Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

有什么AI模型可以制作瞬息宇宙?比如Stable Diffusion,还有别的吗?

Answer

以下是一些可以用于制作类似效果的 AI 模型:

  1. Adobe Firefly:内置在各种 Adobe 产品中,不过在质量方面稍逊于 DALL-E 和 Midjourney,但它只使用有权使用的图像进行训练。
  2. Stable Diffusion:开源模型,可以在任何高端计算机运行。开始时需要学会正确制作提示,一旦掌握能产生很好的结果,尤其适合将 AI 与其他源的图像结合。
  3. DALL-E:来自 OpenAI,已纳入 Bing(需使用创意模式)和 Bing 图像创建器,系统可靠但效果比 Midjourney 稍差。
  4. Midjourney:2023 年中期最好的系统,学习曲线最低,只需键入特定指令就能得到很好的结果,需要 Discord。 此外,在游戏制作领域,已经出现了用于游戏中几乎所有资产的生成式人工智能模型,从 3D 模型到角色动画,再到对话和音乐。但文中未提及具体的模型名称。
Content generated by AI large model, please carefully verify (powered by aily)

References

生成式AI在游戏领域的机会(市场假设+预测)

那么,如果我们将《荒野大镖客:救赎2》与《微软模拟飞行》相比,《微软模拟飞行》这个游戏更为巨大...因为微软飞行模拟器的玩家能够在游戏中围绕整个地球飞行,所有1.97亿平方英里的地方。那么,微软是如何打造这样一个大型游戏的呢?主要是通过人工智能来完成,微软公司与blackshark.ai合作,对人工智能进行训练,从二维卫星图像生成无限逼真的三维世界。blackshark.ai是个啥公司?blackshark.ai是通过机器学习技术,提取全球范围内的地球基础设施的公司,从全球的卫星和航空图像中提取数据,用人工智能基于目前地理数据的数字孪生场景,这些结果可用于可视化、模拟、绘图、混合现实环境和其他企业解决方案,而技术本身具备的云计算更新能力,能够实时更新这些数据。这仅仅是一个例子,如果不使用人工智能技术,《微软模拟飞行》这款游戏实际上是不可能制作完成的。除此之外,游戏的成功还要归功于这些模型可以随着时间的推移不断改进,例如,可以加强"highway cloverleaf overpass"模型,通过人工智能运行整个建造过程,游戏中的整个地球上的所有的高速公路立交桥都可以立马得到改进。3.游戏制作中涉及的每一个资产都会有一个生成的AI模型到目前为止,像Stable Diffusion或MidJourney这样的2D图像生成器,由于其能够生成的图像十分抢眼,占据了目前生成式人工智能的大部分流行的兴奋点。而现在已经出现了用于游戏中几乎所有资产的生成式人工智能模型,从3D模型到角色动画,再到对话和音乐。(下一篇文章会讲一下具体公司的市场生态Market Map)4.内容成本将持续下降,某些情况下的内容的成本会降为零当我们和尝试将生成式AI人工智能整合到制作场景的游戏开发者交谈时,最大的兴奋点在于,制作游戏的时间和成本都会大幅降低。一位开发者告诉我们,为一张图片生成概念图的时间从3周下降到1小时。我们相信,在整个游戏流程的制作过程中也可以实现类似的“降本增效”。

游戏中的生成式 AI 革命

现在,将《Red Dead Redemption 2》与[Microsoft Flight Simulator](https://www.flightsimulator.com/)进行比较,后者不仅仅是大,它是巨大的。Microsoft Flight Simulator允许玩家飞越整个地球,所有的1.97亿平方英里。微软是如何构建这样一个巨大的游戏的呢?通过让AI来做。微软与[blackshark.ai](https://blackshark.ai/)合作,并训练了一个AI从2D卫星图像[生成逼真的3D世界](https://blackshark.ai/solutions/)。这是一个不使用AI就不可能构建的游戏示例,此外,这些模型可以随着时间的推移不断改进这一事实中受益。例如,他们可以增强“高速公路三叶草立交桥”模型,重新运行整个建造过程,突然整个星球上的所有高速公路立交桥都得到了改善。1.游戏制作中涉及的每个资产都将有一个生成性AI模型到目前为止,像Stable Diffusion或MidJourney这样的2D图像生成器由于它们可以生成的图像的吸引力而获得了大量的受欢迎度。但已经有了生成性AI模型,几乎涉及到游戏中的所有资产,从3D模型、角色动画到对话和音乐。这篇博客文章的第二部分包括了一个市场地图,突出显示了一些专注于每种类型内容的公司。1.内容的价格将大幅下降,某些情况下将接近于零。与正在尝试将生成性AI集成到其生产流程中的游戏开发者交谈时,他们最兴奋的是生产时间和成本的大幅降低。有一位开发者告诉我们,他们生成单张概念艺术图像的时间,从开始到完成,从3周减少到了一个小时:减少了120倍。我们相信在整个生产流程中都有可能实现类似的节省。

