Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

stable diffusion和国内的这些AI绘画的模型有什么区别

Answer

Stable Diffusion 和国内的 AI 绘画模型主要有以下区别:

  1. 数据集和学习方式:
    • 在线的国内模型可以访问庞大且不断更新扩展的数据集,还能实时从用户的弱监督学习中获得反馈,从而不断调整和优化绘画策略。而 Stable Diffusion 通常受限于本地设备的计算能力,其数据集和学习反馈相对有限。
  2. 计算能力:
    • 在线的国内模型能利用云计算资源进行大规模并行计算,加速模型的训练和推理过程。Stable Diffusion 受本地设备计算能力限制,性能可能不如在线模型。
  3. 模型更新:
    • 在线的国内模型可以随时获得最新的版本和功能更新,更好地适应不断变化的绘画风格和技巧。Stable Diffusion 的模型更新相对较慢。
  4. 协同学习:
    • 在线的国内模型可以从全球范围内的用户中学习,更好地理解各种绘画风格和技巧。Stable Diffusion 则只能依赖于有限的本地模型,对绘画可能性的了解可能不够全面。

例如,Niji·journey 5 在二次元角色设计领域就展现出比 Stable Diffusion 更强大的性能和实用性。同时,国内还有 DeepSeek、阿里巴巴的 Qwen-2 系列、清华大学的 OpenBMB 项目等在不同方面表现出色的模型。

Content generated by AI large model, please carefully verify (powered by aily)

References

AI原画设计 | AI二次元设计王者:Niji·journey 5指南

庞大的数据集和用户的弱监督学习对在线二次元绘画AI有着重要的作用。这两者可以让在线的Niji·journey比本地部署的Stable Diffusion更强大,原因如下:1.更丰富的数据集:在线二次元绘画AI可以访问到庞大的、涵盖各种绘画风格和技巧的数据集。这些数据集不断地更新和扩展,使得在线AI能够不断学习到最新的绘画技巧和风格。2.实时更新:在线二次元绘画AI可以实时地从用户的弱监督学习中获得反馈,从而不断调整和优化其绘画策略。3.计算能力:在线二次元绘画AI可以利用云计算资源进行大规模并行计算,从而加速模型的训练和推理过程。相比之下,Stable Diffusion通常受限于本地设备的计算能力,这可能导致其性能不如在线AI。4.模型更新:在线二次元绘画AI可以随时获得最新的模型版本和功能更新。这意味着它能够更好地适应不断变化的绘画风格和技巧。Stable Diffusion的模型更新相对较慢,可能无法紧跟潮流。5.协同学习:在线二次元绘画AI可以从全球范围内的用户中学习,从而更好地理解各种绘画风格和技巧。Stable Diffusion则只能依赖于有限的本地模型,可能无法全面了解二次元绘画的各种可能性。综上所述,庞大的数据集和用户的弱监督学习使得在线二次元绘画AI具有更强大的学习能力和更广泛的适应性。这些优势让Niji·journey在二次元绘画方面相较于Stable Diffusion具有更高的性能和实用性。下面我将通过一些例子,来说明运用Niji·journey产出二次元角色设计的方法和技巧:

2024人工智能报告|一文迅速了解今年的AI界都发生了什么?

**中国开源项目在今年赢得全球粉丝,并且已经成为积极开源贡献者。**其中几个模型在个别子领域中脱颖而出,成为强有力的竞争者。DeepSeek在编码任务中已成为社区的最爱,其组合了速度、轻便性和准确性而推出的deepseek-coder-v2。阿里巴巴最近发布了Qwen-2系列,社区对其视觉能力印象深刻,从具有挑战性的OCR任务到分析复杂的艺术作品,都完成的非常好。在较小的一端,清华大学的自然语言处理实验室资助了OpenBMB项目,该项目催生了MiniCPM项目。这些是可以在设备上运行的小型<2.5B参数模型。它们的2.8B视觉模型在某些指标上仅略低于GPT-4V。2024年是AI图像视频迅速发展的一年,这个赛道竞争异常激烈国外Stability AI发布的Stable Video Diffusion,是第一个能够从文本提示生成高质量、真实视频的模型之一,并且在定制化方面取得了显著的进步。并且在今年3月,他们推出了Stable Video 3D,该模型经过第三个对象数据集的微调,可以预测三维轨道。OpenAI的Sora能够生成长达一分钟的视频,同时保持三维一致性、物体持久性和高分辨率。它使用时空补丁,类似于在变压器模型中使用的令牌,但用于视觉内容,以高效地从大量视频数据集中学习。除此之外,Sora还使用了其原始大小和纵横比的视觉数据进行训练,从而消除了通常会降低质量的裁剪和缩放。Google DeepMind的Veo将文本和可选图像提示与嘈杂压缩视频输入相结合,通过编码器和潜在扩散模型处理它们,以创建独特的压缩视频表示。然后系统将此表示解码为最终的高分辨率视频。

教程:深入浅出完整解析Stable Diffusion(SD)核心基础知识 - 知乎

