Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

stablediffusion学习

Answer

以下是关于系统学习 Stable Diffusion(SD)的相关内容:

学习 SD 的提示词: 学习 Stable Diffusion 的提示词是一个系统性的过程,需要理论知识和实践经验相结合。具体步骤如下:

  1. 学习基本概念:了解 Stable Diffusion 的工作原理和模型架构,理解提示词如何影响生成结果,掌握提示词的组成部分(主题词、修饰词、反面词等)。
  2. 研究官方文档和教程:通读 Stable Diffusion 官方文档,了解提示词相关指南,研究来自开发团队和专家的教程和技巧分享。
  3. 学习常见术语和范例:熟悉 UI、艺术、摄影等相关领域的专业术语和概念,研究优秀的图像标题和描述,作为提示词范例。
  4. 掌握关键技巧:学习如何组合多个词条来精确描述想要的效果,掌握使用“()”、“”等符号来控制生成权重的技巧,了解如何处理抽象概念、情感等无形事物的描述。
  5. 实践和反馈:使用不同的提示词尝试生成各种风格和主题的图像,对比提示词和实际结果,分析原因,总结经验教训,在社区内分享结果,请教高手,获取反馈和建议。
  6. 创建提示词库:根据主题、风格等维度,建立自己的高质量提示词库,将成功案例和总结记录在案,方便后续参考和复用。
  7. 持续跟进前沿:关注 Stable Diffusion 的最新更新和社区分享,及时掌握提示词的新技术、新范式、新趋势。

学习 SD 的 Web UI: 学习 Stable Diffusion Web UI 可以按照以下步骤进行:

  1. 安装必要的软件环境:安装 Git 用于克隆源代码,安装 Python 3.10.6 版本,确保勾选“Add Python 3.10 to PATH”选项,安装 Miniconda 或 Anaconda 创建 Python 虚拟环境。
  2. 克隆 Stable Diffusion Web UI 源代码:打开命令行工具,输入命令 git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git,将源代码克隆到本地目录。
  3. 运行安装脚本:进入 stable-diffusion-webui 目录,运行 webui-user.bat 或 webui.sh 脚本,它会自动安装依赖项并配置环境,等待安装完成,命令行会显示 Web UI 的访问地址。
  4. 访问 Web UI 界面:复制命令行显示的本地 Web 地址,在浏览器中打开,即可进入 Stable Diffusion Web UI 的图形化界面。
  5. 学习 Web UI 的基本操作:了解 Web UI 的各种设置选项,如模型、采样器、采样步数等,尝试生成图像,观察不同参数对结果的影响,学习使用提示词(prompt)来控制生成效果。
  6. 探索 Web UI 的扩展功能:了解 Web UI 支持的各种插件和扩展,如 Lora、Hypernetwork 等,学习如何导入自定义模型、VAE、embedding 等文件,掌握图像管理、任务管理等技巧,提高工作效率。

通过这些步骤,相信您可以快速上手 Stable Diffusion Web UI,开始探索 AI 绘画的乐趣。后续还可以深入学习 Stable Diffusion 的原理,以及在不同场景中的应用。

请注意,以上内容由 AI 大模型生成,请仔细甄别。

Content generated by AI large model, please carefully verify (powered by aily)

References

问:如何系统学习 SD 的提示词

学习Stable Diffusion的提示词是一个系统性的过程,需要理论知识和实践经验的相互结合。以下是一些建议的步骤:1.学习基本概念-了解Stable Diffusion的工作原理和模型架构-理解提示词如何影响生成结果-掌握提示词的组成部分(主题词、修饰词、反面词等)2.研究官方文档和教程-通读Stable Diffusion官方文档,了解提示词相关指南-研究来自开发团队和专家的教程和技巧分享3.学习常见术语和范例-熟悉UI、艺术、摄影等相关领域的专业术语和概念-研究优秀的图像标题和描述,作为提示词范例4.掌握关键技巧-学习如何组合多个词条来精确描述想要的效果-掌握使用"()"、""等符号来控制生成权重的技巧-了解如何处理抽象概念、情感等无形事物的描述5.实践和反馈-使用不同的提示词尝试生成各种风格和主题的图像-对比提示词和实际结果,分析原因,总结经验教训-在社区内分享结果,请教高手,获取反馈和建议6.创建提示词库-根据主题、风格等维度,建立自己的高质量提示词库-将成功案例和总结记录在案,方便后续参考和复用7.持续跟进前沿-关注Stable Diffusion的最新更新和社区分享-及时掌握提示词的新技术、新范式、新趋势

