Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

部署Agent专属的web端应用

Answer

以下是关于部署 Agent 专属的 web 端应用的相关内容:

在 Linux 上部署较为简单,前提是您有一张 4G 以上显存的 GPU 显卡。步骤如下:

  1. 下载代码仓库。
  2. 安装依赖(注意有两个依赖未放在 requirements.txt 里)。
  3. 启动 webui 的 demo 程序,然后用浏览器登陆服务器的 ip:8080 就能试玩。此 demo 提供了 3 个参数:
    • --server_name:服务器的 ip 地址,默认 0.0.0.0。
    • --servic_port:即将开启的端口号。
    • --local_path:模型存储的本地路径。
  4. 第一次启动生成语音时,需查看控制台输出,会下载一些模型文件,可能因网络问题失败,但首次加载成功后后续会顺利。
  5. 基于此基础可拓展,比如集成到 agent 的工具中,结合 chatgpt 做更拟人化的实时沟通。
  6. webui 上可设置的几个参数说明:
    • text:指需要转换成语音的文字内容。
    • Refine text:选择是否自动对输入的文本进行优化处理。
    • Audio Seed:语音种子,是一个用于选择声音类型的数字参数,默认值为 2,是很知性的女孩子的声音。
    • Text Seed:文本种子,是一个正整数参数,用于 refine 文本的停顿,实测文本的停顿设置会影响音色、音调。
    • 额外提示词(可写在 input Text 里):用于添加笑声、停顿等效果,例如[oral_2][laugh_0][break_6]。

以下是一些 Agent 构建平台:

  1. Coze:新一代一站式 AI Bot 开发平台,适用于构建基于 AI 模型的各类问答 Bot,集成丰富插件工具拓展 Bot 能力边界。
  2. Microsoft 的 Copilot Studio:主要功能包括外挂数据、定义流程、调用 API 和操作,以及将 Copilot 部署到各种渠道。
  3. 文心智能体:百度推出的基于文心大模型的智能体(Agent)平台,支持开发者根据需求打造产品能力。
  4. MindOS 的 Agent 平台:允许用户定义 Agent 的个性、动机、知识,以及访问第三方数据和服务或执行工作流。
  5. 斑头雁:2B 基于企业知识库构建专属 AI Agent 的平台,适用于客服、营销、销售等场景,提供多种成熟模板,功能强大且开箱即用。
  6. 钉钉 AI 超级助理:依托钉钉强大的场景和数据优势,提供环境感知和记忆功能,在处理高频工作场景如销售、客服、行程安排等方面表现出色。

以上信息仅供参考,您可根据自身需求选择适合的平台。

Content generated by AI large model, please carefully verify (powered by aily)

References

Stuart:一夜爆火的 ChatTTS 实测

在linux上部署很简单,比GPT-SoVITS更容易,不需要自己下载模型放模型。当然本地部署的前提,依旧是你有一张GPU显卡,4G以上显存。简单步骤如下:1.下载代码仓库2.安装依赖(⚠️这里有两个依赖它没有放在requirements.txt里)3.启动webui的demo程序,然后用浏览器登陆这个服务器的ip:8080就能试玩了这个demo本身提供了3个参数:--server_name:服务器的ip地址,默认0.0.0.0--servic_port:即将开启的端口号--local_path:模型存储的本地路径4.第一次启动后生成语音时,需要看下控制台输出,它会下载一些模型文件,因此比较慢,而且可能因为网络的问题有各种失败。但是第一次加载成功了,后面就顺利了。5.基于这个基础已经可以开始拓展了,比如把它集成到agent的工具中去,比如结合chatgpt来做更拟人化的实时沟通。6.webui上可以设置的几个参数说明:(参考下图)text:指的是需要转换成语音的文字内容。Refine text:选择是否自动对输入的文本进行优化处理。Audio Seed:语音种子,这是一个数字参数,用于选择声音的类型,默认值为2,是一个很知性的女孩子的声音。Text Seed:文本种子,这是一个正整数参数,用于refine文本的停顿。实测文本的停顿设置会影响音色,音调。额外提示词(可以写在input Text里):用于添加笑声、停顿等效果。例如,可以设置为[oral_2][laugh_0][break_6]。

问:有哪些好的Agent构建平台

以下是一些Agent构建平台:1.Coze:Coze是一个新一代的一站式AI Bot开发平台,适用于构建基于AI模型的各类问答Bot。它集成了丰富的插件工具,可以极大地拓展Bot的能力边界。2.Mircosoft的Copilot Studio:这个平台的主要功能包括外挂数据、定义流程、调用API和操作,以及将Copilot部署到各种渠道。3.文心智能体:这是百度推出的基于文心大模型的智能体(Agent)平台,支持开发者根据自身需求打造大模型时代的产品能力。4.MindOS的Agent平台:允许用户定义Agent的个性、动机、知识,以及访问第三方数据和服务或执行设计良好的工作流。5.斑头雁:这是一个2B基于企业知识库构建专属AI Agent的平台,适用于客服、营销、销售等多种场景。它提供了多种成熟模板,功能强大且开箱即用。6.钉钉AI超级助理:依托于钉钉强大的场景和数据优势,提供更深入的环境感知和记忆功能。这使得它在处理高频工作场景如销售、客服、行程安排等方面表现更加出色。以上信息提供了关于6个平台的概述,您可以根据自己的需求选择适合的平台进行进一步探索和应用。内容由AI大模型生成,请仔细甄别