如何使用 AI 来做事:一份带有观点的指南

最透明的选项:[Adobe Firefly](https://www.adobe.com/sensei/generative-ai/firefly.html)开源选项:[Stable Diffusion](https://stable-diffusion-ui.github.io/)最佳免费选项:Bing或[Bing Image Creator](https://www.bing.com/images/create)(使用DALL-E),[Playgound](https://playgroundai.com/)(允许您使用多个模型)最佳质量图像:[MidJourney](https://midjourney.com/)大多数人可以使用四个大型图像生成器:1.Stable Diffusion,它是开源的,你可以在任何高端计算机运行。开始需要付出努力,因为你必须学会正确制作提示,但一旦你做到了,它可以产生很好的结果。它特别适合将AI与来自其他源的图像结合在一起。[如果你走这条路,这里有一个很好的Stable Diffusion指南(请务必阅读第1部分和第2部分)。](https://www.jonstokes.com/p/stable-diffusion-20-and-21-an-overview)2.DALL-E,来自OpenAI,已纳入Bing(您必须使用创意模式)和Bing图像创建器。这个系统很可靠,但比Midjourney差。3.Midjourney,这是2023年中期最好的系统。它的学习曲线最低:只需键入“thing-you-want-to-see--v 5.2”(末尾的--v 5.2很重要,它使用最新的模型),你就会得到一个很好的结果。Midjourney需要Discord。这是[使用Discord的指南](https://www.pcworld.com/article/540080/how-to-use-discord-a-beginners-guide.html)。4.Adobe Firefly内置在各种Adobe产品中,但在质量方面落后于DALL-E和Midjourney。然而,虽然其他两个模型还不清楚他们用于训练人工智能的源图像,但Adobe宣布它只使用它有权使用的图像。

Others are asking
如何系统学习ai知识
以下是系统学习 AI 知识的方法: 1. 编程语言基础:从 Python、JavaScript 等编程语言开始学习,掌握编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 工具和平台体验:使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。探索面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 基础知识学习: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 实践项目参与:参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动,尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注前沿动态:关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展,思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 对于新手学习 AI,还可以: 1. 了解基本概念:阅读「」部分,熟悉 AI 的术语和基础概念,浏览入门文章,了解其历史、应用和发展趋势。 2. 开始学习之旅:在「」中找到为初学者设计的课程,推荐李宏毅老师的课程。通过在线教育平台(如 Coursera、edX、Udacity)按自己节奏学习并获取证书。 3. 选择兴趣模块深入:根据自身兴趣选择特定的 AI 模块(如图像、音乐、视频等)深入学习,掌握提示词技巧。 4. 实践和尝试:理论学习后进行实践,巩固知识,尝试使用各种产品并分享实践成果。 5. 体验 AI 产品:与 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解其工作原理和交互方式,获得实际应用体验。
2025-01-10
2025年1月9日,AI领域最新新闻