码字不易,希望大家能多多点赞!Rocky持续在撰写Stable Diffusion XL全方位解析文章,希望大家能多多点赞,让Rocky有更多坚持的动力:[深入浅出完整解析Stable Diffusion XL(SDXL)核心基础知识967赞同·148评论文章](https://zhuanlan.zhihu.com/p/643420260)2023.08.26最新消息,本文已经撰写Stable Diffusion 1.x-2.x系列和对应LoRA的训练全流程与详细解读内容,同时发布对应的保姆级训练资源,大家可以愉快地训练属于自己的SD和LoRA模型了!2023.07.26最新消息,由于Stable Diffusion模型的网络结构比较复杂,不好可视化,导致大家看的云里雾里。因此本文中已经发布Stable Diffusion中VAE,U-Net和CLIP三大模型的可视化网络结构图,大家可以下载用于学习!大家好,我是Rocky。2022年,Stable Diffusion模型横空出世,成为AI行业从传统深度学习时代走向AIGC时代的标志性模型之一,并为工业界、投资界、学术界和竞赛界都注入了新的AI想象空间,让AI再次“性感”。Stable Diffusion(简称SD)是AI绘画领域的一个核心模型,能够进行文生图(txt2img)和图生图(img2img)等图像生成任务。与Midjourney不同的是,Stable Diffusion是一个完全开源的项目(模型、代码、训练数据、论文、生态等全部开源),这使得其能快速构建强大繁荣的上下游生态(AI绘画社区、基于SD的自训练AI绘画模型、丰富的辅助AI绘画工具与插件等),并且吸引了越来越多的AI绘画爱好者加入其中,与AI行业从业者一起推动AIGC领域的发展与普惠。

Others are asking
用AI建模可以吗
AI 建模是可行的。在某些领域,如定量金融,已存在寻找简单形式的“AI 测量”之间关系的情况。“人工智能测量”能从大量非结构化数据中挑选出“小信号”,但对于如何运用它及如何形式化等问题还不是很清晰。计算语言可能是关键,像 Wolfram 语言中的某些函数可进行“AI 测量”并处理结果。 同时,在 CAD 图绘制方面,也有一些 AI 工具和插件可用,例如: 1. CADtools 12,是 Adobe Illustrator 的插件,添加了 92 个绘图和编辑工具。 2. Autodesk Fusion 360,是一款集成了 AI 功能的云端 3D CAD/CAM 软件。 3. nTopology,基于 AI 的设计软件,可创建复杂 CAD 模型。 4. ParaMatters CogniCAD,能根据输入自动生成 3D 模型。 5. 一些主流 CAD 软件如 Autodesk 系列、SolidWorks 等提供的基于 AI 的生成设计工具。 但使用这些工具通常需要一定的 CAD 知识和技能,对于初学者建议先学习基本建模技巧再尝试。 以上内容由 AI 大模型生成,请仔细甄别。
2025-02-08
AI文章提示词怎么反推反问
以下是关于 AI 文章提示词反推反问的相关内容: 对于 Midjourney 提示词的解析,其 AI 以半抽象方式处理整体概念,具体性是获得理想结果的关键。可从简单提示或参数修改开始,逐步调整。方法流程包括: 1. 初始提示:如“Prompt:A banana is floating in the airv 6.1 提示:一个香蕉漂浮在空中v 6.1”,查看生成结果,若不理想可进一步优化。 2. 优化描述:例如“Prompt:Banana shaped hologram of molten liquid metal,floating in air,isolated on a lilac background,minimalist design,vector illustration,high resolution photographyv 6.1 提示:香蕉形态的液态金属全息图,漂浮在空气中,在淡紫色背景上,极简设计,矢量插图,高分辨率摄影v 6.1”。 