Others are asking
小红书配图建议的 Agent
以下是为您提供的关于小红书配图建议的相关内容: 彬子在基于 ComfyUI 做油管封面的分享中提到,他是 ComfyUI 新人,之前更多使用 Coze 做 Agent,涉及绘图功能会调用 Coze 的图像流。Glif 提供的云端 ComfyUI 带来更多图像玩法,Coze 的工作流和 ComfyUI 的图像流代表了 Agent 内部两个子领域的领先水平,但大多数同学专注其一领域精进,好处是能做出落地的 Agent,短板是依赖平台或社区弥补。例如,熟悉 Coze 的同学开发助理类 Bot 便捷但出图自由度不高,熟悉 ComfyUI 的同学能完成高水平图像、视频流但流程中 Agent 含量不高。只要从擅长的阵地多迈出一步,就能更好把控在一个 Agent 中如何设计和运用各种节点。 彬子还在 2024 AI 年度小记中提到,其小红书主页为 ,发小红书除记录外希望找到更多探索的朋友,会有企业人员咨询或求助,但当时个人面向企业挣钱难,大企业决策链长,小企业信息化和文档沉淀不足。7 8 月小红书更新进入瓶颈,后参与 WaytoAGI 社区的 Coze 活动。 此外,还有教程“11_小暑”,作者为三思,可复制版本:https://mp.weixin.qq.com/s/mqT00X85iCR27KFiZazUoQ ,访问 ,并推荐特别适合做夏日的 lora—夏日白莲/咖菲猫咪,https://www.liblib.art/modelinfo/c7990c5616054e28825a44378637d71c?from=personal_page ,但这套效果不稳定,需更新调整关键词和参数。
2025-01-08
最近Agent方面的场景案例
以下是一些关于 Agent 方面的场景案例: 1. 吴恩达最新演讲中提到的四种 Agent 设计范式: Reflection(反思):例如让用 Reflection 构建好的 AI 系统写代码,AI 会把代码加上检查正确性和修改的话术再返回给自己,通过反复操作完成自我迭代,虽不能保证修改后代码质量,但效果通常更好。 Tool Use(工具使用):大语言模型调用插件,极大拓展了 LLM 的边界能力。 Planning(规划):属于比较新颖且有前景的方式。 Multiagent(多智能体):也具有发展潜力。 2. Ranger 文章中的相关内容: Agent 被认为是大模型未来的主要发展方向。 中间的“智能体”通常是 LLM 或大模型,通过为其增加工具、记忆、行动、规划这四个能力来实现。 行业里主要用到的是 langchain 框架,它在 prompt 层和工具层完成主要的设计,将 LLM 与 LLM 以及 LLM 与工具进行串接。 3. 从词源和历史变迁来看: 在不同时期,“Agent”在商业、政府、情报、娱乐、体育等领域都有重要角色,涵盖贸易代理、公司代理商、情报特工、艺人经纪人等多种职业。 “Agent”一词具有行动和替身的含义,多数情况下指“拥有行动的替身,替代他人做某事”。
2025-01-07
如何设计问答agent
设计问答 Agent 可以从以下几个方面考虑: 1. 明确 Agent 的身份和性格: 身份:例如将其设定为历史新闻探索向导。 性格:如知识渊博、温暖亲切、富有同情心。 为使角色更生动,可设计简短背景故事,比如曾是历史学家,对重大历史事件了如指掌,充满热情并愿意分享知识。 2. 写好角色个性: 角色背景和身份:编写背景故事,明确起源、经历和动机。 性格和语气:定义性格特点,如友好、幽默、严肃或神秘;确定说话方式和风格。 角色互动方式:设计从基本问答到深入讨论的对话风格。 角色技能:明确核心功能,如提供新闻解析、历史背景分析或心理分析;增加附加功能以提高吸引力和实用性。 3. 一些好的 Agent 构建平台包括: Coze:新一代一站式 AI Bot 开发平台,集成丰富插件工具拓展 Bot 能力。 Mircosoft 的 Copilot Studio:主要功能有外挂数据、定义流程、调用 API 和操作,以及部署到各种渠道。 文心智能体:百度推出的基于文心大模型的智能体平台,支持开发者打造产品能力。 MindOS 的 Agent 平台:允许用户定义 Agent 的个性、动机、知识,以及访问第三方数据和服务或执行工作流。 斑头雁:2B 基于企业知识库构建专属 AI Agent 的平台,适用于多种场景,提供多种成熟模板。 钉钉 AI 超级助理:依托钉钉优势,在处理高频工作场景方面表现出色。 请注意,以上信息由 AI 大模型生成,请仔细甄别。
2025-01-07
将Agent应用钉钉平台
将 Agent 应用于钉钉平台的步骤如下: 1. 首先,您可以参考 Dify 接入微信的相关教程。在 Dify 平台创建基础编排聊天助手应用,获取 API 密钥和 API 服务器地址。 2. 下载 Dify on WeChat 项目并安装依赖。 3. 在项目根目录创建 config.json 文件,填写 API 密钥和服务器地址。 4. 把基础编排聊天助手接入微信,可选择源码部署或 Docker 部署,进行快速启动测试,扫码登录,进行对话测试。 5. 把工作流编排聊天助手接入微信,创建知识库,导入知识库文件,创建工作流编排聊天助手应用,设置知识检索节点和 LLM 节点,发布更新并访问 API。 6. 把 Agent 应用接入微信,创建 Agent 应用,设置对话模型和添加工具,生成 API 密钥,填写配置文件,启动程序并进行测试。 