以下是 2025 年 1 月 9 日 AI 领域的部分最新新闻: 艾媒咨询发布的《》显示,中国 AI 大模型市场在 2024 年规模约为 294.16 亿元,预计 2026 年将突破 700 亿元。用户调研表明,超过半数用户频繁使用 AI 大模型,主要用于工作和学习。国产大模型正广泛应用于各行业,如金融、医疗、教育等,推动数字化转型。政策支持、算力发展和经济因素共同驱动产业发展。AI 大模型在网络安全、教育、金融等领域展现出巨大潜力,用户对其在这些领域的应用充满期待。 其它一些报告发布在: UiPath:《》 毕马威:《》 清华大学:《》 中央企业人工智能:《》 拾象投研团队预测 2025 年 AI 发展的关键趋势,包括微软可能转向 Anthropic 合作,Google 利用其强大资源缩小与领先者的差距,以及 Agent 成为新的软件核心,推动任务自动化和推理能力的提升。同时,数据的上下文层和合成数据技术的突破将是竞争的关键。硬件方面,推理需求激增将使 NVDA 继续在算力市场中保持领先地位。 讨论了即将进入的智能代理 AI 时代,特别是 Coding Agent 的崛起。随着 AI 编程能力的提升,许多人将有机会更快地开发产品,投资者对此充满期待。然而,关于 AI Coding 是否会取代传统程序员的争论仍然存在,分为保守派、乐观派和激进派。尽管未来仍不确定,但 AI 编程课程的需求已显著增加,显示出人们对这一领域的关注和焦虑。 过去一年,头部 AI 应用的品类变化并不显著。对比美国 2023 年与 2024 年的 AI 应用 Top50 榜单,整体类别基本保持稳定。其中,创意工具(如图像和视频内容创作)依然占据最大比重,大语言模型助手、AI 陪伴和模型中心等类别也继续稳居主流地位。新上榜的仅包括美食、约会和音乐创意工具等几个小品类。 模型进展(算法、算力和数据) AI 算法的“推陈出新” OpenAI 新模型——o1 在业界对传统预训练模型进展放缓的担忧中,2024 年 9 月,OpenAI 发布了新一代语言模型 o1。尽管技术细节未被完全公开,但业界推测 o1 采用了全新的训练与推理方案,结合强化学习技术,显著增强了模型的推理能力。o1 可能是通过生成内部“思维链”(Chain of Thought),模拟人类的系统 2 思维方式,在回答复杂问题时能够逐步推理、自我纠错和优化。 心理学家丹尼尔·卡尼曼(Daniel Kahneman)曾提出人类的系统 1 和系统 2 两种思维模式——前者快速、直觉,后者慢速、理性。业界专家认为,传统的 GPT4 等模型更像系统 1,快速生成答案但缺乏深度推理,而 o1 则更倾向于系统 2,通过逐步推理提升回答质量。 o1 可能借鉴了下围棋的 AlphaGo Zero 的技术思路,例如强化学习、自我博弈和思维链的结合。尽管围棋任务的规则性与自然语言的开放性不同,但这些技术不仅为 o1 提供了更强的推理能力,也预示着 AI 技术在复杂任务领域进一步突破的可能。
2025-01-10
什么是AIGC
AIGC 即 AI generated content,又称为生成式 AI,是一种利用人工智能技术生成各种类型内容的应用方式。 AIGC 能够通过机器学习和深度学习算法,根据输入的数据和指令生成符合特定要求的内容,其应用领域广泛,包括但不限于内容创作、广告、媒体等。 例如,在文字生成方面,可使用大型语言模型(如 GPT 系列模型)生成文章、故事、对话等内容;在图像生成方面,可使用 Stable Diffusion、DALLE 等模型生成艺术作品、照片等;在视频生成方面,可使用 Runway、KLING 等模型生成动画、短视频等。 AIGC 与 UGC(普通用户生产)、PGC(专业用户生产)都是内容生成的不同方式。UGC 是由用户生成的内容,优势在于内容丰富多样,能反映用户真实想法和创意,适用于社交媒体、社区论坛等互动性强的平台。PGC 是由专业人士或机构生成的内容,优势在于内容质量高、专业性强,适用于新闻媒体、专业网站等需要高质量内容的平台。 能进行 AIGC 的产品项目众多,媒介也多样。语言文字类有 OpenAI 的 GPT、Google 的 Bard、百度的文心一言等;语音声音类有 Google 的 WaveNet、微软的 Deep Nerual Network、百度的 DeepSpeech 等,还有合成 AI 孙燕姿大火的开源模型 Sovits;图片美术类有早期的 GEN 等图片识别/生成技术,去年大热的扩散模型带火了生成质量很高的 Midjourney、先驱者谷歌的 Disco Diffusion、一直在排队测试的 OpenAI 的 Dalle·2,以及 stability ai 和 runaway 共同推出的 Stable Diffusion。Stable Diffusion 是由初创公司 StabilityAI、CompVis 与 Runway 合作开发,2022 年发布的深度学习文本到图像生成模型,代码模型权重已公开发布,当前版本为 2.1 稳定版(2022.12.7),源代码库为 github.com/StabilityAI/stablediffusion。
2025-01-10
2024ai 大事记
