多点赞,让Rocky有更多坚持的动力:[深入浅出完整解析Stable Diffusion XL(SDXL)核心基础知识967赞同·148评论文章](https://zhuanlan.zhihu.com/p/643420260)2023.08.26最新消息,本文已经撰写Stable Diffusion 1.x-2.x系列和对应LoRA的训练全流程与详细解读内容,同时发布对应的保姆级训练资源,大家可以愉快地训练属于自己的SD和LoRA模型了!2023.07.26最新消息,由于Stable Diffusion模型的网络结构比较复杂,不好可视化,导致大家看的云里雾里。因此本文中已经发布Stable Diffusion中VAE,U-Net和CLIP三大模型的可视化网络结构图,大家可以下载用于学习!大家好,我是Rocky。2022年,Stable Diffusion模型横空出世,成为AI行业从传统深度学习时代走向AIGC时代的标志性模型之一,并为工业界、投资界、学术界和竞赛界都注入了新的AI想象空间,让AI再次“性感”。Stable Diffusion(简称SD)是AI绘画领域的一个核心模型,能够进行文生图(txt2img)和图生图(img2img)等图像生成任务。与Midjourney不同的是,Stable Diffusion是一个完全开源的项目(模型、代码、训练数据、论文、生态等全部开源),这使得其能快速构建强大繁荣的上下游生态(AI绘画社区、基于SD的自训练AI绘画模型、丰富的辅助AI绘画工具与插件等),并且吸引了越来越多的AI绘画爱好者加入其中,与AI行业从业者一起推动AIGC领域的发展与普惠。

Others are asking
AI学习路径
以下是为新手提供的 AI 学习路径: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,通过实践巩固知识,尝试使用各种产品做出作品。 知识库中有很多实践后的作品、文章分享,欢迎实践后分享。 5. 体验 AI 产品: 与现有的 AI 产品如 ChatGPT、Kimi Chat、智谱、文心一言等聊天机器人互动,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 另外,如果您偏向技术研究方向,学习路径包括: 1. 数学基础:线性代数、概率论、优化理论等。 2. 机器学习基础:监督学习、无监督学习、强化学习等。 3. 深度学习:神经网络、卷积网络、递归网络、注意力机制等。 4. 自然语言处理:语言模型、文本分类、机器翻译等。 5. 计算机视觉:图像分类、目标检测、语义分割等。 6. 前沿领域:大模型、多模态 AI、自监督学习、小样本学习等。 7. 科研实践:论文阅读、模型实现、实验设计等。 如果您偏向应用方向,学习路径包括: 1. 编程基础:Python、C++等。 2. 机器学习基础:监督学习、无监督学习等。 3. 深度学习框架:TensorFlow、PyTorch 等。 4. 应用领域:自然语言处理、计算机视觉、推荐系统等。 5. 数据处理:数据采集、清洗、特征工程等。 6. 模型部署:模型优化、模型服务等。 7. 行业实践:项目实战、案例分析等。 无论是技术研究还是应用实践,数学和编程基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2025-01-09
人类在使用AI工具中的核心作用
人类在使用 AI 工具中的核心作用主要体现在以下几个方面: 1. 保持创造热情:这是人与 AI 在动机上的最大差异,人类需要提供立意与想法,具备对观察的抽象化能力和对定义的具象化能力。 2. 善于叙事和引导:对 AI 给出的选择做出关键决策。 3. 深刻理解 AI 系统:包括其工作方式和边界。 4. 设定目标:让 AI 依据目标来驱动工具。 5. 整合与分析信息:行动模块接收来自感知模块的多模态数据并进行整合与分析,类似于人类大脑的处理过程。 6. 决策与转化指令:评估不同行动方案并选择最优路径,将决策转化为具体行动指令,如同人类大脑通过神经系统控制身体。 7. 利用工具:人类在面对复杂任务时使用工具来提高效率,AI 若学会使用工具也能增强能力。 8. 发挥语言生成能力:如 LLMbased Agent 利用基于 Transformer 的语言生成模型展现出出色的文本生成能力。
2025-01-09
目前国内哪个Ai更适合短视频创作
目前国内适合短视频创作的 AI 工具和产品有以下几种: 1. Fancytech:利用国内丰富的短视频数据训练垂直模型,在产品转型上表现出色。 2. 魔音工坊:国内的 AI 声音软件,可以使用情绪调节控件。 3. 艺映 AI:专注于人工智能视频领域,提供文生视频、图生视频、视频转漫等服务,可根据文本脚本生成视频。 此外,还有一些根据视频脚本生成短视频的 AI 工具: 1. ChatGPT + 剪映:ChatGPT 生成视频小说脚本,剪映根据脚本自动分析并生成素材和文本框架。 2. PixVerse AI:在线 AI 视频生成工具,支持多模态输入转化为视频。 3. Pictory:AI 视频生成器,用户提供文本描述即可生成相应视频内容。 4. VEED.IO:提供 AI 图像和脚本生成器,帮助从图像制作视频并规划内容。 5. Runway:将文本转化为风格化的视频内容,适用于多种场景。 这些工具各有特点,适用于不同的应用场景和需求,能够帮助创作者快速生成吸引人的短视频。但需要注意的是,内容由 AI 大模型生成,请仔细甄别。
2025-01-09
设计门头招牌的AI