第二课 《ComfyUI基础知识》 By 郭佑萌 @ 🌈WaytoAGI 2024.8.15 .pdf

‎的去噪结果。然而,这种迭代性质在计算效率上带来了挑战,特别是在处理大尺寸图像和‎大量扩散步骤(T)时。在采样过程中,从高斯噪声中去噪图像可能需要很长时间。为了解‎决这一问题,一组研究人员提出了一种新的方法,称为稳定扩散(Stable Diffusion),‎最初称为潜在扩散模型(Latent Diffusion Models)‎Stable Diffusion‎Stable Diffusion是一种扩散模型(diffusion model)的变体,叫做“潜在扩散模[heading1]‎型”(Latent Diffusion Models)[content]‎CLIP‎将用户输入的Prompt文本转化成text embedding‎核心的组件‎VAE Encoder-Decoder‎UNET‎UNET进行迭代降噪,在文本引导下进行多轮预测‎High-Resolution Image Synthesis with Latent Diffusion Models‎ComfyUI存放路径:models/checkpoints/‎SD1.5‎SD基础预训练模型‎SDXL‎SD1.5‎模型实例‎SDXL‎训练方法‎DreamBooth,by Google‎EMA-only&pruned VS Full‎FP16&FP32‎格式‎.pt VS.safetensor‎Bake in VAE‎模型自带已适配的VAE‎SD微调模型‎概念学习‎Checkpoint‎作用‎source:stable-diffusion-art.com/models/#How_are_models_created‎1puppy‎训练要求‎sd1.5‎12G VARM‎SDXL‎16G VARM‎The merged model sits between the realistic F222 and the anime Anything V3‎styles.It is a very good model for generating illustration art with human figures.‎(source:stable-diffusion-art.com/models/#Example_of_a_merged_model)‎融合模型‎checkpoint+checkpoint‎Lora+Lora‎形式‎checkpoint+Lora‎Baking VAE

问:我想学 SD 的 Web UI

学习Stable Diffusion Web UI可以按照以下步骤进行:1.安装必要的软件环境安装Git用于克隆源代码安装Python 3.10.6版本,确保勾选"Add Python 3.10 to PATH"选项安装Miniconda或Anaconda创建Python虚拟环境2.克隆Stable Diffusion Web UI源代码打开命令行工具,输入命令git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git将源代码克隆到本地目录3.运行安装脚本进入stable-diffusion-webui目录运行webui-user.bat或webui.sh脚本,它会自动安装依赖项并配置环境等待安装完成,命令行会显示Web UI的访问地址4.访问Web UI界面复制命令行显示的本地Web地址,在浏览器中打开即可进入Stable Diffusion Web UI的图形化界面5.学习Web UI的基本操作了解Web UI的各种设置选项,如模型、采样器、采样步数等尝试生成图像,观察不同参数对结果的影响学习使用提示词(prompt)来控制生成效果6.探索Web UI的扩展功能了解Web UI支持的各种插件和扩展,如Lora、Hypernetwork等学习如何导入自定义模型、VAE、embedding等文件掌握图像管理、任务管理等技巧,提高工作效率通过这些步骤,相信你可以快速上手Stable Diffusion Web UI,开始探索AI绘画的乐趣。后续还可以深入学习Stable Diffusion的原理,以及在不同场景中的应用。内容由AI大模型生成,请仔细甄别