3. 添加调节参数命令。 对于 DeepSeek 深度推理,可借助 AI 分析好文章,如: 1. 找出喜欢的文章投喂给 deepseek R1,然后进行多次询问,如从写作角度、读者角度分析,指出缺点和提升空间,对作者进行侧写等。 在提示词技巧方面,包括: 1. 教训:要求讨论从特定情况中得到的教训,如“分享一个关于企业失败的案例,并从中提炼出的教训。” 2. 观点:要求 AI 考虑多种观点或意见,如“分析支持和反对核能发展的观点。” 3. 常见问题解答:要求 AI 生成常见问题解答(FAQs)列表,如“请提供一份关于瑜伽初学者的常见问题解答列表。” 4. 背景:提供背景信息、数据或上下文以便生成准确内容,如“请结合当前全球碳排放数据谈论气候变化的影响。” 5. 目标:说明回应的目标或目的,如“编写一篇旨在说服读者加入环保运动的文章。” 6. 受众:指定定制内容的目标受众,如“请为初中生编写一篇关于节水的文章。” 7. 范围:界定主题的范围,如“请仅关注瑜伽在减压方面的好处。” 8. 扮演角色:表明要采用的角色或观点,如“从一个科学家的角度阐述太阳能的优点。” 9. 示例:提供所需风格、结构或内容的示例,如“请参考《纽约时报》的文章风格撰写一篇关于自然保护的报道。” 10. 案例研究:要求参考相关案例研究或现实世界示例,如“在关于可持续发展的文章中,介绍一些成功的企业案例。”
2025-02-07
AIGC是什么
AIGC 即 AI generated content,又称为生成式 AI,是一种利用人工智能技术生成各种类型内容的应用方式。 它能够通过机器学习和深度学习算法,根据输入的数据和指令生成符合特定要求的内容,例如 AI 文本续写、文字转图像的 AI 图、AI 主持人等。 AIGC 的应用领域广泛,包括但不限于以下方面: 1. 文字生成:使用大型语言模型(如 GPT 系列模型)生成文章、故事、对话等内容。 2. 图像生成:使用 Stable Diffusion、DALLE 等模型生成艺术作品、照片等。 3. 视频生成:使用 Runway、KLING 等模型生成动画、短视频等。 AIGC 主要分为语言文本生成、图像生成和音视频生成。语言文本生成利用马尔科夫链、RNN、LSTMs 和 Transformer 等模型生成文本,如 GPT4 和 Gemini Ultra。图像生成依赖于 GANs、VAEs 和 Stable Diffusion 等技术,应用于数据增强和艺术创作,代表项目有 Stable Diffusion 和 StyleGAN 2。音视频生成利用扩散模型、GANs 和 Video Diffusion 等,广泛应用于娱乐和语音生成,代表项目有 Sora 和 WaveNet。此外,AIGC 还可应用于音乐生成、游戏开发和医疗保健等领域。 AIGC 作为一种强大的技术,在赋能诸多领域的同时,也存在多重潜在的合规风险。目前,我国对 AIGC 的监管框架由《网络安全法》《数据安全法》及《个人信息保护法》构成,并与《互联网信息服务算法推荐管理规定》、《互联网信息服务深度合成管理规定》、《生成式人工智能服务管理暂行办法》、《科技伦理审查办法(试行)》等形成了共同监管的形势。 AIGC 与 UGC(普通用户生产)、PGC(专业用户生产)都是内容生成的不同方式,主要区别在于内容的创作者和生成方式。UGC 由用户生成内容,优势在于内容丰富多样,能反映用户真实想法和创意,适用于社交媒体、社区论坛等互动性强的平台。PGC 由专业人士或机构生成内容,优势在于内容质量高、专业性强,适用于新闻媒体、专业网站等需要高质量内容的平台。
2025-02-07
Deep seek如何实现电气化的AI制作。
DeepSeek 在实现电气化的 AI 制作方面具有以下特点和优势: 1. 在编码任务中表现出色,推出了 deepseekcoderv2,组合了速度、轻便性和准确性。 2. 是唯一支持联网搜索的推理模型。 3. 具有强大的推理能力,参数少,训练开销与使用费用小,开源且免费。 4. 由没有海外经历甚至没有资深从业经验的本土团队开发完成。 5. HiDeepSeek 工具能让 DeepSeek 像人类交流时那样,在给出答案的同时展示思考过程,使其回答更可信,帮助发现可能存在的误解或偏差。 如果您想进一步了解 DeepSeek 的相关内容,您可以通过以下方式: 1. 直接访问相关网页链接马上用起来,也有移动 APP。 2. 使劲用,疯狂用,尝试用它基本取代传统搜索。 3. 去看看别人是怎么用的,去试试其他大模型,了解 AI 擅长什么,不擅长什么,如何调教,然后继续解锁与迭代属于自己的用法与更多工具。
2025-02-07
怎样把AI与CAD结合?