以下是 2024 年 AI 大事纪的相关内容: 1 月: 斯坦福大学 Mobile Aloha。 1 月 10 号 LumaAl Genie 文生 3D。 1 月 11 号 GPT store 上线。 MagnificAl 高清放大爆火。 1 月最后一天苹果 Vision Pro 宣布发售。 3 月: 潞晨科技发布 OpenSora。 Suno 发布 V3 版本爆火。 4 月:英伟达发布硬件股价飙升。 5 月: 苹果发布 AI 芯片。 张吕敏发布 IC light。 7 月:快手开源 LivePortrait 模型,表情迁移。 8 月:StabilityAI 老板成立新公司发布 flux 大模型。 9 月: 阿里云发布模型,海螺 AI 参战。 Google 发布 GameGen 实时生成游戏。 通义千问 2.5 系列全家桶开源。 华为发布 cloud matrix 云计算基础设施。 GPT 高级语音模式上线。 Meta 发布 AI 眼镜 Orion。 AI 代码编辑器 cursor 爆火。 10 月: Pika 发布 1.5 模型。 诺奖颁发给 AI 奠基人。 特斯拉发布机器人。 Adobe 发布 Illustrator+Al 生成矢量图。 智谱 AI 发布 autoGLM。 腾讯混元开源 3D 模型。 云深处发布机器人山猫机器狗。 Apple 发布 Mac mini。 12 月: 李飞飞发布空间智能成果。 腾讯开源混元视频模型。 Open AI 开 12 天发布会。 微软发布 Trellis 最强开源图生 3D。 Gemini2.0 视觉交互智能体。 智元机器人开始量产。 谷歌发布 Veo2 能生成 4K 视频。 需要注意的是,本大事记经过一定筛选,带有一定倾向性,但不包含任何广告或其他商业考量,仅以新闻热度与大众反响为依据。仅代表个人看法,如有遗漏请谅解。
2025-01-10
2025年1月10日,AI领域最新新闻
以下是 2025 年 1 月 10 日 AI 领域的最新新闻: 《拾象 2025 AI Best Ideas:20 大关键预测》:拾象投研团队预测 2025 年 AI 发展的关键趋势,包括微软可能转向 Anthropic 合作,Google 利用其强大资源缩小与领先者的差距,以及 Agent 成为新的软件核心,推动任务自动化和推理能力的提升。同时,数据的上下文层和合成数据技术的突破将是竞争的关键。硬件方面,推理需求激增将使 NVDA 继续在算力市场中保持领先地位。 《我们即将进入 Agentic AI 时代,而第一个落地就是 Coding Agent》:讨论了即将进入的智能代理 AI 时代,特别是 Coding Agent 的崛起。随着 AI 编程能力的提升,许多人将有机会更快地开发产品,投资者对此充满期待。然而,关于 AI Coding 是否会取代传统程序员的争论仍然存在,分为保守派、乐观派和激进派。尽管未来仍不确定,但 AI 编程课程的需求已显著增加,显示出人们对这一领域的关注和焦虑。 《海螺主体一致视频教程及测试效果》 《「灵宇宙」顾嘉唯:半年完成三轮融资,携新一代智能硬件 OS 亮相 CES》:在 2025 年 CES 上,初创公司「灵宇宙」展示了针对儿童的 AI 学习伴侣 Ling!。创始人顾嘉唯强调,公司的目标是开发新一代智能硬件 OS,利用多模态技术提升机器的感知与决策能力。Ling!通过 4D 空间交互为孩子们提供沉浸式学习体验,内置多种 AI 角色,覆盖多个学科。 《CES 2025:井喷的 AI 陪伴与 AI 眼镜》:CES 2025 在拉斯维加斯举行,展出大量 AI 陪伴产品和智能眼镜。针对儿童和家庭的 AI 产品激增,包括可爱的机器人如 Yukai Engineering 的 Mirumi 和 Nékojita FuFu。其他亮点有 TCL 的模块化 AI 机器人 Ai Me、全自动拉布拉多机器人 Jennie 及三星的 Ballie 滚动机器人。 《帆哥:2024AI 大事纪》:总结了 2024 年发生的大多数 AI 大事,包括 1 月斯坦福大学 Mobile Aloha、1 月 10 号 LumaAl Genie 文生 3D、1 月 11 号 GPT store 上线、1 月 MagnificAl 高清放大爆火、1 月最后一天苹果 Vision Pro 宣布发售等。
2025-01-10
2024AI 大事记
以下是 2024 年 AI 大事纪: 1 月: 斯坦福大学 Mobile Aloha 1 月 10 号 LumaAl Genie 文生 3D 1 月 11 号 GPT store 上线 MagnificAl 高清放大爆火 1 月最后一天苹果 Vision Pro 宣布发售 3 月: 潞晨科技发布 OpenSora Suno 发布 V3 版本爆火 4 月:英伟达发布硬件股价飙升 5 月: 苹果发布 AI 芯片 张吕敏发布 IC light AI 竞争白热化 伊莉雅离开 OpenAI,伊利亚成立新公司,估值超五亿美金 7 月:快手开源 LivePortrait 模型,表情迁移 8 月:StabilityAI 老板成立新公司发布 flux 大模型 9 月: 阿里云发布模型,海螺 AI 参战 Google 发布 GameGen 实时生成游戏 通义千问 2.5 系列全家桶开源 华为发布 cloud matrix 云计算基础设施 GPT 高级语音模式上线 Meta 发布 AI 眼镜 Orion AI 代码编辑器 cursor 爆火 10 月: Pika 发布 1.5 模型 诺奖颁发给 AI 奠基人 特斯拉发布机器人 Adobe 发布 Illustrator+Al 生成矢量图 智谱 AI 发布 autoGLM 腾讯混元开源 3D 模型 云深处发布机器人山猫机器狗 Apple 发布 Mac mini 12 月: 李飞飞发布空间智能成果 腾讯开源混元视频模型 Open AI 开 12 天发布会 微软发布 Trellis 最强开源图生 3D Gemini2.0 视觉交互智能体 智元机器人开始量产 谷歌发布 Veo2 能生成 4K 视频 宇树科技机器狗爆火,似奔着打架去 SORA 兑现引关注,被测试出奇怪问题 需要说明的是,本大事记经过一定筛选,带有一定倾向性,但不包含任何广告或其他商业考量,仅以新闻热度与大众反响为依据。仅代表个人看法,如有遗漏请谅解。