Others are asking
RuntimeError: Couldn't clone Stable Diffusion. Command: "git" clone --config core.filemode=false "https://github.com/Stability-AI/stablediffusion.git" "/Users/lichenhui/stable-diffusion-webui/repositories/stable-diffusion-stability-ai" Error code: 12
以下是关于您遇到的“RuntimeError: Couldn't clone Stable Diffusion”错误的分析和解决建议: 这个错误通常表示在克隆 Stable Diffusion 时出现问题。可能的原因包括: 1. 库的某些文件或依赖项已更改或已移除,导致无法找到所需的提交。 2. Git 存储库的状态不正确。 3. 网络连接存在问题。 解决方法如下: 1. 尝试清除本地库并重新克隆 Stable Diffusion,然后再次运行代码。 2. 运行以下命令来检查网络连接:ping files.pythonhosted.org
2025-02-12
StableDiffusion 云服务
以下是关于 StableDiffusion 云服务的相关信息: 如果您的电脑配置较低,也可以通过云平台畅玩 StableDiffusion 并生成好看的图片。这里推荐使用“青椒云”,您可以点击以下链接下载:http://account.qingjiaocloud.com/signup?inviteCode=R0JJ9CHY 。 云平台的使用方法如下: 1. 点击上述链接,注册账号。 2. 下载并安装后,登录注册好的账户。 3. 点击右上角的个人中心进行实名认证。 4. 实名认证后回到主界面,点击新增云桌面。想玩 StableDiffusion 可以选“AIGC 尝鲜”,新注册一般会有优惠券,可免费试用。大多数云平台每小时费用约 2 3 元。 5. 在新弹出的框框中点击“开机”按钮,稍等之后点击“进入桌面”。进入桌面后弹出的全部框框可直接关掉。 6. 点击新打开桌面的“此电脑”,在 C 盘里找到 SD 的根目录,点击“A 启动器.exe”。 7. 点击右下角的“一键启动”即可进入 SD。 8. 用完云平台记得关机,否则会持续计费。 另外,SD 是 Stable Diffusion 的简称,它是由初创公司 StabilityAI、CompVis 与 Runway 合作开发,2022 年发布的深度学习文本到图像生成模型,主要用于根据文本描述产生详细图像。其代码模型权重已公开发布,当前版本为 2.1 稳定版(2022.12.7),源代码库为 github.com/StabilityAI/stablediffusion 。 如果您要在本地安装部署 ComfyUI 副本,电脑硬件要求如下: 1. 系统:Windows 7 以上。 2. 显卡要求:NVDIA 独立显卡且显存至少 4G 起步。 3. 硬盘留有足够空间,最低 100G 起步(包括模型)。 同时,您需要依次下载并安装 python、Git、VSCode,安装过程中一直点击勾选对应选项,一直下一步。具体下载地址如下: 1. Python:https://www.python.org/downloads/release/python3119/ ,安装时选中“将 Python 添加到系统变量”。 2. VSCode:https://code.visualstudio.com/Download 。 3. Git:https://gitscm.com/download/win 。 4. 安装 CUDA:https://developer.nvidia.com/cuda1220downloadarchive?target_os=Windows&target_arch=x86_64&target_version=11&target_type=exe_network 。
2024-11-23
stablediffusion在线webui如何开发
开发 Stable Diffusion 在线 Web UI 可以按照以下步骤进行: 1. 安装必要的软件环境: 安装 Git 用于克隆源代码。 安装 Python 3.10.6 版本,确保勾选“Add Python 3.10 to PATH”选项。 安装 Miniconda 或 Anaconda 创建 Python 虚拟环境。 2. 克隆 Stable Diffusion Web UI 源代码: 打开命令行工具,输入命令 git clone https://github.com/AUTOMATIC1111/stablediffusionwebui.git ,将源代码克隆到本地目录。 3. 运行安装脚本: 进入 stablediffusionwebui 目录,运行 webuiuser.bat 或 webui.sh 脚本,它会自动安装依赖项并配置环境。等待安装完成,命令行会显示 Web UI 的访问地址。 4. 访问 Web UI 界面: 复制命令行显示的本地 Web 地址,在浏览器中打开,即可进入 Stable Diffusion Web UI 的图形化界面。 5. 学习 Web UI 的基本操作: 了解 Web UI 的各种设置选项,如模型、采样器、采样步数等。尝试生成图像,观察不同参数对结果的影响。学习使用提示词(prompt)来控制生成效果。 6. 