以下是关于设计门头招牌的 AI 相关内容: 一泽 Eze 提出,仅用一句提示词和一个品牌 Logo 就能通过大模型 LLM 一键生成超级符合品牌调性的创意名片。整个流程为:输入 Prompt 和要用的 Logo,AI 会根据 Logo 对应的品牌特征分析名片设计方案并输出最终结果。 提示词已开源,获取后即可使用。注意事项包括:提示词主要目的是设计符合品牌调性的创意名片;上传的 Logo 建议使用清晰、底图透明的 PNG 格式以获得更好的直出效果;若生成结果不符合预期,可尝试让模型重新生成或与 AI 对话提出修改意见。 此外,还有一些生成 Logo 的 AI 产品,如 Looka,它是在线 Logo 设计平台,使用 AI 理解用户品牌信息和设计偏好生成多个方案供选择定制;Tailor Brands 是 AI 驱动的品牌创建工具,通过回答问题生成 Logo 选项;Designhill 的 Logo 制作器使用 AI 技术创建个性化设计;LogoMakr 提供简单易用工具,可利用 AI 建议的元素和颜色方案;Canva 提供 Logo 设计模板和元素及 AI 辅助建议;LogoAI by Tailor Brands 可根据输入快速生成方案;标小智是中文 AI Logo 设计工具。还可访问获取更多好用的工具。使用这些工具时,用户可根据品牌理念和视觉偏好简单交互获得设计方案并定制优化。
2025-01-09
设计门头照片的AI
以下是一些可以帮助您设计门头照片的 AI 产品: 1. Looka:这是一个在线设计平台,使用 AI 理解您的品牌信息和设计偏好,生成多个门头照片设计方案供您选择和定制。 2. Tailor Brands:AI 驱动的品牌创建工具,通过您回答关于品牌和设计风格的问题来生成门头照片选项。 3. Designhill:其门头照片制作器使用 AI 技术创建个性化设计。您可以选择不同的设计元素和风格,AI 基于输入生成方案。 4. LogoMakr:提供简单易用的设计工具,您可以通过拖放方式设计,利用 AI 建议的元素和颜色方案。 5. Canva:广受欢迎的在线设计工具,提供门头照片设计的模板和元素,利用 AI 辅助的设计建议创建品牌标识。 6. LogoAI by Tailor Brands:Tailor Brands 推出的 AI 门头照片设计工具,根据您输入的品牌名称和行业类别快速生成设计方案。 7. 标小智:中文 AI 门头照片设计工具,利用人工智能技术帮助创建个性化的门头照片。 使用这些工具时,您通常可以根据自己的品牌理念和视觉偏好,通过简单的交互获得一系列设计方案,并进一步定制和优化,直到满意为止。另外,您可以访问网站的 AI 生成门头照片工具版块,有更多好用的工具:
2025-01-09
服装设计用什么AI
在服装设计领域,以下 AI 工具和应用较为常见: 1. DALLE 2:Stitch Fix 服装公司使用它根据客户对颜色、面料和款式的偏好创建服装可视化。 2. Midjourney:在“海岱青州”晚会项目中,服装部门利用它为本地神兽“峱”生成最终演出服的设定图。 3. AIGC:可用于基于 AIGC 的服装概念设计。
2025-01-09
Stable Diffusion 学习教程
以下是关于 Stable Diffusion 学习的教程: 学习提示词: 1. 学习基本概念:了解 Stable Diffusion 的工作原理和模型架构,理解提示词如何影响生成结果,掌握提示词的组成部分(主题词、修饰词、反面词等)。 2. 研究官方文档和教程:通读 Stable Diffusion 官方文档,研究来自开发团队和专家的教程和技巧分享。 3. 学习常见术语和范例:熟悉 UI、艺术、摄影等相关领域的专业术语和概念,研究优秀的图像标题和描述,作为提示词范例。 4. 掌握关键技巧:学习如何组合多个词条来精确描述想要的效果,掌握使用“()”、“”等符号来控制生成权重的技巧,了解如何处理抽象概念、情感等无形事物的描述。 5. 实践和反馈:使用不同的提示词尝试生成各种风格和主题的图像,对比提示词和实际结果,分析原因,总结经验教训,在社区内分享结果,请教高手,获取反馈和建议。 6. 创建提示词库:根据主题、风格等维度,建立自己的高质量提示词库,将成功案例和总结记录在案,方便后续参考和复用。 7. 持续跟进前沿:关注 Stable Diffusion 的最新更新和社区分享,及时掌握提示词的新技术、新范式、新趋势。 核心基础知识: 1. Stable Diffusion 系列资源。 2. 零基础深入浅出理解 Stable Diffusion 核心基础原理,包括通俗讲解模型工作流程(包含详细图解)、从 0 到 1 读懂模型核心基础原理(包含详细图解)、零基础读懂训练全过程(包含详细图解)、其他主流生成式模型介绍。 3. Stable Diffusion 核心网络结构解析(全网最详细),包括 SD 模型整体架构初识、VAE 模型、UNet 模型、CLIP Text Encoder 模型、SD 官方训练细节解析。 4. 从 0 到 1 搭建使用 Stable Diffusion 模型进行 AI 绘画(全网最详细讲解),包括零基础使用 ComfyUI 搭建推理流程、零基础使用 SD.Next 搭建推理流程、零基础使用 Stable Diffusion WebUI 搭建推理流程、零基础使用 diffusers 搭建推理流程、生成示例。 5. Stable Diffusion 经典应用场景,包括文本生成图像、图片生成图片、图像 inpainting、使用 controlnet 辅助生成图片、超分辨率重建。 6. 从 0 到 1 上手使用 Stable Diffusion 训练自己的 AI 绘画模型(全网最详细讲解),包括训练资源分享、模型训练初识、配置训练环境与训练文件。 其他资源: 1. 了解 Stable diffusion 是什么: 。 2. 入门教程: 。 3. 模型网站:C 站 。 4. 推荐模型:人像摄影模型介绍:https://www.bilibili.com/video/BV1DP41167bZ 。