2025-01-10
stable diffusion和国内的这些AI绘画的模型有什么区别
Stable Diffusion 和国内的 AI 绘画模型主要有以下区别: 1. 数据集和学习方式: 在线的国内模型可以访问庞大且不断更新扩展的数据集,还能实时从用户的弱监督学习中获得反馈,从而不断调整和优化绘画策略。而 Stable Diffusion 通常受限于本地设备的计算能力,其数据集和学习反馈相对有限。 2. 计算能力: 在线的国内模型能利用云计算资源进行大规模并行计算,加速模型的训练和推理过程。Stable Diffusion 受本地设备计算能力限制,性能可能不如在线模型。 3. 模型更新: 在线的国内模型可以随时获得最新的版本和功能更新,更好地适应不断变化的绘画风格和技巧。Stable Diffusion 的模型更新相对较慢。 4. 协同学习: 在线的国内模型可以从全球范围内的用户中学习,更好地理解各种绘画风格和技巧。Stable Diffusion 则只能依赖于有限的本地模型,对绘画可能性的了解可能不够全面。 例如,Niji·journey 5 在二次元角色设计领域就展现出比 Stable Diffusion 更强大的性能和实用性。同时,国内还有 DeepSeek、阿里巴巴的 Qwen2 系列、清华大学的 OpenBMB 项目等在不同方面表现出色的模型。
2025-01-08
Stable Diffusion 学习教程
以下是关于 Stable Diffusion 学习的教程: 学习提示词: 1. 学习基本概念:了解 Stable Diffusion 的工作原理和模型架构,理解提示词如何影响生成结果,掌握提示词的组成部分(主题词、修饰词、反面词等)。 2. 研究官方文档和教程:通读 Stable Diffusion 官方文档,研究来自开发团队和专家的教程和技巧分享。 3. 学习常见术语和范例:熟悉 UI、艺术、摄影等相关领域的专业术语和概念,研究优秀的图像标题和描述,作为提示词范例。 4. 掌握关键技巧:学习如何组合多个词条来精确描述想要的效果,掌握使用“()”、“”等符号来控制生成权重的技巧,了解如何处理抽象概念、情感等无形事物的描述。 5. 实践和反馈:使用不同的提示词尝试生成各种风格和主题的图像,对比提示词和实际结果,分析原因,总结经验教训,在社区内分享结果,请教高手,获取反馈和建议。 6. 创建提示词库:根据主题、风格等维度,建立自己的高质量提示词库,将成功案例和总结记录在案,方便后续参考和复用。 7. 持续跟进前沿:关注 Stable Diffusion 的最新更新和社区分享,及时掌握提示词的新技术、新范式、新趋势。 核心基础知识: 1. Stable Diffusion 系列资源。 2. 零基础深入浅出理解 Stable Diffusion 核心基础原理,包括通俗讲解模型工作流程(包含详细图解)、从 0 到 1 读懂模型核心基础原理(包含详细图解)、零基础读懂训练全过程(包含详细图解)、其他主流生成式模型介绍。 3. Stable Diffusion 核心网络结构解析(全网最详细),包括 SD 模型整体架构初识、VAE 模型、UNet 模型、CLIP Text Encoder 模型、SD 官方训练细节解析。 4. 从 0 到 1 搭建使用 Stable Diffusion 模型进行 AI 绘画(全网最详细讲解),包括零基础使用 ComfyUI 搭建推理流程、零基础使用 SD.Next 搭建推理流程、零基础使用 Stable Diffusion WebUI 搭建推理流程、零基础使用 diffusers 搭建推理流程、生成示例。 5. Stable Diffusion 经典应用场景,包括文本生成图像、图片生成图片、图像 inpainting、使用 controlnet 辅助生成图片、超分辨率重建。 6. 从 0 到 1 上手使用 Stable Diffusion 训练自己的 AI 绘画模型(全网最详细讲解),包括训练资源分享、模型训练初识、配置训练环境与训练文件。 其他资源: 1. 了解 Stable diffusion 是什么: 。 2. 入门教程: 。 3. 模型网站:C 站 。 4. 推荐模型:人像摄影模型介绍:https://www.bilibili.com/video/BV1DP41167bZ 。
2025-01-06
Stable Diffusion、comfyui