探索 Web UI 的扩展功能: 了解 Web UI 支持的各种插件和扩展,如 Lora、Hypernetwork 等。学习如何导入自定义模型、VAE、embedding 等文件。掌握图像管理、任务管理等技巧,提高工作效率。 在完成了依赖库和 repositories 插件的安装后,还需要进行以下配置: 将 Stable Diffusion 模型放到/stablediffusionwebui/models/Stablediffusion/路径下。然后到/stablediffusionwebui/路径下,运行 launch.py 即可。运行完成后,将命令行中出现的输入到本地网页中,即可打开 Stable Diffusion WebUI 可视化界面。进入界面后,在红色框中选择 SD 模型,在黄色框中输入 Prompt 和负向提示词,在绿色框中设置生成的图像分辨率(推荐设置成 768x768),然后点击 Generate 按钮进行 AI 绘画。生成的图像会展示在界面右下角,并保存到/stablediffusionwebui/outputs/txt2imgimages/路径下。 如果选用 Stable Diffusion 作为 AIGC 后台,需要注意: DallE 缺乏室内设计能力,MidJourney 出图效果好但无法基于现实环境重绘,Stable Diffusion 出图成功率较低,但可调用 controlnet 的 MLSD 插件捕捉现实环境线条特征做二次设计。安装 Stable Diffusion WEB UI 后,修改 webuiuser.bat 文件加上 listen 和 API 参数,让 Stable Diffusion 处于网络服务状态。代码如下: @echo off set PYTHON= set GIT= set VENV_DIR= set COMMANDLINE_ARGS=xformers nohalfvae listen api git pull call webui.bat 让 Stable Diffusion 具有 AI 室内设计能力的步骤: 1. 下载室内设计模型(checkpoint 类型),放到 stable diffusion 目录/models/stablediffusion 下面。 2. 安装 controlnet 插件,使用 MLSD 插件,实现空间学习。 通过 API 方式让前端连接到 Stable Diffusion 后台的具体代码在前端开发详细展开,API 参考文档可选读。
2024-11-01
stablediffusion3.5最新资讯
以下是关于 Stable Diffusion 3.5 的最新资讯: Stability AI 刚刚发布了 Stable Diffusion 3.5,其中 8B 的 Large 和 Turbo 已经开放,2B 的 Medium 会在 10 月 29 日发布。 ComfyUI 官方提供了示例工作流,尤其对于 RAM 低于 32GB 的用户,comfyanonymous 制作了额外的 scaled fp8 clip。 如何使用:https://blog.comfy.org/sd35comfyui/ 工作流:https://huggingface.co/ComfyOrg/stablediffusion3.5fp8/tree/main scaled fp8 clip:https://huggingface.co/ComfyOrg/stablediffusion3.5fp8/blob/main/sd3.5_large_fp8_scaled.safetensors 10 月 29 日将公开发布 Stable Diffusion 3.5 Medium。不久之后,ControlNets 也将推出,为各种专业用例提供先进的控制功能。 Stability AI 社区许可证关键组成部分: 免费用于非商业用途:个人和组织可以免费将该模型用于非商业用途,包括科学研究。 免费用于商业用途(年收入高达 100 万美元):初创公司、中小型企业和创作者可以免费将该模型用于商业目的,只要其年总收入低于 100 万美元。 输出的所有权:保留所生成媒体的所有权,不受限制性许可影响。 对于年收入超过 100 万美元的组织,请在此处联系咨询企业许可证:https://stability.ai/enterprise 访问模型的更多方式: 稳定性 AI API:https://platform.stability.ai/docs/apireferencetag/Generate/paths/~1v2beta~1stableimage~1generate~1sd3/post Replicate 复制:https://replicate.com/stabilityai/stablediffusion3.5large ComfyUI 舒适用户界面:http://blog.comfy.org/sd35comfyui/ DeepInfra 深基础设施 Stability AI 相信安全、负责任的人工智能实践,并采取审慎措施确保诚信从开发的早期阶段开始。这意味着已经并将继续采取合理的措施来防止不良行为者滥用 Stable Diffusion 3.5。有关安全方法的更多信息,请访问稳定安全页面:https://stability.ai/safety
2024-10-23
请用StableDiffusion生成一幅画,钻井现场,旁边的风景很优美,以柳江盆地的地形和风景为主