以下是一些 Agent 构建平台供您参考: 1. Coze:新一代一站式 AI Bot 开发平台,适用于构建各类问答 Bot,集成丰富插件工具。 2. Microsoft 的 Copilot Studio:主要功能包括外挂数据、定义流程、调用 API 和操作,以及将 Copilot 部署到各种渠道。 3. 文心智能体:百度推出的基于文心大模型的智能体平台,支持开发者打造产品能力。 4. MindOS 的 Agent 平台:允许用户定义 Agent 的个性、动机、知识,以及访问第三方数据和服务或执行工作流。 5. 斑头雁:2B 基于企业知识库构建专属 AI Agent 的平台,适用于多种场景,提供多种成熟模板。 6. 钉钉 AI 超级助理:依托钉钉强大的场景和数据优势,在处理高频工作场景表现出色。 如果您想零基础模板化搭建 AI 微信聊天机器人,添加各种自定义 COW 插件到微信机器人,部署 COW 插件的步骤如下: 1. 直接点击 Apilot 平台以下位置来复制保存好 Apilot 的 API 令牌。 2. 在宝塔服务器创建一个 config.json 文件,将相关内容复制到文件中,注意更新 sum4all 和 Apilot 的两个 API 令牌。 3. 重新删掉之前正在跑的机器人服务,重新使用新的编排模板来跑微信机器人。 4. 运行过程中如需修改 config.json 文件里的配置,可在文件位置进行内容修改,修改保存后,在容器板块中对应在跑的机器人服务点击重启即可。 更多详细内容请访问相关原文:https://docs.dify.ai/v/zhhans/learnmore/usecases/difyonwechat
2025-01-07
将Agent集成应用到公司网站、网站客服
将 Agent 集成应用到公司网站、网站客服可以按照以下步骤进行: 1. 搭建示例网站 创建应用:点击打开函数计算应用模板,参考相关图示选择直接部署,并填写获取到的百炼应用 ID 以及 APIKEY。其他表单项保持默认,点击页面左下角的创建并部署默认环境,等待项目部署完成(预计耗时 1 分钟)。 访问网站:应用部署完成后,在应用详情的环境信息中找到示例网站的访问域名,点击即可查看,确认示例网站已经部署成功。 2. 为网站增加 AI 助手 增加 AI 助手相关代码:回到应用详情页,在环境详情的最底部找到函数资源,点击函数名称,进入函数详情页。在代码视图中找到 public/index.html 文件,然后取消相关位置的代码注释。最后点击部署代码,等待部署完成。 验证网站上的 AI 助手:重新访问示例网站页面以查看最新效果。此时会发现网站的右下角出现了 AI 助手图标,点击即可唤起 AI 助手。 智能体(Agent)的相关知识: 1. 智能体的应用: 自动驾驶:自动驾驶汽车中的智能体感知周围环境,做出驾驶决策。 家居自动化:智能家居设备(如智能恒温器、智能照明)根据环境和用户行为自动调节。 游戏 AI:游戏中的对手角色(NPC)和智能行为系统。 金融交易:金融市场中的智能交易算法,根据市场数据做出交易决策。 客服聊天机器人:通过自然语言处理与用户互动,提供自动化的客户支持。 机器人:各类机器人(如工业机器人、服务机器人)中集成的智能控制系统。 2. 智能体的设计与实现: 定义目标:明确智能体需要实现的目标或任务。 感知系统:设计传感器系统,采集环境数据。 决策机制:定义智能体的决策算法,根据感知数据和目标做出决策。 行动系统:设计执行器或输出设备,执行智能体的决策。 学习与优化:如果是学习型智能体,设计学习算法,使智能体能够从经验中改进。 一些好的 Agent 构建平台包括: 1. Coze:新一代的一站式 AI Bot 开发平台,适用于构建基于 AI 模型的各类问答 Bot,集成丰富插件工具拓展 Bot 能力边界。 2. Mircosoft 的 Copilot Studio:主要功能包括外挂数据、定义流程、调用 API 和操作,以及将 Copilot 部署到各种渠道。 3. 文心智能体:百度推出的基于文心大模型的智能体(Agent)平台,支持开发者根据自身需求打造大模型时代的产品能力。 4. MindOS 的 Agent 平台:允许用户定义 Agent 的个性、动机、知识,以及访问第三方数据和服务或执行设计良好的工作流。 5. 斑头雁:2B 基于企业知识库构建专属 AI Agent 的平台,适用于客服、营销、销售等多种场景,提供多种成熟模板,功能强大且开箱即用。 6. 钉钉 AI 超级助理:依托于钉钉强大的场景和数据优势,提供更深入的环境感知和记忆功能,在处理高频工作场景如销售、客服、行程安排等方面表现出色。
2025-01-07
将Agent应用到微信公众号、企业客服