将 AI 与 CAD 结合可以参考以下几个方面: 1. 学术研究: 搜索相关学术论文,了解 AI 在 CAD 领域的应用和研究成果。可通过 Google Scholar、IEEE Xplore、ScienceDirect 等学术数据库进行搜索。 2. 专业书籍: 查找与 AI 在 CAD 领域相关的专业书籍,了解其应用和案例。 3. 在线学习资源: 参加 Coursera、edX、Udacity 等平台上的 AI 和 CAD 相关课程。 在 YouTube 等视频平台上查找教程和演示视频,了解 AI 在 CAD 设计中的应用。 4. 技术交流: 加入相关的技术论坛和社区,如 Stack Overflow、Reddit 的 r/AI 和 r/CAD 等,与专业人士交流学习。 关注 AI 和 CAD 相关的博客和新闻网站,了解最新技术动态和应用案例。 5. 开源项目和代码库: 探索 GitHub 等开源平台上的 AI 和 CAD 相关项目,例如 OpenAI 的 GPT3、AutoGPT 等 AI 模型在 CAD 设计中的应用。 6. 企业案例研究: 研究 Autodesk、Siemens 等公司在 AI 在 CAD 设计中的应用案例,了解实际项目中的应用和效果。 一些可以用来画 CAD 图的 AI 工具包括: 1. CADtools 12:Adobe Illustrator 插件,为 AI 添加 92 个绘图和编辑工具。 2. Autodesk Fusion 360:集成了 AI 功能的云端 3D CAD/CAM 软件。 3. nTopology:基于 AI 的设计软件,可创建复杂 CAD 模型。 4. ParaMatters CogniCAD:基于 AI 的 CAD 软件,能根据输入自动生成 3D 模型。 5. 主流 CAD 软件中的生成设计工具:如 Autodesk 系列、SolidWorks 等,可根据设计目标和约束条件自动产生多种方案。 此外,TexttoCAD 可以通过文本 Prompt 生成 CAD 模型,其 UI 开源,但模型需付费。官网:
2025-02-07
ai学习
以下是新手学习 AI 的方法和建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习: 可以从 Python、JavaScript 等编程语言开始,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台: 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2025-02-07
stable diffusion 如何使用
Stable Diffusion 是一种扩散模型的变体,以下是关于其使用的相关内容: 模型原理: 在传统扩散模型中存在计算效率挑战,稳定扩散为解决此问题而提出。 其核心组件包括将用户输入的 Prompt 文本转化成 text embedding 的 CLIP、VAE EncoderDecoder 以及进行迭代降噪和在文本引导下进行多轮预测的 UNET。 安装配置: 电脑系统需为 Win10 或 Win11,避免使用更低版本系统。 电脑需满足以下性能要求:运行内存 8GB 以上,为英伟达(N 卡)显卡且显卡内存 4GB 以上。可通过在桌面上找到“我的电脑”右键点击“属性”查看 Windows 规格,以及鼠标右击桌面底部任务栏点击“任务管理器”查看电脑的运行内存和 GPU 来检查配置。 训练过程: 初始选择十亿个随机数字作为参数值,此时模型无用。 通过训练这一数学过程,基于输入和期望输出的差异,运用基本微积分对参数值进行调整,经过多次训练,模型逐渐优化,最终达到无法从进一步训练中受益的点,作者会发布参数值供免费使用。 此外,ComfyUI 存放路径为 models/checkpoints/,模型包括 SD1.5、SDXL 等基础预训练模型,还有如 DreamBooth 等训练方法,存在 EMAonly&pruned VS Full、FP16&FP32 等格式,以及模型自带已适配的 VAE 和微调模型等。同时存在融合模型,如 checkpoint+checkpoint、Lora+Lora、checkpoint+Lora 等形式。
2025-02-06
为本地部署的stable diffusion增加中文提示词支持
要为本地部署的 Stable Diffusion 增加中文提示词支持,可以采取以下方法: 1. 如果使用的秋叶整合包,里面包含提示词联想插件。输入简单字符如“1”,能看到下方联想热门提示词,适合英文不好、记不住单词的朋友。 2. 一般情况可使用翻译软件,如 DeepL 翻译(网址:https://www.deepl.com/translator ,可下载客户端)或网易有道翻译(可通过 ctrl+alt+d 快速截图翻译),但复制粘贴来回切换较麻烦。 3. 介绍自动翻译插件 promptallinone,安装方式:在扩展面板中搜索 promptallinone 直接安装,或把下载好的插件放在“……\\sdwebuiakiv4\\extensions”路径文件夹下。安装完成后重启 webUI,可看到提示词区域变化。 一排小图标中,第一个用来设置插件语言,直接设为简体中文。 第二个图标是设置,点开后点击第一个云朵图标可设置翻译接口,点击第一行下拉菜单能选择翻译软件,有一些免费软件可任意选择并试验哪款翻译准确。 关于 Stable Diffusion 文生图写提示词: 1. 