2025-01-06
Stable Diffusion、comfyui
ComfyUI 是一个基于节点流程式的 stable diffusion AI 绘图工具 WebUI,您可以将其想象成集成了 stable diffusion 功能的 substance designer。它具有以下特点: 优势: 对显存要求相对较低,启动和出图速度快。 生成自由度更高。 可以和 webui 共享环境和模型。 能搭建自己的工作流程,可导出流程并分享,报错时能清晰发现错误所在。 生成的图片拖进后会还原整个工作流程,模型也会选择好。 劣势: 操作门槛高,需要有清晰的逻辑。 生态没有 webui 丰富(但常用的都有),也有一些针对 Comfyui 开发的有趣插件。 其生图原理如下: 基础模型:ComfyUI 使用预训练的扩散模型作为核心,通常是 Stable Diffusion 模型,包括 SD1.5、SD2.0、SDXL、SD3、FLUX 等。 文本编码:当用户输入文本提示时,ComfyUI 首先使用 CLIP 文本编码器将文本转换为向量表示,以捕捉文本的语义信息。 Pixel Space 和 Latent Space: Pixel Space(像素空间):图的左边表示输入图像的像素空间,在 ComfyUI 中,对应于“图像输入”模块或直接从文本提示生成的随机噪声图像,生成过程结束时会将处理后的潜在表示转换回像素空间生成最终图像。 Latent Space(潜在空间):ComfyUI 中的许多操作都在潜在空间中进行,如 KSampler 节点执行采样过程,通过节点调整对潜在空间的操作,如噪声添加、去噪步数等。 扩散过程(Diffusion Process): 噪声的生成和逐步还原:扩散过程表示从噪声生成图像的过程,在 ComfyUI 中通常通过调度器控制,如 Normal、Karras 等,可通过“采样器”节点选择不同调度器控制处理噪声和逐步去噪回归到最终图像。 时间步数:在生成图像时,扩散模型会进行多个去噪步,通过控制步数影响图像生成的精细度和质量。 官方链接:https://github.com/comfyanonymous/ComfyUI (内容由 AI 大模型生成,请仔细甄别)
2025-01-06
社区有关于stable diffusion 的教程吗
以下是为您找到的关于 Stable Diffusion 的教程: 知乎教程:深入浅出完整解析 Stable Diffusion(SD)核心基础知识,目录包括: Stable Diffusion 系列资源 零基础深入浅出理解 Stable Diffusion 核心基础原理,包含通俗讲解模型工作流程(包含详细图解)、从 0 到 1 读懂模型核心基础原理(包含详细图解)、零基础读懂训练全过程(包含详细图解)、其他主流生成式模型介绍 Stable Diffusion 核心网络结构解析(全网最详细),包括 SD 模型整体架构初识、VAE 模型、UNet 模型、CLIP Text Encoder 模型、SD 官方训练细节解析 从 0 到 1 搭建使用 Stable Diffusion 模型进行 AI 绘画(全网最详细讲解),包括零基础使用 ComfyUI 搭建推理流程、零基础使用 SD.Next 搭建推理流程、零基础使用 Stable Diffusion WebUI 搭建推理流程、零基础使用 diffusers 搭建推理流程、Stable Diffusion 生成示例 Stable Diffusion 经典应用场景,包括文本生成图像、图片生成图片、图像 inpainting、使用 controlnet 辅助生成图片、超分辨率重建 从 0 到 1 上手使用 Stable Diffusion 训练自己的 AI 绘画模型(全网最详细讲解),包括 Stable Diffusion 训练资源分享、模型训练初识、配置训练环境与训练文件 其他教程: 了解 Stable diffusion 是什么: 基本介绍:https://waytoagi.feishu.cn/wiki/CeOvwZPwCijV79kt9jccfkRan5e 稳定扩散(Stable Diffusion)是如何运作的:https://waytoagi.feishu.cn/wiki/TNIRw7qsViYNVgkPaazcuaVfndc 入门教程: 文字教程: 模型网站: C 站SD 模型网站:https://civitai.com/ Liblibai模型+在线 SD:https://www.liblib.ai/ huggingface:https://huggingface.co/models?pipeline_tag=texttoimage&sort=trending 吐司站:https://tusiart.com/ 推荐模型:人像摄影模型介绍:https://www.bilibili.com/video/BV1DP41167bZ
2025-01-04
stabel diffusion学习