将 Agent 应用到微信公众号和企业客服可以参考以下内容: Dify 接入企业微信的步骤: 1. 在 Dify 平台创建基础编排聊天助手应用,获取 API 密钥和 API 服务器地址。 2. 下载 Dify on WeChat 项目并安装依赖。 3. 在项目根目录创建 config.json 文件,填写 API 密钥和服务器地址。 4. 把基础编排聊天助手接入微信,可选择源码部署或 Docker 部署,进行快速启动测试,扫码登录并进行对话测试。 5. 把工作流编排聊天助手接入微信,包括创建知识库、导入知识库文件、创建工作流编排聊天助手应用、设置知识检索节点和 LLM 节点、发布更新并访问 API。 6. 把 Agent 应用接入微信,创建 Agent 应用,设置对话模型和添加工具,生成 API 密钥,填写配置文件,启动程序并进行测试。更多内容请访问原文:https://docs.dify.ai/v/zhhans/learnmore/usecases/difyonwechat 一些 Agent 构建平台: 1. Coze:新一代的一站式 AI Bot 开发平台,适用于构建基于 AI 模型的各类问答 Bot,集成丰富插件工具拓展 Bot 能力边界。 2. Microsoft 的 Copilot Studio:主要功能包括外挂数据、定义流程、调用 API 和操作,以及将 Copilot 部署到各种渠道。 3. 文心智能体:百度推出的基于文心大模型的智能体(Agent)平台,支持开发者根据自身需求打造大模型时代的产品能力。 4. MindOS 的 Agent 平台:允许用户定义 Agent 的个性、动机、知识,以及访问第三方数据和服务或执行设计良好的工作流。 5. 斑头雁:2B 基于企业知识库构建专属 AI Agent 的平台,适用于客服、营销、销售等多种场景,提供多种成熟模板,功能强大且开箱即用。 6. 钉钉 AI 超级助理:依托于钉钉强大的场景和数据优势,提供更深入的环境感知和记忆功能,在处理高频工作场景如销售、客服、行程安排等方面表现出色。 基于 COW 框架的 ChatBot 在企业微信的实现步骤: 1. 准备:企微的接入方式是通过企业微信应用完成,只能企业内部人员使用,暂时无法在外部群中使用。需要的资源包括一台服务器(海外服务器,有国内代理接口的话可使用国内服务器)、注册一个企业微信(个人也可注册,只是无法认证),如果是认证的企业微信,还需要一个对应主体备案的域名。 2. 创建企业微信应用:首先在说明。
2025-01-07
有没有关于软件测试的ai工具,可以辅助我测试web网页
目前在 AI 领域中,专门用于辅助测试 Web 网页的工具相对较少。但一些通用的 AI 工具和技术可能会对软件测试有所帮助,例如利用自然语言处理技术来分析测试需求和报告,或者使用机器学习算法来预测可能出现的错误类型。不过,这些应用可能需要一定的定制和整合才能更好地适应 Web 网页测试的特定需求。
2024-12-09
我有一张图像,我要如何用stable Diffusion给它添加噪音。我是一个小白,请给出详细的步骤,用webui来操作。
以下是使用 WebUI 为图像添加噪音的详细步骤: 1. 首先,了解 Stable Diffusion 的加噪原理。从数据集中选择一张干净样本,然后用 random 函数生成 0 3 共 4 种强度的噪声,在每次迭代中随机选择一种强度的噪声添加到干净图片上,完成图片的加噪流程。 2. 在训练过程中,对干净样本进行加噪处理,采用多次逐步增加噪声的方式,直至干净样本转变成为纯噪声。 3. 加噪过程中,每次增加的噪声量级可以不同,假设存在 5 种噪声量级,每次都可以选取一种量级的噪声,以增加噪声的多样性。 4. 与图片生成图片的过程相比,在预处理阶段,先把噪声添加到隐空间特征中。通过设置去噪强度(Denoising strength)控制加入噪音的量。如果去噪强度为 0 ,则不添加噪音;如果为 1 ,则添加最大数量的噪声,使潜像成为一个完整的随机张量。若将去噪强度设置为 1 ,就完全相当于文本转图像,因为初始潜像完全是随机的噪声。
2024-11-18
coze web sdk 的具体测试的案例
以下是关于 Coze Web SDK 具体测试的案例: 1. 提示词母体测试: 测试平台包括海外版 Coze 和国内版 Coze。 目的是测试提示词母体模板是否能按规定指令进行生成。 测试模型有 Claude3.5 Sonnet等。 进行了现实主义人物角色、虚幻主义人物角色等方面的测试。 测试感受是基线达到,国内外模型都能按要求生成拟人化提示词,但效果不一,Claude 生成质量最好。 2. 分步构建和测试 Agent 功能: 进入 Coze 后,点击「个人空间工作流创建工作流」打开弹窗。 根据弹窗要求自定义工作流信息,确认后完成新建。 左侧「选择节点」模块中,根据子任务需要实际用到插件、大模型、代码等。 编辑面板中的开始节点和结束节点分别对应分解子任务流程图中的原文输入和结果输出环节。 按照流程图在编辑面板中拖入对应的 LLM 大模型、插件、代码节点即可完成工作流框架搭建。
2024-11-15
stablediffusion在线webui如何开发
开发 Stable Diffusion 在线 Web UI 可以按照以下步骤进行: 1. 安装必要的软件环境: 安装 Git 用于克隆源代码。 安装 Python 3.10.6 版本,确保勾选“Add Python 3.10 to PATH”选项。 安装 Miniconda 或 Anaconda 创建 Python 虚拟环境。 2. 克隆 Stable Diffusion Web UI 源代码: 打开命令行工具,输入命令 git clone https://github.com/AUTOMATIC1111/stablediffusionwebui.git ,将源代码克隆到本地目录。 3. 运行安装脚本: 进入 stablediffusionwebui 目录,运行 webuiuser.bat 或 webui.sh 脚本,它会自动安装依赖项并配置环境。等待安装完成,命令行会显示 Web UI 的访问地址。 4. 访问 Web UI 界面: 复制命令行显示的本地 Web 地址,在浏览器中打开,即可进入 Stable Diffusion Web UI 的图形化界面。 