下次作图时,先选模板,点击倒数第二个按钮可快速输入标准提示词。 2. 描述逻辑通常包括人物及主体特征(服饰、发型发色、五官、表情、动作),场景特征(室内室外、大场景、小细节),环境光照(白天黑夜、特定时段、光、天空),画幅视角(距离、人物比例、观察视角、镜头类型),画质(高画质、高分辨率),画风(插画、二次元、写实)等,通过这些详细提示词能更精确控制绘图。 3. 新手可借助功能型辅助网站写提示词,如: http://www.atoolbox.net/ ,通过选项卡方式快速填写关键词信息。 https://ai.dawnmark.cn/ ,每种参数有缩略图参考,更直观选择提示词。 还可去 C 站(https://civitai.com/)抄作业,每张图有详细参数,点击复制数据按钮,粘贴到正向提示词栏,点击生成按钮下第一个按键,Stable Diffusion 可自动匹配所有参数,但要注意图像作者使用的大模型和 LORA,也可取其中较好的描述词使用。
2025-02-03
forge diffusion的layer diffuse插件不管用是什么原因
Forge Diffusion 的 layer diffuse 插件不管用可能有以下原因: 1. 未正确安装 SD WebUI 的 Forge 版本:在安装 layer diffuse 插件之前,需要确保已安装正确的 。 2. 插件安装步骤有误:应在 Forge 界面点击“Extensions”,选中“layerdiffusion”插件,然后点击安装,并等待安装完成。 3. 部分功能未完成:透明 img2img 功能尚未完成(大约一周内完成)。 4. 代码处于动态变化阶段:插件的代码非常动态,可能在接下来的一个月内发生大幅变化。 此信息来自标记狮社区,原文链接:https://mmmnote.com/article/7e8/03/articlee395010da7c846a3.shtml
2025-01-29
stablediffusion学习
以下是关于系统学习 Stable Diffusion(SD)的相关内容: 学习 SD 的提示词: 学习 Stable Diffusion 的提示词是一个系统性的过程,需要理论知识和实践经验相结合。具体步骤如下: 1. 学习基本概念:了解 Stable Diffusion 的工作原理和模型架构,理解提示词如何影响生成结果,掌握提示词的组成部分(主题词、修饰词、反面词等)。 2. 研究官方文档和教程:通读 Stable Diffusion 官方文档,了解提示词相关指南,研究来自开发团队和专家的教程和技巧分享。 3. 学习常见术语和范例:熟悉 UI、艺术、摄影等相关领域的专业术语和概念,研究优秀的图像标题和描述,作为提示词范例。 4. 掌握关键技巧:学习如何组合多个词条来精确描述想要的效果,掌握使用“()”、“”等符号来控制生成权重的技巧,了解如何处理抽象概念、情感等无形事物的描述。 5. 实践和反馈:使用不同的提示词尝试生成各种风格和主题的图像,对比提示词和实际结果,分析原因,总结经验教训,在社区内分享结果,请教高手,获取反馈和建议。 6. 创建提示词库:根据主题、风格等维度,建立自己的高质量提示词库,将成功案例和总结记录在案,方便后续参考和复用。 7. 持续跟进前沿:关注 Stable Diffusion 的最新更新和社区分享,及时掌握提示词的新技术、新范式、新趋势。 学习 SD 的 Web UI: 学习 Stable Diffusion Web UI 可以按照以下步骤进行: 1. 安装必要的软件环境:安装 Git 用于克隆源代码,安装 Python 3.10.6 版本,确保勾选“Add Python 3.10 to PATH”选项,安装 Miniconda 或 Anaconda 创建 Python 虚拟环境。 2. 克隆 Stable Diffusion Web UI 源代码:打开命令行工具,输入命令 git clone https://github.com/AUTOMATIC1111/stablediffusionwebui.git,将源代码克隆到本地目录。 3. 运行安装脚本:进入 stablediffusionwebui 目录,运行 webuiuser.bat 或 webui.sh 脚本,它会自动安装依赖项并配置环境,等待安装完成,命令行会显示 Web UI 的访问地址。 4. 访问 Web UI 界面:复制命令行显示的本地 Web 地址,在浏览器中打开,即可进入 Stable Diffusion Web UI 的图形化界面。 5. 学习 Web UI 的基本操作:了解 Web UI 的各种设置选项,如模型、采样器、采样步数等,尝试生成图像,观察不同参数对结果的影响,学习使用提示词(prompt)来控制生成效果。 6. 探索 Web UI 的扩展功能:了解 Web UI 支持的各种插件和扩展,如 Lora、Hypernetwork 等,学习如何导入自定义模型、VAE、embedding 等文件,掌握图像管理、任务管理等技巧,提高工作效率。 通过这些步骤,相信您可以快速上手 Stable Diffusion Web UI,开始探索 AI 绘画的乐趣。后续还可以深入学习 Stable Diffusion 的原理,以及在不同场景中的应用。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-01-16
有什么AI模型可以制作瞬息宇宙?比如Stable Diffusion,还有别的吗?