以下是关于学习 Stable Diffusion 的相关内容: 学习 Stable Diffusion 提示词: 学习 Stable Diffusion 的提示词是一个系统性的过程,需要理论知识和实践经验相结合。具体步骤如下: 1. 学习基本概念:了解 Stable Diffusion 的工作原理和模型架构,理解提示词如何影响生成结果,掌握提示词的组成部分(主题词、修饰词、反面词等)。 2. 研究官方文档和教程:通读 Stable Diffusion 官方文档,了解提示词相关指南,研究来自开发团队和专家的教程和技巧分享。 3. 学习常见术语和范例:熟悉 UI、艺术、摄影等相关领域的专业术语和概念,研究优秀的图像标题和描述,作为提示词范例。 4. 掌握关键技巧:学习如何组合多个词条来精确描述想要的效果,掌握使用“()”、“”等符号来控制生成权重的技巧,了解如何处理抽象概念、情感等无形事物的描述。 5. 实践和反馈:使用不同的提示词尝试生成各种风格和主题的图像,对比提示词和实际结果,分析原因,总结经验教训,在社区内分享结果,请教高手,获取反馈和建议。 6. 创建提示词库:根据主题、风格等维度,建立自己的高质量提示词库,将成功案例和总结记录在案,方便后续参考和复用。 7. 持续跟进前沿:关注 Stable Diffusion 的最新更新和社区分享,及时掌握提示词的新技术、新范式、新趋势。 Stable Diffusion 软件原理傻瓜级理解: Stable Diffusion 的工作原理就好比学习画画。比如学梵高的风格,要先看他的画并临摹。AI 绘画也是类似逻辑,人们把成千上万美术风格的作品练成一个模型放在 AI 里,AI 就能依照模型画出类似风格的作品。想要画出符合心意的作品,首先要选对合适的大模型。大模型的下载,可以去 C 站(https://civitai.com/),但需要科学上网。 学习 Stable Diffusion Web UI: 学习 Stable Diffusion Web UI 可以按照以下步骤进行: 1. 安装必要的软件环境:安装 Git 用于克隆源代码,安装 Python 3.10.6 版本并勾选“Add Python 3.10 to PATH”选项,安装 Miniconda 或 Anaconda 创建 Python 虚拟环境。 2. 克隆 Stable Diffusion Web UI 源代码:打开命令行工具,输入命令 git clone https://github.com/AUTOMATIC1111/stablediffusionwebui.git,将源代码克隆到本地目录。 3. 运行安装脚本:进入 stablediffusionwebui 目录,运行 webuiuser.bat 或 webui.sh 脚本,它会自动安装依赖项并配置环境,等待安装完成,命令行会显示 Web UI 的访问地址。 4. 访问 Web UI 界面:复制命令行显示的本地 Web 地址,在浏览器中打开,即可进入 Stable Diffusion Web UI 的图形化界面。 5. 学习 Web UI 的基本操作:了解 Web UI 的各种设置选项,如模型、采样器、采样步数等,尝试生成图像,观察不同参数对结果的影响,学习使用提示词(prompt)来控制生成效果。 6. 探索 Web UI 的扩展功能:了解 Web UI 支持的各种插件和扩展,如 Lora、Hypernetwork 等,学习如何导入自定义模型、VAE、embedding 等文件,掌握图像管理、任务管理等技巧,提高工作效率。 通过这些步骤,相信您可以快速上手 Stable Diffusion Web UI,开始探索 AI 绘画的乐趣。后续还可以深入学习 Stable Diffusion 的原理,以及在不同场景中的应用。请注意,内容由 AI 大模型生成,请仔细甄别。
2024-12-23
Stable Diffusion基础学习
以下是关于系统学习 Stable Diffusion 的基础内容: 学习提示词: 学习基本概念,包括了解 Stable Diffusion 的工作原理和模型架构,理解提示词如何影响生成结果,掌握提示词的组成部分。 研究官方文档和教程,学习常见术语和范例。 掌握关键技巧,如组合多个词条精确描述效果、使用特定符号控制生成权重、处理抽象概念等。 通过实践和反馈,不断总结经验,创建自己的提示词库,并持续跟进前沿。 核心基础知识: 了解 Stable Diffusion 系列资源。 零基础深入浅出理解核心基础原理,包括通俗讲解模型工作流程、读懂核心基础原理、读懂训练全过程、介绍其他主流生成式模型。 解析核心网络结构,如 SD 模型整体架构、VAE 模型、UNet 模型、CLIP Text Encoder 模型、官方训练细节。 学习从 0 到 1 搭建使用 Stable Diffusion 模型进行 AI 绘画的不同流程。 了解经典应用场景,如文本生成图像、图片生成图片、图像 inpainting、使用 controlnet 辅助生成图片、超分辨率重建。 学习从 0 到 1 上手使用 Stable Diffusion 训练自己的 AI 绘画模型,包括训练资源分享、模型训练初识、配置训练环境与训练文件。 Nenly 的零基础入门课学习资料汇总: 提供了配套的学习文档,包括随堂素材、生成信息、内容修订等。 有安装攻略和素材下载的相关内容。
2024-12-22
stable diffusion
稳定扩散(Stable Diffusion)的运作原理如下: 消除图像中的噪点: 若在太暗情况下拍照产生的颗粒状即图像中的噪点。Stable Diffusion用于生成艺术作品,其在幕后所做的是“清理”图像,且比手机图像编辑器中的噪点消除滑块复杂得多。它了解世界的样子和书面语言,并利用这些来指导噪点消除过程。例如,给它一幅以H.R. Giger风格描绘的外星人弹吉他的图像,它能像熟练的平面艺术家一样利用对Giger艺术作品和世界的了解来清理图像。 大多数艺术生成工具中有“推理步骤”滑块,稳定扩散是逐步去除噪点的。 开始生成的方式:为了生成艺术,给稳定扩散提供一个纯噪点的初始图像,并谎称这是一幅特定风格的画。稳定扩散能做到是因为它是基于统计数据的计算机程序,会估计所有选项的概率,即使概率都极低,也会选择概率最高的路径,例如寻找噪点中最可能像吉他边缘的部分来填充物体。