ComfyUI 是一个基于节点流程式的 stable diffusion AI 绘图工具 WebUI,您可以将其想象成集成了 stable diffusion 功能的 substance designer。它具有以下特点: 优势: 对显存要求相对较低,启动和出图速度快。 生成自由度更高。 可以和 webui 共享环境和模型。 能搭建自己的工作流程,可导出流程并分享,报错时能清晰发现错误所在。 生成的图片拖进后会还原整个工作流程,模型也会选择好。 劣势: 操作门槛高,需要有清晰的逻辑。 生态没有 webui 丰富(但常用的都有),也有一些针对 Comfyui 开发的有趣插件。 其生图原理如下: 基础模型:ComfyUI 使用预训练的扩散模型作为核心,通常是 Stable Diffusion 模型,包括 SD1.5、SD2.0、SDXL、SD3、FLUX 等。 文本编码:当用户输入文本提示时,ComfyUI 首先使用 CLIP 文本编码器将文本转换为向量表示,以捕捉文本的语义信息。 Pixel Space 和 Latent Space: Pixel Space(像素空间):图的左边表示输入图像的像素空间,在 ComfyUI 中,对应于“图像输入”模块或直接从文本提示生成的随机噪声图像,生成过程结束时会将处理后的潜在表示转换回像素空间生成最终图像。 Latent Space(潜在空间):ComfyUI 中的许多操作都在潜在空间中进行,如 KSampler 节点执行采样过程,通过节点调整对潜在空间的操作,如噪声添加、去噪步数等。 扩散过程(Diffusion Process): 噪声的生成和逐步还原:扩散过程表示从噪声生成图像的过程,在 ComfyUI 中通常通过调度器控制,如 Normal、Karras 等,可通过“采样器”节点选择不同调度器控制处理噪声和逐步去噪回归到最终图像。 时间步数:在生成图像时,扩散模型会进行多个去噪步,通过控制步数影响图像生成的精细度和质量。 官方链接:https://github.com/comfyanonymous/ComfyUI (内容由 AI 大模型生成,请仔细甄别)
2025-01-06
社区有关于stable diffusion 的教程吗
以下是为您找到的关于 Stable Diffusion 的教程: 知乎教程:深入浅出完整解析 Stable Diffusion(SD)核心基础知识,目录包括: Stable Diffusion 系列资源 零基础深入浅出理解 Stable Diffusion 核心基础原理,包含通俗讲解模型工作流程(包含详细图解)、从 0 到 1 读懂模型核心基础原理(包含详细图解)、零基础读懂训练全过程(包含详细图解)、其他主流生成式模型介绍 Stable Diffusion 核心网络结构解析(全网最详细),包括 SD 模型整体架构初识、VAE 模型、UNet 模型、CLIP Text Encoder 模型、SD 官方训练细节解析 从 0 到 1 搭建使用 Stable Diffusion 模型进行 AI 绘画(全网最详细讲解),包括零基础使用 ComfyUI 搭建推理流程、零基础使用 SD.Next 搭建推理流程、零基础使用 Stable Diffusion WebUI 搭建推理流程、零基础使用 diffusers 搭建推理流程、Stable Diffusion 生成示例 Stable Diffusion 经典应用场景,包括文本生成图像、图片生成图片、图像 inpainting、使用 controlnet 辅助生成图片、超分辨率重建 从 0 到 1 上手使用 Stable Diffusion 训练自己的 AI 绘画模型(全网最详细讲解),包括 Stable Diffusion 训练资源分享、模型训练初识、配置训练环境与训练文件 其他教程: 了解 Stable diffusion 是什么: 基本介绍:https://waytoagi.feishu.cn/wiki/CeOvwZPwCijV79kt9jccfkRan5e 稳定扩散(Stable Diffusion)是如何运作的:https://waytoagi.feishu.cn/wiki/TNIRw7qsViYNVgkPaazcuaVfndc 入门教程: 文字教程: 模型网站: C 站SD 模型网站:https://civitai.com/ Liblibai模型+在线 SD:https://www.liblib.ai/ huggingface:https://huggingface.co/models?pipeline_tag=texttoimage&sort=trending 吐司站:https://tusiart.com/ 推荐模型:人像摄影模型介绍:https://www.bilibili.com/video/BV1DP41167bZ
2025-01-04
stabel diffusion学习