以下是一些可以用于制作类似效果的 AI 模型: 1. Adobe Firefly:内置在各种 Adobe 产品中,不过在质量方面稍逊于 DALLE 和 Midjourney,但它只使用有权使用的图像进行训练。 2. Stable Diffusion:开源模型,可以在任何高端计算机运行。开始时需要学会正确制作提示,一旦掌握能产生很好的结果,尤其适合将 AI 与其他源的图像结合。 3. DALLE:来自 OpenAI,已纳入 Bing(需使用创意模式)和 Bing 图像创建器,系统可靠但效果比 Midjourney 稍差。 4. Midjourney:2023 年中期最好的系统,学习曲线最低,只需键入特定指令就能得到很好的结果,需要 Discord。 此外,在游戏制作领域,已经出现了用于游戏中几乎所有资产的生成式人工智能模型,从 3D 模型到角色动画,再到对话和音乐。但文中未提及具体的模型名称。
2025-01-10
Stable Diffusion 学习教程
以下是关于 Stable Diffusion 学习的教程: 学习提示词: 1. 学习基本概念:了解 Stable Diffusion 的工作原理和模型架构,理解提示词如何影响生成结果,掌握提示词的组成部分(主题词、修饰词、反面词等)。 2. 研究官方文档和教程:通读 Stable Diffusion 官方文档,研究来自开发团队和专家的教程和技巧分享。 3. 学习常见术语和范例:熟悉 UI、艺术、摄影等相关领域的专业术语和概念,研究优秀的图像标题和描述,作为提示词范例。 4. 掌握关键技巧:学习如何组合多个词条来精确描述想要的效果,掌握使用“()”、“”等符号来控制生成权重的技巧,了解如何处理抽象概念、情感等无形事物的描述。 5. 实践和反馈:使用不同的提示词尝试生成各种风格和主题的图像,对比提示词和实际结果,分析原因,总结经验教训,在社区内分享结果,请教高手,获取反馈和建议。 6. 创建提示词库:根据主题、风格等维度,建立自己的高质量提示词库,将成功案例和总结记录在案,方便后续参考和复用。 7. 持续跟进前沿:关注 Stable Diffusion 的最新更新和社区分享,及时掌握提示词的新技术、新范式、新趋势。 核心基础知识: 1. Stable Diffusion 系列资源。 2. 零基础深入浅出理解 Stable Diffusion 核心基础原理,包括通俗讲解模型工作流程(包含详细图解)、从 0 到 1 读懂模型核心基础原理(包含详细图解)、零基础读懂训练全过程(包含详细图解)、其他主流生成式模型介绍。 3. Stable Diffusion 核心网络结构解析(全网最详细),包括 SD 模型整体架构初识、VAE 模型、UNet 模型、CLIP Text Encoder 模型、SD 官方训练细节解析。 4. 从 0 到 1 搭建使用 Stable Diffusion 模型进行 AI 绘画(全网最详细讲解),包括零基础使用 ComfyUI 搭建推理流程、零基础使用 SD.Next 搭建推理流程、零基础使用 Stable Diffusion WebUI 搭建推理流程、零基础使用 diffusers 搭建推理流程、生成示例。 5. Stable Diffusion 经典应用场景,包括文本生成图像、图片生成图片、图像 inpainting、使用 controlnet 辅助生成图片、超分辨率重建。 6. 从 0 到 1 上手使用 Stable Diffusion 训练自己的 AI 绘画模型(全网最详细讲解),包括训练资源分享、模型训练初识、配置训练环境与训练文件。 其他资源: 1. 了解 Stable diffusion 是什么: 。 2. 入门教程: 。 3. 模型网站:C 站 。 4. 推荐模型:人像摄影模型介绍:https://www.bilibili.com/video/BV1DP41167bZ 。
2025-01-06
Stable Diffusion、comfyui
ComfyUI 是一个基于节点流程式的 stable diffusion AI 绘图工具 WebUI,您可以将其想象成集成了 stable diffusion 功能的 substance designer。它具有以下特点: 优势: 对显存要求相对较低,启动和出图速度快。 生成自由度更高。 可以和 webui 共享环境和模型。 能搭建自己的工作流程,可导出流程并分享,报错时能清晰发现错误所在。 生成的图片拖进后会还原整个工作流程,模型也会选择好。 劣势: 操作门槛高,需要有清晰的逻辑。 生态没有 webui 丰富(但常用的都有),也有一些针对 Comfyui 开发的有趣插件。 其生图原理如下: 基础模型:ComfyUI 使用预训练的扩散模型作为核心,通常是 Stable Diffusion 模型,包括 SD1.5、SD2.0、SDXL、SD3、FLUX 等。 文本编码:当用户输入文本提示时,ComfyUI 首先使用 CLIP 文本编码器将文本转换为向量表示,以捕捉文本的语义信息。 Pixel Space 和 Latent Space: Pixel Space(像素空间):图的左边表示输入图像的像素空间,在 ComfyUI 中,对应于“图像输入”模块或直接从文本提示生成的随机噪声图像,生成过程结束时会将处理后的潜在表示转换回像素空间生成最终图像。 Latent Space(潜在空间):ComfyUI 中的许多操作都在潜在空间中进行,如 KSampler 节点执行采样过程,通过节点调整对潜在空间的操作,如噪声添加、去噪步数等。 扩散过程(Diffusion Process): 噪声的生成和逐步还原:扩散过程表示从噪声生成图像的过程,在 ComfyUI 中通常通过调度器控制,如 Normal、Karras 等,可通过“采样器”节点选择不同调度器控制处理噪声和逐步去噪回归到最终图像。 时间步数:在生成图像时,扩散模型会进行多个去噪步,通过控制步数影响图像生成的精细度和质量。 官方链接:https://github.com/comfyanonymous/ComfyUI (内容由 AI 大模型生成,请仔细甄别)