很抱歉,目前我无法直接使用 StableDiffusion 为您生成这幅画。但您可以通过以下步骤来实现: 1. 准备好 StableDiffusion 软件,并确保您的计算机满足其运行要求。 2. 了解 StableDiffusion 的相关设置和参数调整方法。 3. 在输入描述中详细准确地描述您想要的画面,如“钻井现场,旁边的风景很优美,以柳江盆地的地形和风景为主”,同时可以补充更多细节,比如光线、色彩、物体的具体特征等,以获得更符合您期望的结果。 希望这些信息对您有所帮助。
2024-09-03
stablediffusion和midjourney有啥关系
Stable Diffusion 和 Midjourney 是 AI 绘画领域的两个重要模型,它们有以下关系和区别: 关系:都是用于 AI 绘画的工具。 区别: Stable Diffusion 是完全开源的项目,包括模型、代码、训练数据、论文、生态等全部开源,能快速构建强大繁荣的上下游生态,吸引了众多 AI 绘画爱好者加入,推动 AIGC 领域的发展。但它需要较好的电脑配置,尤其是显卡。 Midjourney 操作简单方便,创作内容丰富,但需要科学上网并且付费,每月使用费大概在 200 多元。
2024-08-13
作为前端开发人员,推荐学习哪些AI技术呢
作为前端开发人员,以下是一些推荐学习的 AI 技术: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能、机器学习、深度学习、自然语言处理等主要分支及其联系。 浏览入门文章,了解 AI 的历史、当前应用和未来发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。 掌握提示词的技巧,其上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库查看大家实践后的作品、文章分享,并进行自己实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品如 ChatGPT、Kimi Chat、智谱、文心一言等聊天机器人互动,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验。 此外,如果希望继续精进,对于 AI,可以尝试了解以下内容作为基础: 1. AI 背景知识: 基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。 历史发展:简要回顾 AI 的发展历程和重要里程碑。 2. 数学基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等线性代数基本概念。 概率论:基础的概率论知识,如条件概率、贝叶斯定理。 3. 算法和模型: 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:简介强化学习的基本概念。 4. 评估和调优: 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:学习如何使用网格搜索等技术优化模型参数。 5. 神经网络基础: 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。 如果偏向技术研究方向: 1. 数学基础:线性代数、概率论、优化理论等。 2. 机器学习基础:监督学习、无监督学习、强化学习等。 3. 深度学习:神经网络、卷积网络、递归网络、注意力机制等。 4. 自然语言处理:语言模型、文本分类、机器翻译等。 5. 计算机视觉:图像分类、目标检测、语义分割等。 6. 前沿领域:大模型、多模态 AI、自监督学习、小样本学习等。 7. 科研实践:论文阅读、模型实现、实验设计等。 如果偏向应用方向: 1. 编程基础:Python、C++等。 2. 机器学习基础:监督学习、无监督学习等。 3. 深度学习框架:TensorFlow、PyTorch 等。 4. 应用领域:自然语言处理、计算机视觉、推荐系统等。 5. 数据处理:数据采集、清洗、特征工程等。 6. 模型部署:模型优化、模型服务等。 7. 行业实践:项目实战、案例分析等。 无论是技术研究还是应用实践,数学和编程基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-02-18
我是不懂编码的文科生,我学习扣子Coze的应用,难度大吗?大概需要多长时间?
对于不懂编码的文科生来说,学习扣子 Coze 的应用是具有一定挑战性的,但并非不可逾越。 根据相关资料,扣子 Coze 应用于 11 月底推出,其低代码或零代码的工作流等场景做得较好。在学习过程中,您需要熟悉操作界面、业务逻辑和用户界面,包括布局、搭建工作流、用户界面及调试发布,重点熟悉桌面网页版的用户界面。 课程安排方面,第一天会熟悉扣子应用、认识界面、搭建证件照简单应用,解决表单使用等卡点。 不过,社区中很多不懂代码的设计师和产品经理在搭建时也感到吃力。对于学习所需的时间,难以给出确切的时长,这取决于您的学习能力和投入程度。但如果您能认真参与课程学习,逐步掌握相关知识和技能,相信会在一段时间内取得一定的成果。
2025-02-18
想做ai产品经理如何从0到1学习ai
如果您想从 0 到 1 成为 AI 产品经理,可以按照以下步骤学习: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 此外,您还可以参考以下案例: 90 分钟从 0 开始打造您的第一个 Coze 应用,了解 Code AI 应用开发教学,包括其背景、现状、证件照应用案例以及学习过程,重点熟悉桌面网页版的用户界面。 参考北京分队成员的经验,如枫 share、行远、管子、猫先生、Andy 等在 AI 领域的技能、经验、职业、兴趣爱好等方面的情况。