5. 学习 Web UI 的基本操作: 了解 Web UI 的各种设置选项,如模型、采样器、采样步数等。尝试生成图像,观察不同参数对结果的影响。学习使用提示词(prompt)来控制生成效果。 6. 探索 Web UI 的扩展功能: 了解 Web UI 支持的各种插件和扩展,如 Lora、Hypernetwork 等。学习如何导入自定义模型、VAE、embedding 等文件。掌握图像管理、任务管理等技巧,提高工作效率。 在完成了依赖库和 repositories 插件的安装后,还需要进行以下配置: 将 Stable Diffusion 模型放到/stablediffusionwebui/models/Stablediffusion/路径下。然后到/stablediffusionwebui/路径下,运行 launch.py 即可。运行完成后,将命令行中出现的输入到本地网页中,即可打开 Stable Diffusion WebUI 可视化界面。进入界面后,在红色框中选择 SD 模型,在黄色框中输入 Prompt 和负向提示词,在绿色框中设置生成的图像分辨率(推荐设置成 768x768),然后点击 Generate 按钮进行 AI 绘画。生成的图像会展示在界面右下角,并保存到/stablediffusionwebui/outputs/txt2imgimages/路径下。 如果选用 Stable Diffusion 作为 AIGC 后台,需要注意: DallE 缺乏室内设计能力,MidJourney 出图效果好但无法基于现实环境重绘,Stable Diffusion 出图成功率较低,但可调用 controlnet 的 MLSD 插件捕捉现实环境线条特征做二次设计。安装 Stable Diffusion WEB UI 后,修改 webuiuser.bat 文件加上 listen 和 API 参数,让 Stable Diffusion 处于网络服务状态。代码如下: @echo off set PYTHON= set GIT= set VENV_DIR= set COMMANDLINE_ARGS=xformers nohalfvae listen api git pull call webui.bat 让 Stable Diffusion 具有 AI 室内设计能力的步骤: 1. 下载室内设计模型(checkpoint 类型),放到 stable diffusion 目录/models/stablediffusion 下面。 2. 安装 controlnet 插件,使用 MLSD 插件,实现空间学习。 通过 API 方式让前端连接到 Stable Diffusion 后台的具体代码在前端开发详细展开,API 参考文档可选读。
2024-11-01
webui可以用FLUX模型吗
WebUI 可以使用 FLUX 模型。以下是相关的下载和使用信息: ae.safetensors 和 flux1dev.safetensors 下载地址:https://huggingface.co/blackforestlabs/FLUX.1dev/tree/main 。 flux 相关模型(体积较大)的夸克网盘链接:https://pan.quark.cn/s/b5e01255608b 。 flux 相关模型(体积较大)的百度网盘链接:https://pan.baidu.com/s/1mCucHrsfRo5SttW03ei0g?pwd=ub9h 提取码:ub9h 。 如果 GPU 性能不足、显存不够,底模可以使用 fp8 的量化版模型,下载地址:https://huggingface.co/Kijai/fluxfp8/tree/main 。 下载 dev 的工作流: 或者官方原版的图片链接 https://comfyanonymous.github.io/ComfyUI_examples/flux/flux_dev_example.png ,打开 ComfyUI,把工作流或图片拖拽到 ComfyUI 里。 郑敏轩的 Flux 的 controlnet 系列中 TheMisto.ai 的 MistoLine 版: 注意:该 ControlNet 与 Flux1.dev 的 fp16/fp8 以及使用 Flux1.dev 量化的其他模型兼容。 需要节点(可以 git clone 方式下载或通过以下网盘): 夸克网盘:链接:https://pan.quark.cn/s/ad43dd5152a6 。 百度网盘:链接:https://pan.baidu.com/s/1NcOdG4AV68xTup8FvphsYA?pwd=lpvc 提取码:lpvc 。 模型: 夸克网盘:链接:https://pan.quark.cn/s/5551e813db21 。 百度网盘:链接:https://pan.baidu.com/s/1Ntf4MbTCGJ5TYDv6mgvqNQ?pwd=zhfq 提取码:zhfq 。 处理:将模型放到 ComfyUI\\models\\TheMisto_model 文件夹中。 导入官方工作流 。所需要的两个模型:
2024-10-25
webui可以用FLUX模型吗