以下是关于学习 Stable Diffusion 的相关内容: 学习 Stable Diffusion 提示词: 学习 Stable Diffusion 的提示词是一个系统性的过程,需要理论知识和实践经验相结合。具体步骤如下: 1. 学习基本概念:了解 Stable Diffusion 的工作原理和模型架构,理解提示词如何影响生成结果,掌握提示词的组成部分(主题词、修饰词、反面词等)。 2. 研究官方文档和教程:通读 Stable Diffusion 官方文档,了解提示词相关指南,研究来自开发团队和专家的教程和技巧分享。 3. 学习常见术语和范例:熟悉 UI、艺术、摄影等相关领域的专业术语和概念,研究优秀的图像标题和描述,作为提示词范例。 4. 掌握关键技巧:学习如何组合多个词条来精确描述想要的效果,掌握使用“()”、“”等符号来控制生成权重的技巧,了解如何处理抽象概念、情感等无形事物的描述。 5. 实践和反馈:使用不同的提示词尝试生成各种风格和主题的图像,对比提示词和实际结果,分析原因,总结经验教训,在社区内分享结果,请教高手,获取反馈和建议。 6. 创建提示词库:根据主题、风格等维度,建立自己的高质量提示词库,将成功案例和总结记录在案,方便后续参考和复用。 7. 持续跟进前沿:关注 Stable Diffusion 的最新更新和社区分享,及时掌握提示词的新技术、新范式、新趋势。 Stable Diffusion 软件原理傻瓜级理解: Stable Diffusion 的工作原理就好比学习画画。比如学梵高的风格,要先看他的画并临摹。AI 绘画也是类似逻辑,人们把成千上万美术风格的作品练成一个模型放在 AI 里,AI 就能依照模型画出类似风格的作品。想要画出符合心意的作品,首先要选对合适的大模型。大模型的下载,可以去 C 站(https://civitai.com/),但需要科学上网。 学习 Stable Diffusion Web UI: 学习 Stable Diffusion Web UI 可以按照以下步骤进行: 1. 安装必要的软件环境:安装 Git 用于克隆源代码,安装 Python 3.10.6 版本并勾选“Add Python 3.10 to PATH”选项,安装 Miniconda 或 Anaconda 创建 Python 虚拟环境。 2. 克隆 Stable Diffusion Web UI 源代码:打开命令行工具,输入命令 git clone https://github.com/AUTOMATIC1111/stablediffusionwebui.git,将源代码克隆到本地目录。 3. 运行安装脚本:进入 stablediffusionwebui 目录,运行 webuiuser.bat 或 webui.sh 脚本,它会自动安装依赖项并配置环境,等待安装完成,命令行会显示 Web UI 的访问地址。 4. 访问 Web UI 界面:复制命令行显示的本地 Web 地址,在浏览器中打开,即可进入 Stable Diffusion Web UI 的图形化界面。 5. 学习 Web UI 的基本操作:了解 Web UI 的各种设置选项,如模型、采样器、采样步数等,尝试生成图像,观察不同参数对结果的影响,学习使用提示词(prompt)来控制生成效果。 6. 探索 Web UI 的扩展功能:了解 Web UI 支持的各种插件和扩展,如 Lora、Hypernetwork 等,学习如何导入自定义模型、VAE、embedding 等文件,掌握图像管理、任务管理等技巧,提高工作效率。 通过这些步骤,相信您可以快速上手 Stable Diffusion Web UI,开始探索 AI 绘画的乐趣。后续还可以深入学习 Stable Diffusion 的原理,以及在不同场景中的应用。请注意,内容由 AI 大模型生成,请仔细甄别。
2024-12-23
Stable Diffusion基础学习
以下是关于系统学习 Stable Diffusion 的基础内容: 学习提示词: 学习基本概念,包括了解 Stable Diffusion 的工作原理和模型架构,理解提示词如何影响生成结果,掌握提示词的组成部分。 研究官方文档和教程,学习常见术语和范例。 掌握关键技巧,如组合多个词条精确描述效果、使用特定符号控制生成权重、处理抽象概念等。 通过实践和反馈,不断总结经验,创建自己的提示词库,并持续跟进前沿。 核心基础知识: 了解 Stable Diffusion 系列资源。 零基础深入浅出理解核心基础原理,包括通俗讲解模型工作流程、读懂核心基础原理、读懂训练全过程、介绍其他主流生成式模型。 解析核心网络结构,如 SD 模型整体架构、VAE 模型、UNet 模型、CLIP Text Encoder 模型、官方训练细节。 学习从 0 到 1 搭建使用 Stable Diffusion 模型进行 AI 绘画的不同流程。 了解经典应用场景,如文本生成图像、图片生成图片、图像 inpainting、使用 controlnet 辅助生成图片、超分辨率重建。 学习从 0 到 1 上手使用 Stable Diffusion 训练自己的 AI 绘画模型,包括训练资源分享、模型训练初识、配置训练环境与训练文件。 Nenly 的零基础入门课学习资料汇总: 提供了配套的学习文档,包括随堂素材、生成信息、内容修订等。 有安装攻略和素材下载的相关内容。