每次给它不同的纯噪点图像,都会创作出不同的艺术作品。 ComfyUI的生图原理: ComfyUI是一个开源的图形用户界面,用于生成AI图像,主要基于Stable Diffusion等扩散模型。 Pixel Space(像素空间):图的左边表示输入图像的像素空间,在ComfyUI中,对应于通过“图像输入”模块或直接从文本提示生成的随机噪声图像。生成过程结束时,系统会将处理后的潜在表示转换回像素空间,生成最终的图像。 Latent Space(潜在空间):ComfyUI中的许多操作都在潜在空间中进行,如KSampler节点就是在这个空间中执行采样过程。图像被映射到潜在空间后,扩散过程在这个空间中进行。在ComfyUI中,可通过节点调整对潜在空间的操作,如噪声添加、去噪步数等。 扩散过程(Diffusion Process): 噪声的生成和逐步还原:扩散过程表示从噪声生成图像的过程。在ComfyUI中,通常通过调度器(Schedulers)控制,典型的调度器有Normal、Karras等,会根据不同的采样策略逐步将噪声还原为图像。 时间步数:在生成图像时,扩散模型会进行多个去噪步。在ComfyUI中,可通过控制步数来影响图像生成的精细度和质量。
2024-12-18
怎么学习Midjourney和stable defussion
以下是关于学习 Midjourney 和 Stable Diffusion 的一些建议: Midjourney: 优势:操作简单方便,创作内容丰富,但需要科学上网并且付费,月费约 200 多元。若只是前期了解,可先尝试。 学习途径:只需键入“thingyouwanttoseev 5.2”(注意末尾的v 5.2 很重要,它使用最新的模型),就能得到较好的结果。Midjourney 需要 Discord,可参考。 Stable Diffusion: 优势:开源免费,可以本地化部署,创作自由度高,但需要较好的电脑配置,尤其是显卡。 学习途径: 关于具体的安装方法可以去看看 B 站的【秋葉 aaaki】这个 Up 主的视频。 可以参考,了解其工作原理和基本功能。 如果走 Stable Diffusion 这条路,这里有一个很好的指南(请务必阅读第 1 部分和第 2 部分) 此外,在学习 AI 绘画这段时间,发现 AI 绘画并不会完全替代设计师,而是可以让出图质量更好,效率更高。比如可以用 Midjourney 生成线稿,PS 稍微做一些修正,再用 ControlNet 控制,Stable Diffusion 上色,多套 AI 组合拳,可以快速生成效果惊艳的图。
2025-01-06
stable difusion学习
以下是关于学习 Stable Diffusion 的相关内容: 学习 Stable Diffusion 的提示词: 学习 Stable Diffusion 的提示词是一个系统性的过程,需要理论知识和实践经验相结合。具体步骤如下: 1. 学习基本概念:了解 Stable Diffusion 的工作原理和模型架构,理解提示词如何影响生成结果,掌握提示词的组成部分(主题词、修饰词、反面词等)。 2. 研究官方文档和教程:通读 Stable Diffusion 官方文档,了解提示词相关指南,研究来自开发团队和专家的教程和技巧分享。 3. 学习常见术语和范例:熟悉 UI、艺术、摄影等相关领域的专业术语和概念,研究优秀的图像标题和描述,作为提示词范例。 4. 掌握关键技巧:学习如何组合多个词条来精确描述想要的效果,掌握使用“()”、“”等符号来控制生成权重的技巧,了解如何处理抽象概念、情感等无形事物的描述。 5. 实践和反馈:使用不同的提示词尝试生成各种风格和主题的图像,对比提示词和实际结果,分析原因,总结经验教训,在社区内分享结果,请教高手,获取反馈和建议。 6. 创建提示词库:根据主题、风格等维度,建立自己的高质量提示词库,将成功案例和总结记录在案,方便后续参考和复用。 7. 持续跟进前沿:关注 Stable Diffusion 的最新更新和社区分享,及时掌握提示词的新技术、新范式、新趋势。 学习 Stable Diffusion Web UI: 学习 Stable Diffusion Web UI 可以按照以下步骤进行: 1. 安装必要的软件环境:安装 Git 用于克隆源代码,安装 Python 3.10.6 版本,确保勾选“Add Python 3.10 to PATH”选项,安装 Miniconda 或 Anaconda 创建 Python 虚拟环境。 2. 克隆 Stable Diffusion Web UI 源代码:打开命令行工具,输入命令 git clone https://github.com/AUTOMATIC1111/stablediffusionwebui.git,将源代码克隆到本地目录。 3. 运行安装脚本:进入 stablediffusionwebui 目录,运行 webuiuser.bat 或 webui.sh 脚本,它会自动安装依赖项并配置环境,等待安装完成,命令行会显示 Web UI 的访问地址。 4. 访问 Web UI 界面:复制命令行显示的本地 Web 地址,在浏览器中打开,即可进入 Stable Diffusion Web UI 的图形化界面。 5. 学习 Web UI 的基本操作:了解 Web UI 的各种设置选项,如模型、采样器、采样步数等,尝试生成图像,观察不同参数对结果的影响,学习使用提示词(prompt)来控制生成效果。 6. 探索 Web UI 的扩展功能:了解 Web UI 支持的各种插件和扩展,如 Lora、Hypernetwork 等,学习如何导入自定义模型、VAE、embedding 等文件,掌握图像管理、任务管理等技巧,提高工作效率。 Stable Diffusion 软件原理傻瓜级理解: Stable Diffusion 的工作原理可以这样理解:好比学习画画,比如学梵高的风格,要先看梵高的画并临摹。AI 绘画也是类似逻辑,人们把成千上万美术风格的作品练成一个模型放在 AI 里,AI 就能依照这个模型画出类似风格的作品。想要画出符合心意的作品,首先要选对合适的大模型。大模型的下载,可以去 C 站(https://civitai.com/),有真实系的、二次元的、游戏 CG 风的等等,但需要科学上网。