WebUI 可以使用 FLUX 模型。以下是相关的下载和使用信息: ae.safetensors 和 flux1dev.safetensors 的下载地址:https://huggingface.co/blackforestlabs/FLUX.1dev/tree/main 。 夸克网盘链接:https://pan.quark.cn/s/b5e01255608b 百度网盘链接:https://pan.baidu.com/s/1mCucHrsfRo5SttW03ei0g?pwd=ub9h 提取码:ub9h 如果 GPU 性能不足、显存不够,底模可以使用 fp8 的量化版模型,下载地址:https://huggingface.co/Kijai/fluxfp8/tree/main 。 dev 的工作流: 官方原版的图片链接:https://comfyanonymous.github.io/ComfyUI_examples/flux/flux_dev_example.png ,打开 ComfyUI ,把工作流或图片拖拽到 ComfyUI 里。 郑敏轩的 Flux 的 controlnet 系列: TheMisto.ai 的 MistoLine 版,该 ControlNet 与 Flux1.dev 的 fp16/fp8 以及使用 Flux1.dev 量化的其他模型兼容。 节点: 可以 git clone 方式下载或通过压缩包。 夸克网盘:链接:https://pan.quark.cn/s/ad43dd5152a6 百度网盘:链接:https://pan.baidu.com/s/1NcOdG4AV68xTup8FvphsYA?pwd=lpvc 提取码:lpvc 模型: 夸克网盘:链接:https://pan.quark.cn/s/5551e813db21 百度网盘:链接:https://pan.baidu.com/s/1Ntf4MbTCGJ5TYDv6mgvqNQ?pwd=zhfq 提取码:zhfq 处理:将模型放到 ComfyUI\\models\\TheMisto_model 文件夹中。 导入官方工作流: ,所需要的两个模型。
2024-10-25
AI+交易:来定制专属于你的私人高级交易顾问吧!
以下是关于“AI+交易:来定制专属于你的私人高级交易顾问吧!”的相关内容: 原本是一名 AIGC 创作者,在接触交易后,希望将交易与 AIGC 相结合,打造私人高级交易顾问。学习交易知识后认识到,单纯迷信技术分析提高胜率实现长期稳定盈利对个人投资者不可行,心态关键。新人对交易理论不熟悉更致命,成熟交易员单一策略熟练运用能找进出点、良好心态能长期盈利,但不熟悉行情只能观望。借助 AI 分析行情,期望在不熟悉市场时找到合适进场点,提高资金使用效率,多种策略配合提高理论胜率(有统计数据显示几千名专业交易员一年里平均胜率 70)。 此外,还有以下 AI 与工作场景结合的案例: 1. 销售方面:包括话术总结优缺点、定制销售解决方案。 2. 客服方面:定制客服话术,有关键词库,如产品知识、使用方法等。 3. HR 方面:团队绩效管理,根据绩效数据输出考评和改进建议;面试工具,如使用 GPT4 技术的实时转录工具帮助求职者生成回答。 另外,在七大行业的商业化应用中: 1. 企业运营:包括日常办公文档撰写整理、营销对话机器人等。 2. 教育:协助评估学生学习情况、定制学习内容等。 3. 游戏/媒体:如定制化游戏、出海文案生成等。 4. 零售/电商:包括舆情监测分析、品牌营销内容撰写等。 5. 金融/保险:如个人金融理财顾问、识别欺诈活动风险等。
2024-12-17
如何打造专属自己的ai智能体?让保存的文献资料为自己专属分析只用?
打造专属自己的 AI 智能体并让保存的文献资料为自己专属分析,可参考以下步骤: 1. 设计 AI 智能体架构:先构思整个 AI 智能体的架构。 2. 规定稍后读阅读清单的元数据:新建一个飞书多维表格,根据稍后读的管理需要,定义元数据字段,如“内容(超链接格式,显示页面标题,可点击跳转具体的页面)”“摘要(根据具体内容,总结内容主题、关键信息、阅读价值,并指出适合的读者群体)”“作者”“平台”“状态(阅读状态,收藏的默认态为“仅记录”)”“发布日期”“收集时间”等。您也可以直接复制准备好的模板:【模板】稍后读管理 3. 搭建整理入库工作流: 首先在 Coze 中逐步搭建 AI 智能体,搭建整理入库工作流。这是支撑整个 AI 稍后读服务的前置流程。 新建工作流「url2table」,根据弹窗要求自定义工作流信息。 工作流全局流程设置: 开始节点:输入 url。由于希望收到用户输入的待收藏 url 就开始流程,所以不需要额外配置。 变量节点:引入 bot 变量中保存的飞书多维表格地址。为便于维护充当稍后读存储地址的飞书多维表格链接,需要将这个链接存储在 bot 的变量中,并在工作流运行时进行引用。 插件节点:获取页面内容。这一步直接把开始节点的{{BOT_USER_INPUT}}引入到参数{{url}}中,随便设置{{timeout}}为 60000。
2024-11-29
如何创建个人专属知识库
以下是创建个人专属知识库的相关内容: 私人知识库中的内容通常包括从互联网收集的优质信息以及个人日常的思考和分享。 基于私人知识库打造个人专属的 ChatGPT 常见有两种技术方案: 训练专有大模型:可以使用个人知识库训练专有大模型,但此方案并非当下主流,存在高成本、更新难度大等缺陷。 利用 RAG(检索增强生成)技术:先将文本拆分成若干小文本块并转换为 embeddings 向量,保存在向量储存库中。当用户提出问题时,将问题转换为向量与储存库中的向量比对,提取关联度高的文本块与问题组合成新的 prompt 发送给 GPT API。 搭建基于 GPT API 的定制化知识库时,由于 GPT3.5 一次交互支持的 Token 有限,OpenAI 提供了 embedding API 解决方案。embeddings 是一个浮点数字的向量,向量之间的距离衡量关联性,小距离表示高关联度。