2025-02-18
dify学习
Dify 是一个开源的大模型应用开发平台: 理念:结合后端即服务和 LLMOps 的理念。 特点:提供直观界面,能快速构建和部署生产级别的生成式 AI 应用。具有强大的工作流构建工具,支持广泛的模型集成,有功能丰富的提示词 IDE 以及全面的 RAG Pipeline 用于文档处理和检索。允许用户定义 Agent 智能体,并通过 LLMOps 功能持续监控和优化应用程序的性能。 部署选项:提供云服务和本地部署,满足不同用户需求。 开源特性:确保对数据的完全控制和快速的产品迭代。 设计理念:注重简单性、克制和快速迭代,旨在帮助用户将 AI 应用的创意快速转化为现实。 使用建议:个人研究时推荐单独使用,企业级落地项目推荐多种框架结合,效果更好。 Dify 官方手册:https://docs.dify.ai/v/zhhans
2025-02-18
如何用ai搭建一个学习平台,完成学习计划
以下是用 AI 搭建学习平台并完成学习计划的一些方法和建议: 英语学习: 1. 智能辅助工具:利用如 Grammarly 这样的 AI 写作助手进行英语写作和语法纠错,以改进英语表达和写作能力。 2. 语音识别和发音练习:使用如 Call Annie 这样的语音识别应用进行口语练习和发音纠正,获取实时反馈和建议。 3. 自适应学习平台:使用如 Duolingo 这样的自适应学习平台,其利用 AI 技术为您量身定制学习计划,提供个性化的英语学习内容和练习。 4. 智能导师和对话机器人:利用如 ChatGPT 这样的智能对话机器人进行英语会话练习和对话模拟,提高交流能力和语感。 数学学习: 1. 自适应学习系统:使用如 Khan Academy 这样的自适应学习系统,结合 AI 技术为您提供个性化的数学学习路径和练习题,根据您的能力和需求进行精准推荐。 2. 智能题库和作业辅助:利用如 Photomath 这样的智能题库和作业辅助工具,通过图像识别和数学推理技术为您提供数学问题的解答和解题步骤。 3. 虚拟教学助手:使用如 Socratic 这样的虚拟教学助手,利用 AI 技术为您解答数学问题、提供教学视频和答疑服务,帮助您理解和掌握数学知识。 4. 交互式学习平台:参与如 Wolfram Alpha 这样的交互式学习平台的数学学习课程和实践项目,利用 AI 技术进行数学建模和问题求解。 外语学习: 1. 语言学习平台: FluentU:使用真实世界的视频,通过 AI 生成个性化的词汇和听力练习。选择学习语言,观看视频并完成相关练习,积累词汇和提升听力理解能力。 Memrise:结合 AI 技术,根据学习者的记忆曲线提供复习和练习,增强记忆效果。选择学习语言,使用应用提供的词汇卡和练习进行学习。 2. 发音和语法检查: Speechling:提供口语练习和发音反馈,帮助学习者改进口音和发音准确性。录制语音,提交给 AI 系统或人类教练,获取反馈和改进建议。 Grammarly:可以帮助提高写作的语法和词汇准确性,支持多种语言。将写作内容粘贴到 Grammarly 编辑器中,获取语法和词汇改进建议。 3. 实时翻译和词典工具: Google Translate:提供实时翻译、语音输入和图像翻译功能,适合快速查找和学习新词汇。输入或语音输入需要翻译的内容,查看翻译结果和示例句子。 Reverso Context:提供单词和短语的翻译及上下文例句,帮助理解和学习用法。输入单词或短语,查看翻译和例句,学习实际使用场景。 通过结合 AI 技术和传统学习方法,您可以更高效、更个性化地进行学习,并取得更好的学习效果。
2025-02-18
我是一个ai小白,我想学习怎么入行
以下是为您提供的新手入行 AI 的学习建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,您可以找到一系列为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 此外,为了帮助您更好地理解技术原理与建立框架,以下是一些通俗易懂的内容: 1. 概念:生成式 AI 生成的内容,叫做 AIGC。 2. 概念与关系: AI 即人工智能。 机器学习是电脑找规律学习,包括监督学习、无监督学习、强化学习。 监督学习是基于有标签的训练数据,算法目标是学习输入和输出之间的映射关系,包括分类和回归。 无监督学习的数据没有标签,算法自主发现规律,经典任务包括聚类。 强化学习从反馈里学习,最大化奖励或最小化损失,类似训小狗。 深度学习是一种参照人脑有神经网络和神经元的方法(因有很多层所以叫深度),神经网络可用于监督学习、无监督学习、强化学习。 生成式 AI 可以生成文本、图片、音频、视频等内容形式。 LLM 是大语言模型,对于生成式 AI,生成图像的扩散模型不是大语言模型;对于大语言模型,生成只是其中一个处理任务,比如谷歌的 BERT 模型,可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类。 3. 技术里程碑:2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它完全基于自注意力机制(SelfAttention)来处理序列数据,而不需要依赖于循环神经网络(RNN)或卷积神经网络(CNN)。
2025-02-18