2024-12-24
stable difudion学习
以下是关于学习 Stable Diffusion 的相关内容: 学习 Stable Diffusion 的提示词: 学习 Stable Diffusion 的提示词是一个系统性的过程,需要理论知识和实践经验相结合。具体步骤如下: 1. 学习基本概念: 了解 Stable Diffusion 的工作原理和模型架构。 理解提示词如何影响生成结果。 掌握提示词的组成部分(主题词、修饰词、反面词等)。 2. 研究官方文档和教程: 通读 Stable Diffusion 官方文档,了解提示词相关指南。 研究来自开发团队和专家的教程和技巧分享。 3. 学习常见术语和范例: 熟悉 UI、艺术、摄影等相关领域的专业术语和概念。 研究优秀的图像标题和描述,作为提示词范例。 4. 掌握关键技巧: 学习如何组合多个词条来精确描述想要的效果。 掌握使用“()”、“”等符号来控制生成权重的技巧。 了解如何处理抽象概念、情感等无形事物的描述。 5. 实践和反馈: 使用不同的提示词尝试生成各种风格和主题的图像。 对比提示词和实际结果,分析原因,总结经验教训。 在社区内分享结果,请教高手,获取反馈和建议。 6. 创建提示词库: 根据主题、风格等维度,建立自己的高质量提示词库。 将成功案例和总结记录在案,方便后续参考和复用。 7. 持续跟进前沿: 关注 Stable Diffusion 的最新更新和社区分享。 及时掌握提示词的新技术、新范式、新趋势。 学习 Stable Diffusion 的 Web UI: 学习 Stable Diffusion Web UI 可以按照以下步骤进行: 1. 安装必要的软件环境: 安装 Git 用于克隆源代码。 安装 Python 3.10.6 版本,确保勾选“Add Python 3.10 to PATH”选项。 安装 Miniconda 或 Anaconda 创建 Python 虚拟环境。 2. 克隆 Stable Diffusion Web UI 源代码: 打开命令行工具,输入命令 git clone https://github.com/AUTOMATIC1111/stablediffusionwebui.git ,将源代码克隆到本地目录。 3. 运行安装脚本: 进入 stablediffusionwebui 目录。 运行 webuiuser.bat 或 webui.sh 脚本,它会自动安装依赖项并配置环境。 等待安装完成,命令行会显示 Web UI 的访问地址。 4. 访问 Web UI 界面: 复制命令行显示的本地 Web 地址,在浏览器中打开,即可进入 Stable Diffusion Web UI 的图形化界面。 5. 学习 Web UI 的基本操作: 了解 Web UI 的各种设置选项,如模型、采样器、采样步数等。 尝试生成图像,观察不同参数对结果的影响。 学习使用提示词(prompt)来控制生成效果。 6. 探索 Web UI 的扩展功能: 了解 Web UI 支持的各种插件和扩展,如 Lora、Hypernetwork 等。 学习如何导入自定义模型、VAE、embedding 等文件。 掌握图像管理、任务管理等技巧,提高工作效率。 安装 Stable Diffusion 的电脑配置要求: 1. 查看电脑配置: 对于 Windows 系统,可以查看专用 GPU 内存。 4GB:说明电脑勉强可以跑动 SD,出图的时间会比较长。 6GB:出一张图的时间是 20 50 秒,SD 的大部分功能都可以使用。 8GB:5 20 秒可以出一张图,基本上 SD 的所有功能都对你开放。 2. Mac 系统:可以参考下面的视频进行一键安装:https://www.bilibili.com/video/BV1Kh4y1W7Vg/?spm_id_from=333.788&vd_source=6f836e2ab17b1bdb4fc5ea98f38df761
2024-12-24
小朋友绘画作品怎么生成动画视频
以下是几种将小朋友绘画作品生成动画视频的方法: 1. 使用 Pika: 打开 Discord,点击邀请链接加入 Pika 的生成视频频道:https://discord.gg/pika 。 选择作画频道,输入“/”+指令,如“/create”为文字生成视频指令,“/animate”为图片生成视频指令,“/encrypt_image”为图片+文字生成视频指令。 选择“/create”,输入想要的内容描述即可生成视频;选择“/animate”,输入想要的图片(不能添加其他文字要求描述)或在“message”处输入图片,并在“prompt”处添加描述。 Pika 的常用指令参数包括:“gs xx”(引导比例,较高的值使其与文本更相关,推荐范围为 8 24)、“neg xxx”(负面提示,指定在视频中不希望出现的内容)、“ar xx:xx”(宽高比,例如 16:9、9:16、1:1、4:5)、“seed xxx”(生成过程中增加一致性的种子数)、“motion xx”(所需运动强度,仅支持 0/1/2)、“fps xx”(视频的帧率)。 2. ComfyUI Flux 与 runway 制作: 生成图片:提示词告诉 flux 生成一张技术草图,如 CAD 。 