2024-11-16
如何制作一个专属的工作机器人
以下是制作专属工作机器人的两种方式: 基于 GitHub 开源项目 chatgptonwechat 实现 chatgptonwechat项目是使用 ChatGPT 搭建的智能聊天机器人,在 GPT3.5/4.0 API 及 itchat 框架的基础上实现,支持个人微信、公众号、企业微信部署,能生成文本、语音和图片,访问操作系统和互联网。项目地址:https://github.com/zhayujie/chatgptonwechat 。 基于 Coze 直聘的职业助手 Bot 实现 1. 职业助手 Bot 是一个专为帮助用户找到理想工作而设计的智能机器人。只需输入求职信息和偏好,就能迅速匹配适合的工作机会,并提供全面的求职支持。 2. 设计理念:旨在通过智能化和个性化的服务,帮助求职者更快、更精准地找到理想工作。 高效匹配:利用先进的算法和大数据分析,迅速从海量招聘信息中筛选出最适合用户的职位,节省时间,提高求职效率。 实时更新:持续跟踪最新招聘信息,通过即时通知功能让用户掌握最新求职动态。 个性化推荐:根据用户的职业目标、工作经验、技能、地域偏好等信息提供高度个性化的职位推荐服务。 数据安全:重视用户数据的安全与隐私,采用最先进的安全技术确保用户个人信息和求职数据不被泄露。 3. 创建 Bot: 在 Coze 的主页创建 Bot。 输入 Bot 名称与 Bot 介绍,并使用 AI 功能生成图标(也可上传自己喜欢的图标)。 4. 人设与回复逻辑:简单描述 Bot 的人设与逻辑,然后使用 AI 助手进行优化。例如:角色为一个专业的职业助手 Bot,能够根据用户输入信息为用户精准提供匹配的职位推荐。 5. 技能:为 Bot 增加一些技能。 6. 插件:增加一个新闻类插件,来捕捉行业相关的动态。
2024-10-31
我想做一个知识库管理,用于用户累计只是,在此基础上打造属于用户个人的知识库,通过ai生成用户专属的答案。但是我不知道应该怎么设计这个软件,请为我建议
设计一个用于用户知识累计和生成专属答案的知识库管理软件,您可以考虑以下几个关键方面: 1. 数据存储与架构 选择合适的数据库系统,如关系型数据库(如 MySQL、PostgreSQL)或非关系型数据库(如 MongoDB、Cassandra),以有效存储用户的知识数据。 设计合理的数据表结构,包括用户信息表、知识条目表、知识分类表等,确保数据的组织和关联清晰。 2. 知识录入与编辑 提供直观的用户界面,方便用户录入知识,支持多种格式,如文本、图片、音频、视频等。 具备知识编辑功能,允许用户修改、更新和完善已录入的知识。 3. 知识分类与标签 建立灵活的知识分类体系,让用户能够将知识分类存放,便于查找和管理。 支持用户为知识添加自定义标签,提高知识检索的准确性。 4. 搜索与检索功能 实现强大的搜索功能,支持全文搜索、关键词搜索、模糊搜索等多种搜索方式。 优化搜索算法,确保快速返回准确的搜索结果。 5. AI 模型集成 选择适合的 AI 模型,如自然语言处理模型,用于理解用户的问题和生成答案。 对 AI 模型进行训练和优化,使其能够基于用户的知识库提供准确和有用的回答。 6. 用户权限管理 设定不同的用户权限级别,如管理员、普通用户等,控制用户对知识库的操作权限,保障数据安全。 7. 数据备份与恢复 定期自动备份知识库数据,以防止数据丢失。 提供数据恢复功能,确保在意外情况下能够快速恢复知识库。 8. 界面设计 设计简洁、美观、易用的界面,提高用户体验。 遵循用户习惯和人机交互原则,使操作流程简单直观。 9. 性能优化 对软件进行性能优化,确保在处理大量知识数据时仍能保持高效运行。 10. 测试与迭代 进行充分的测试,包括功能测试、性能测试、用户体验测试等。 根据用户反馈和实际使用情况,不断迭代优化软件功能。 希望以上建议对您有所帮助,祝您成功设计出满足需求的知识库管理软件!
2024-10-29
怎们架构专属自己企业的AI系统
要架构专属自己企业的 AI 系统,可以参考以下步骤: 一、逐步搭建 AI 智能体 1. 搭建整理入库工作流 新建工作流「url2table」,根据弹窗要求自定义工作流信息。 工作流全局流程设置需根据实际需求进行。 2. 在外层 bot 中封装工作流,完成整体配置 创建 Bot。 填写 Bot 介绍。 切换模型为“通义千问”,测试下来通义对提示词理解和执行效果较好。 把配置好的工作流添加到 Bot 中。 新增变量{{app_token}}。 添加外层 bot 提示词(可按需求和实际效果优化调整)。 二、相关术语 以下是一些在 AI 系统架构中可能涉及的术语: 1. AI 或 AI 系统或 AI 技术:具有“适应性”和“自主性”的产品和服务,如在定义的第 3.2.1 节中所述。 2. AI 供应商:在 AI 系统的研究、开发、培训、实施、部署、维护、提供或销售中发挥作用的任何组织或个人。 3. AI 用户:使用 AI 产品的任何个人或组织。 4. AI 生命周期:与 AI 系统的寿命相关的所有事件和过程,从开始到退役,包括其设计、研究、培训、开发、部署、集成、操作、维护、销售、使用和治理。 5. AI 生态系统:在 AI 生命周期中实现 AI 使用和供应的复杂网络,包括供应链、市场和治理机制。 6. 基础模型:在大量数据上训练的一种 AI 模型,可适用于广泛的任务,可作为构建更具体 AI 模型的基础。 经过上述配置,您可以在「预览与调试」窗口与 AI 智能体对话并使用全部功能。