2024-12-22
怎么学习Midjourney和stable defussion
以下是关于学习 Midjourney 和 Stable Diffusion 的一些建议: Midjourney: 优势:操作简单方便,创作内容丰富,但需要科学上网并且付费,月费约 200 多元。若只是前期了解,可先尝试。 学习途径:只需键入“thingyouwanttoseev 5.2”(注意末尾的v 5.2 很重要,它使用最新的模型),就能得到较好的结果。Midjourney 需要 Discord,可参考。 Stable Diffusion: 优势:开源免费,可以本地化部署,创作自由度高,但需要较好的电脑配置,尤其是显卡。 学习途径: 关于具体的安装方法可以去看看 B 站的【秋葉 aaaki】这个 Up 主的视频。 可以参考,了解其工作原理和基本功能。 如果走 Stable Diffusion 这条路,这里有一个很好的指南(请务必阅读第 1 部分和第 2 部分) 此外,在学习 AI 绘画这段时间,发现 AI 绘画并不会完全替代设计师,而是可以让出图质量更好,效率更高。比如可以用 Midjourney 生成线稿,PS 稍微做一些修正,再用 ControlNet 控制,Stable Diffusion 上色,多套 AI 组合拳,可以快速生成效果惊艳的图。
2025-01-06
stable difusion学习
以下是关于学习 Stable Diffusion 的相关内容: 学习 Stable Diffusion 的提示词: 学习 Stable Diffusion 的提示词是一个系统性的过程,需要理论知识和实践经验相结合。具体步骤如下: 1. 学习基本概念:了解 Stable Diffusion 的工作原理和模型架构,理解提示词如何影响生成结果,掌握提示词的组成部分(主题词、修饰词、反面词等)。 2. 研究官方文档和教程:通读 Stable Diffusion 官方文档,了解提示词相关指南,研究来自开发团队和专家的教程和技巧分享。 3. 学习常见术语和范例:熟悉 UI、艺术、摄影等相关领域的专业术语和概念,研究优秀的图像标题和描述,作为提示词范例。 4. 掌握关键技巧:学习如何组合多个词条来精确描述想要的效果,掌握使用“()”、“”等符号来控制生成权重的技巧,了解如何处理抽象概念、情感等无形事物的描述。 5. 实践和反馈:使用不同的提示词尝试生成各种风格和主题的图像,对比提示词和实际结果,分析原因,总结经验教训,在社区内分享结果,请教高手,获取反馈和建议。 6. 创建提示词库:根据主题、风格等维度,建立自己的高质量提示词库,将成功案例和总结记录在案,方便后续参考和复用。 7. 持续跟进前沿:关注 Stable Diffusion 的最新更新和社区分享,及时掌握提示词的新技术、新范式、新趋势。 学习 Stable Diffusion Web UI: 学习 Stable Diffusion Web UI 可以按照以下步骤进行: 1. 安装必要的软件环境:安装 Git 用于克隆源代码,安装 Python 3.10.6 版本,确保勾选“Add Python 3.10 to PATH”选项,安装 Miniconda 或 Anaconda 创建 Python 虚拟环境。 2. 克隆 Stable Diffusion Web UI 源代码:打开命令行工具,输入命令 git clone https://github.com/AUTOMATIC1111/stablediffusionwebui.git,将源代码克隆到本地目录。 3. 运行安装脚本:进入 stablediffusionwebui 目录,运行 webuiuser.bat 或 webui.sh 脚本,它会自动安装依赖项并配置环境,等待安装完成,命令行会显示 Web UI 的访问地址。 4. 访问 Web UI 界面:复制命令行显示的本地 Web 地址,在浏览器中打开,即可进入 Stable Diffusion Web UI 的图形化界面。 5. 学习 Web UI 的基本操作:了解 Web UI 的各种设置选项,如模型、采样器、采样步数等,尝试生成图像,观察不同参数对结果的影响,学习使用提示词(prompt)来控制生成效果。 6. 探索 Web UI 的扩展功能:了解 Web UI 支持的各种插件和扩展,如 Lora、Hypernetwork 等,学习如何导入自定义模型、VAE、embedding 等文件,掌握图像管理、任务管理等技巧,提高工作效率。 Stable Diffusion 软件原理傻瓜级理解: Stable Diffusion 的工作原理可以这样理解:好比学习画画,比如学梵高的风格,要先看梵高的画并临摹。AI 绘画也是类似逻辑,人们把成千上万美术风格的作品练成一个模型放在 AI 里,AI 就能依照这个模型画出类似风格的作品。想要画出符合心意的作品,首先要选对合适的大模型。大模型的下载,可以去 C 站(https://civitai.com/),有真实系的、二次元的、游戏 CG 风的等等,但需要科学上网。
2024-12-24