2025-01-06
即梦或豆包绘画提示词
以下是关于 AI 绘画提示词的相关内容: 在制作 AI 视频短片时,对于剧本中的人物形象,如老船长年轻形象,可通过性格特征和时代背景生成提示词、上传角色参考图并扣除角色背景以进行垫图操作,生成全身、半身、侧身等多角度人物图。场景主要包括海上、沙漠、市集,提示词从剧本中的画面描述提取,采用文生图模式并准备好风格图进行垫图,上传角色图和场景背景以提高融合度。 即梦 AI 视频生成时,为避免重复“抽卡”,可使用公式“【主体 A】+【外观描述】+【运动】,【主体 B】+【外观描述】+【运动】,【主体 C】+【外观描述】+【运动】”,同时 prompt 应简洁明了,避免复杂语言。 对于 SD 新手,有以下提示词相关的资源:Majinai:
2025-02-07
ai绘画现在处于什么发展阶段
AI 绘画目前处于不断发展和演进的阶段。 在早期,AI 绘画的成果较为简单和粗糙。但随着技术的进步,尤其是深度学习算法如卷积神经网络等的应用,AI 绘画能够生成更加复杂、逼真和富有创意的图像,涵盖了各种风格和题材,从写实到抽象,从风景到人物。 AI 绘画在与人类艺术家的互动和融合中不断创新,为艺术创作带来了新的可能性和挑战。其场景应用广泛,包括广告设计、游戏开发、影视制作、建筑设计等领域。 然而,AI 绘画的发展也引发了一系列讨论和争议。例如,人们对于 AI 生成的艺术品和人类创作的艺术品的接受程度存在差异,AI 在表达情感和创造性意图方面存在局限性,同时也带来了版权、原创性和伦理等问题,以及对文化创意领域从业者职业安全的焦虑。 尽管存在争议,AI 绘画仍为艺术创作提供了新的工具和可能性,如帮助艺术家探索新的创意表达方式,提高制作效率,降低制作成本,促进艺术与观众之间的互动等。目前,生成式 AI 仍处于非常早期的阶段,为其寻找高价值应用场景或许还需要较长时间。
2025-02-07
有了ai绘画,自学绘画还有什么意义
AI 绘画的出现并不会使自学绘画失去意义,原因如下: 1. 提升个人创造力和表达能力:自学绘画能够培养独特的创造力和个人风格,更自由地表达内心的想法和情感。 2. 深入理解艺术原理:掌握构图、色彩、线条等基本原理,为艺术创作打下坚实基础。 3. 锻炼手工技巧:如手绘的线条控制、笔触运用等,这些技巧在某些情况下是 AI 无法替代的。 AI 绘画方面: 1. 定义与发展:AI 绘画是利用人工智能技术,通过算法和模型让计算机生成具有一定艺术效果的图像。早期成果简单粗糙,随着技术进步,特别是深度学习算法的应用,如卷积神经网络等,能生成更复杂、逼真和富有创意的图像,涵盖各种风格和题材,并在与人类艺术家的互动和融合中不断创新。 2. 场景应用:在广告设计中可快速生成创意概念图,为策划提供灵感和初稿;在游戏开发中用于创建场景、角色形象等,提高开发效率;在影视制作中辅助生成特效场景、概念设计等;在建筑设计中帮助构想建筑外观和内部布局。 着色画方面: 1. 关键词简介:中文为着色画,英文为 Coloring page。它提供基础框架,由简单线条组成,勾勒物体或场景轮廓,留给创作者无限想象空间填充色彩和纹理,可手绘或数字格式。 2. 艺术效果:体现在色彩丰富性、情感表达、细节和纹理突出、创意发挥等方面。 3. AI 绘画的关键词结构思路:包括基础描述、风格指定、色彩要求、细节强调。 4. 进阶玩法:可用 MJ 的 Retexture 功能或即梦参考功能,通过写提示词或垫图功能给着色画上色。
2025-02-06
ai绘画与视频
以下是关于 AI 绘画与视频的相关信息: AI 绘画: SD 开源 SD3 medium 模型:提供更高质量的 AI 绘画模型。 Midjourney 更新自定义 zoom 和全新个性化指令p:增强了图像缩放和个性化指令的使用。 leonardo.ai 发布新模型 Phoenix:新的基础模型 Phoenix 提供了预览版。 AI 视频: Luma 发布视频生成模型 Dream Machine:强大的视频生成模型,能创造高质量的视频内容。 此外,还有以下相关教学及资料: AI 绘画关键词学社: 1.4 AI 绘画: MJ 官方手册:https://docs.midjourney.com/ Prompt 魔法书:https://aituts.ck.page/promptsbook AIGCTalk Midjourney 学习手册(内部课程资料): eSheep: 如何在 MJ 中保持角色一致性: 工具教程:Dreamina:[https://waytoagi.feishu.cn/wiki/AxZuwUQmEipTUEkonVScdWxKnWd) 同时,还有一些其他的相关资讯: DisPose:开源的跳舞视频生成增强技术,由清华大学与北京大学等组织联合发布的一种可控的人体图像动画方法,输入动作视频参考和人物图像,可以形成新的角色舞蹈视频。 InvSR:开源图像超分辨率模型,提升图像分辨率的开源新工具,只需一个采样步骤(支持 1 5 的材料步骤)即可增强图像,可以高清修复图像。