绘制视频:在 runway 里面,使用提示词,告诉从空白页面开始逐行创建,并把生成的图片作为尾帧。 草图上色:使用 flux 的 controlNet,depth 固定,controlNet 使用的是 Union 的版本,不建议权重调得太高,结束时间也是。 生成上色后的视频。 3. 动态叙事动画生成器: Prompt 解析器处理:解析输入的 Prompt,提取关键信息,如主要人物、场景、活动以及时间线索。 分镜生成器处理:根据提取的信息生成分镜脚本,每个季节一个分镜,包含具体的背景、人物动作和情感状态。 视频渲染引擎处理:将分镜脚本转换为视频帧,并渲染成连贯的视频动画,使用 AnimateDiff 框架生成每一帧的图像,确保人物动作的连贯性和场景的平滑过渡,对每个季节的场景应用不同的色调和光影效果,添加适当的背景音乐和声音效果。 用户交互界面处理:用户在界面中输入 Prompt,并可以选择视频的风格、分辨率等参数,预览系统生成的视频片段,并根据需要进行调整,满意后下载最终的视频文件。
2025-01-09
Ai如何绘画动漫人物角色
以下是关于 AI 绘画动漫人物角色的相关内容: Sarah Andersen 风格 主题风格: 漫画特色:通常使用简单黑白线条作画,配以极富表现力的角色表情,探讨如焦虑、社交尴尬、性别问题等,幽默呈现生活瞬间。 线条和轮廓:使用清晰简洁的线条,构建图像。 色调:大多数作品是黑白的,偶尔使用强调色。 角色设计:表情丰富,反映各种情绪状态。 元素:包含幽默和讽刺元素,以幽默方式反映日常生活场景。 技巧: 在主要描述语后面加上“by Sarah Andersen”或者“style reference Sarah Andersen”。 加入情感色彩的描述,如“joyful”“awkward”“anxious”等词。 利用cref 命令保持人物的一致性。 应用: 社交媒体上进行漫画创作。 使故事更加生动有趣的插图。 个性化礼物和商品设计(需注意版权问题)。 Niji·journey 5 生成多样化二次元角色设计风格 可以混合不同游戏风格引导生成角色设计,涉及绘画 AI 的“风格迁移”能力,基本原理是利用深度学习模型提取并分离图像的内容和风格特征,包括特征提取和特征重组。可以通过对游戏风格 Prompt 的更精确调整来控制混合比例。 Action figure 风格 创作建议: 复古风:模仿上世纪 8090 年代的可动人偶风格,采用饱和度较高、边缘略显粗糙的色彩,以及那个时代特有的设计元素。 动漫卡通化:将可动人偶设计成夸张的动漫风格,大眼睛、鲜明色彩,强调动作动态感和表情的戏剧性。 写实风格:追求极度逼真的描绘,细致刻画人物面部特征、服装皱褶和环境光影。 赛博朋克融合:结合赛博朋克元素,创造既未来又反叛的可动人偶形象。 其他: sref 种子值:可以和不同的种子值结合,创造出风格各异的 action figure。 内容: 经典角色重塑:选取广为人知的电影、漫画角色,重新诠释为可动人偶形态。 场景故事化:构想场景,让多个可动人偶在其中互动,讲述微型故事。 系列收藏展示:设计特定主题的可动人偶集合,展示收藏价值和展示美学。 跨界融合:尝试将不同时代或文化背景的角色进行融合,创造新颖独特的视觉体验。
2025-01-08
绘画提示词
以下是关于绘画提示词的相关知识: 1. 提示词的编写:根据想画的内容写出提示词,多个提示词之间使用英文半角符号。一般概念性、大范围、风格化的关键词写在前面,叙述画面内容的其次,最后是描述细节的。例如:masterpiece,best quality,ultradetailed,illustration,closeup,straight on,face focus,1girl,white hair,golden eyes,long hair,halo,angel wings,serene expression,looking at viewer 。 2. 提示词的权重:在模型中,每个词语自带的权重可能不同。可以使用括号人工修改提示词的权重,如:将权重减少为原先的 25%。提示词的顺序很重要,越靠后的权重越低。关键词最好具有特异性,措辞越不抽象越好,尽可能避免留下解释空间的措辞。 3. 以下是一些提示词关键词整理(双语版)的示例: 视角:LowAngle(仰视) 介质:abstract expressionist art style(抽象表现主义艺术风格) 镜头:superresolution microscopy(超分辨率显微镜) 灯光:ambient lighting(环境照明) 颜色:white(白色的) 描述:classical realism(古典现实主义) 艺术家:抽象主义 1940 1950 电影:2001 A Space Odyssey(2001 太空漫游) 游戏:Age of Empires(帝国时代) 其他:doodle(涂鸦)、child's drawing(儿童画)、porch light(门廊灯)、winter colors(冬天的颜色)等。
2024-12-31
以下是大致可以采用的步骤来实现这样一个能自动在大语言模型网站生成不同场景机器人图片的程序(以下以Python语言示例,不过不同平台具体实现会有差异且需遵循对应网站的使用规则和接口规范): ### 1. 选择合适的大语言模型网站及确认其API(应用程序编程接口)情况 不同大语言模型网站对于图片生成通常会提供相应的API来允许外部程序与之交互,比如部分知名的AI绘画相关平台。你需要先确定要使用哪些网站,然后去注册开发者账号等,获取对应的API Key以及详细的API文档,了解如何通过代码向其发起图
以下是为您整合的相关内容: Ollama 框架: 1. 支持多种大型语言模型,如通义千问、Llama 2、Mistral 和 Gemma 等,适用于不同应用场景。 2. 易于使用,适用于 macOS、Windows 和 Linux 系统,支持 cpu 和 gpu,用户能轻松在本地环境启动和运行大模型。 3. 提供模型库,用户可从中下载不同模型,这些模型有不同参数和大小以满足不同需求和硬件条件,可通过 https://ollama.com/library 查找。 4. 支持用户自定义模型,例如修改模型的温度参数来调整创造性和连贯性,或者设置特定的系统消息。 5. 提供 REST API 用于运行和管理模型,以及与其他应用程序的集成选项。 6. 社区贡献丰富,包括多种集成插件和界面,如 Web 和桌面应用、Telegram 机器人、Obsidian 插件等。 7. 安装:访问 https://ollama.com/download/ 进行下载安装。安装完后,确保 ollama 后台服务已启动(在 mac 上启动 ollama 应用程序,在 linux 上通过 ollama serve 启动),可通过 ollama list 确认。 基于 COW 框架的 ChatBot 实现步骤: 1. COW 是基于大模型搭建的 Chat 机器人框架,将多模型塞进自己的微信里实现方案。 2. 基于张梦飞同学的教程: 。 3. 实现内容: 打造属于自己的 ChatBot(文本对话、文件总结、链接访问、联网搜索、图片识别、AI 画图等)。 常用开源插件的安装应用。 4. 正式开始前需知: ChatBot 相较于在各大模型网页端使用区别:本实现思路需要接入大模型 API 的方式实现(API 单独付费)。 风险与注意事项: 微信端因非常规使用,有封号危险,不建议主力微信号接入。 只探讨操作步骤,请依法合规使用。 大模型生成的内容注意甄别,确保所有操作均符合相关法律法规要求。 禁止用于任何非法目的。 处理敏感或个人隐私数据时注意脱敏,以防滥用或泄露。 5. 多平台接入:微信、企业微信、公众号、飞书、钉钉等。 6. 多模型选择:GPT3.5/GPT4.0/Claude/文心一言/讯飞星火/通义千问/Gemini/GLM4/LinkAI 等。 7. 多消息类型支持:能处理文本、语音和图片,以及基于自有知识库进行定制的企业智能客服功能。 8. 多部署方法:本地运行、服务器运行、Docker 的方式。
2024-12-29
绘画提示词中的“P”是什么意思?
在绘画提示词中,“P”通常不是一个具有特定普遍含义的独立符号或缩写。但“POV”是“Point of View”的缩写,意为“视角”。在美术创作中,尤其是绘画和摄影领域,视角指的是观察者或摄像机所在的位置和角度。选择不同的视角可以极大地影响作品的视觉效果和观众对作品的感受。 视角在绘画中的作用包括: 1. 视觉引导:可以用来引导观众的视线,通过选择特定的角度,艺术家可以强调作品中的某些元素,使它们更加突出。 2. 情感表达:不同的视角可以传达不同的情感和氛围。例如,从高处看的视角可能会让物体显得更小、更脆弱,而从低处看的视角可能会让物体显得更强大、更有威严。 3. 空间感:通过精确的透视技巧,视角可以帮助艺术家在二维平面上创造出深度和空间感,使画面更加立体和真实。 4. 故事叙述:视角可以用来讲述故事,通过选择与故事内容相匹配的视角,艺术家可以增强叙事的力度和清晰度。 在创作提示词时,有一些技巧: 1. 透视:了解和运用透视原理是掌握不同视角的关键。透视可以创造出深度感和空间感,使画面更加逼真。 2. 构图:选择合适的视角可以帮助艺术家更好地构图,通过角度和视点的选择来平衡画面,创造出和谐的画面效果。 3. 光影:不同的视角会影响光线的方向和强度,艺术家需要根据所选的视角来调整光影效果,以增强画面的真实感和表现力。 在提示词的语法方面,根据自己想画的内容写出提示词,多个提示词之间使用英文半角符号。一般而言,概念性的、大范围的、风格化的关键词写在前面,叙述画面内容的关键词其次,最后是描述细节的关键词。提示词的顺序很重要,越靠后的权重越低。关键词最好具有特异性,措辞越不抽象越好,尽可能避免留下解释空间的措辞。还可以使用括号人工修改提示词的权重。
2024-12-26
AI绘画
AI 绘画是一个对艺术界产生双向影响的领域: 背景:从生成艺术作品到辅助艺术创作,AI 绘画逐渐改变传统艺术面貌,艺术界的反馈也推动其发展。技术进步使 AI 绘画在创作质量和速度上有新突破,为艺术家提供新工具,推动传统艺术数字化和普及化。 争议:人们对 AI 驱动的机器人创作和人类创作的艺术品接受程度相似,但不太愿意将机器人视为艺术家,AI 在表达情感和创造性意图方面存在局限性。艺术家对其态度复杂,有期待也有对版权、原创性和伦理的担忧。同时,AI 绘画技术发展带来从业者职业安全焦虑和“侵权”反对之声,反映新技术对行业生态和现有法律伦理框架的挑战。 积极影响:为艺术创作提供新可能性,帮助艺术家探索新创意表达方式,提高制作效率,降低成本,促进艺术与观众互动,提供个性化和互动的艺术体验。 着色画: 关键词简介:中文为着色画,英文为 Coloring page。它提供基础框架,由简单线条勾勒物体或场景轮廓,留给创作者无限想象空间填充色彩和纹理,可手绘或数字格式。 艺术效果:体现在色彩丰富性、情感表达、细节和纹理突出、创意发挥等方面。 AI 绘画的关键词结构思路:包括基础描述、风格指定、色彩要求、细节强调等。 进阶玩法:可用 MJ 的 Retexture 功能或即梦参考功能,通过写提示词或垫图功能给着色画上色。 AI 绘画的关键词指南: 公式:主题+环境+气氛+灯光+色彩+构图+风格参考。 比如:可找喜欢的艺术家、灯光、颜色调色板风格,分别放到相应的关键词里。
2024-12-25