2025-02-06
教我怎么做AI绘画
以下是关于学习 AI 绘画的一些指导: 1. 您可以体验《AI 绘画助手》,它是一位专业且贴心的学习导师。无论您是新手小白还是进阶爱好者,都能为您提供优质实用的指导。它能将复杂的神经网络、生成对抗网络以及卷积神经网络等知识用通俗易懂的语言解释清楚,让您理解 AI 绘画背后的机制。对于市面上流行的 AI 绘画工具如 DALLE、MidJourney、Stable Diffusion 等,它不仅熟悉,还能介绍使用步骤和独特之处,帮助您找到适合自己的工具。它擅长风格迁移技术、生成对抗网络在图像生成和编辑中的应用,以及获取高分辨率精美图像的方法,并传授关键要点和操作技巧。它还拥有丰富的实战案例经验,能为您答疑解惑并规划学习路径。 网址:https://www.coze.cn/store/bot/7387381204275904521?panel=1&bid=6d1aji2c86g1m 2. 学习 Recraft 的效果和教程: 视频教程:【【AI 绘画】新皇登基!Recraft 力压 SD、Flux、MJ!【新手教程】】 图文教程: 打开网址:https://www.recraft.ai/invite/r8D2TaM6b2 选择 hard flash 输入提示词 3. 线稿上色 Midjourney + Stable Diffusion 教程: 先使用 Midjourney 生成线稿,然后用 PS 稍微修正错误的地方,再用 Controlnet 控制,最后用 Stable Diffusion 上色。多套 AI 组合使用,可以快速生成效果惊艳的图。 Midjourney 生成线稿的关键词:Black and white line drawing illustration of a cute cat cartoon IP character,black line sketch,wearing a fortune hat,wearing a collar around the neck,Carrying a huge bag containing scrolls and ingots,matching rope and straps at his wrists,Chinese element style,popular toys,blind box toys,Disney style,white backgroundniji 5style expressive 希望这些内容对您学习 AI 绘画有所帮助。
2025-02-05
ai绘画教程
以下为您提供一些 AI 绘画的教程: 1. SD 新手视频教程: 强烈推荐,学完变大神系列章节教学视频: 课程内容包括:第一节课 AI 绘画原理与基础界面;第二节课 20 分钟搞懂 Prompt 与参数设置,你的 AI 绘画“咒语”学明白了吗;第三节课 打破次元壁!用 AI“重绘”照片和 CG;第四节课 AI 绘画模型,“画风”自由切换;第五节课 提高 AI 绘画分辨率的方式;第六节课 LoRa|Hypernetwork 概念简析;第七节课 定向修手修脸,手把手教你玩转局部重绘;第八节课 提示词补全翻译反推,“终极”放大脚本与细节优化插件;第九节课 LoRA 从原理到实践;第十节课 零基础掌握 ControlNet。 2. AI 线上绘画教程: 如果工作中需要大量图片,AI 生图是高效的解决办法。主流工具如 midjourney(MJ)付费成本高,stable diffusion(SD)硬件门槛不低,但有像这样的免费在线 SD 工具网站。本教程适用于入门玩家,计划让读者用半个小时就能自由上手创作绘图。 3. 线稿上色 Midjourney+Stable Diffusion 教程: 在学习 AI 绘画时发现其可提高出图质量和效率。比如用 midjourney 生成线稿,PS 修正,再用 controlnet 控制,stable diffusion 上色。 作者三思先展示了作品,然后介绍了线稿产出的 mj 关键词:Black and white line drawing illustration of a cute cat cartoon IP character,black line sketch,wearing a fortune hat,wearing a collar around the neck,Carrying a huge bag containing scrolls and ingots,matching rope and straps at his wrists,Chinese element style,popular toys,blind box toys,Disney style,white backgroundniji 5style expressive。对于有些图没有阴影容易飘的情况,可以自己在 PS 中手动绘制阴影。
2025-01-25