2024-09-11
训练以及部署微调模型
以下是关于训练以及部署微调模型的相关信息: 创建微调模型: 假设您已准备好训练数据。使用 OpenAI CLI 开始微调工作,需指定从哪个 BASE_MODEL(如 ada、babbage、curie 或 davinci)开始,可使用后缀参数自定义微调模型的名称。运行命令后会进行以下操作: 1. 使用文件 API 上传文件(或使用已上传的文件)。 2. 创建微调作业。 3. 流式传输事件直到作业完成,这通常需要几分钟,但如果队列中有很多作业或数据集很大,可能需要数小时。 每个微调工作都从默认为 curie 的基本模型开始,模型的选择会影响性能和成本。您的模型可以是 ada、babbage、curie 或 davinci,可访问定价页面了解微调费率的详细信息。 开始微调作业后,可能需要一些时间才能完成。工作可能排在其他工作之后,训练模型可能需要几分钟或几小时,具体取决于模型和数据集的大小。若事件流中断,可通过运行特定命令恢复。工作完成后,会显示微调模型的名称。此外,还可以列出现有作业、检索作业状态或取消作业。 GPT 助手的训练: 在有监督的微调阶段,收集少量但高质量的数据集,要求人工承包商收集提示和理想响应的数据,通常是几万个或类似数量。然后对这些数据进行语言建模,算法不变,只是训练集从互联网文档变为问答提示响应类型的数据。训练后得到有监督的微调模型(SFT 模型),可实际部署。 大型语言模型的微调: 一旦有了基础模型,进入计算成本相对较低的微调阶段。编写标签说明,明确助手的表现期望,雇佣人员创建文档,如收集 100,000 个高质量的理想问答对来微调基础模型,此过程可能只需一天。然后进行大量评估,部署模型并监控表现,收集不当行为实例并纠正,将正确答案加入训练数据,重复此过程。由于微调成本较低,可每周或每天进行迭代。 例如 Llama2 系列,Meta 发布时包括基础模型和助手模型。基础模型不能直接使用,助手模型可直接用于回答问题。若想自己微调,Meta 完成的昂贵的第一阶段结果可提供很大自由。
2025-01-06
训练以及部署微调模型
以下是关于训练以及部署微调模型的相关知识: 创建微调模型: 假设您已准备好训练数据,使用 OpenAI CLI 开始微调工作。需指定从哪个 BASE_MODEL 开始,如 ada、babbage、curie 或 davinci,还可使用后缀参数自定义微调模型的名称。运行命令后会进行以下操作: 1. 使用文件 API 上传文件(或使用已上传的文件)。 2. 创建微调作业。 3. 流式传输事件直到作业完成,这通常需要几分钟,但如果队列中有很多作业或数据集很大,则可能需要数小时。每个微调工作都从默认为 curie 的基本模型开始,模型的选择会影响性能和成本,您可访问定价页面了解微调费率的详细信息。开始微调作业后,可能需要一些时间才能完成,若事件流中断,可通过运行特定命令恢复。工作完成后,会显示微调模型的名称。此外,还可以列出现有作业、检索作业状态或取消作业。 GPT 助手的训练: 在有监督的微调阶段,收集少量但高质量的数据集,要求人工承包商收集提示和理想响应的数据,通常是几万个或类似数量。然后对这些数据进行语言建模,算法不变,只是训练集从互联网文档变为问答提示响应类型的数据。训练后得到有监督的微调模型(SFT 模型),可实际部署,它们在某种程度上是有用的。 大型语言模型的微调: 一旦有了基础模型,就进入计算成本相对较低的微调阶段。在这个阶段,编写标签说明明确助手的表现期望,雇佣人员创建文档,例如收集 100,000 个高质量的理想问答对来微调基础模型,这个过程可能只需一天。然后进行大量评估,部署模型并监控表现,收集不当行为实例并纠正,将正确答案加入训练数据,由于微调成本较低,可每周或每天进行迭代。例如 Llama2 系列,Meta 发布时包括基础模型和助手模型,基础模型不能直接使用,助手模型可直接用于回答问题。
2025-01-06
模型的部署、容器化
以下是关于模型的部署和容器化的相关内容: ComfyUI ollama 本地大模型部署: 1. 先下载 ollama 安装,安装完成后可在电脑桌面右下角或隐藏图标中找到。 2. 下载对应的模型,选择模型并复制对应的命令。 3. 打开命令行界面,输入对应的模型获取命令,等待下载完成。 4. 下载的模型会保存到 D:\\ollama\\blobs 目录。 5. Docker 安装时会下载一些文件,安装后更改目录,不要放在 C 盘。 6. Open webui 安装,输入相关命令,安装成功后回到 docker,点击会自动打开网页,第一次使用需注册账号,选择下载好的模型即可开始使用。 7. 若出现端口占用问题,运行特定两条命令可解决。 8. 相关链接: comfyuiollama:https://github.com/stavsap/comfyuiollama?tab=readmeovfile Ollama:https://ollama.com/ docker:https://www.docker.com/ Open webui:https://openwebui.com/ 模型部署: 1. 选择学习路径: 快速上手 使用 Anaconda: 前提条件:确保安装了 Python 3.10 以上版本。 准备环境:如需设置环境,安装所需软件包,运行特定命令。 下载模型:可从下载 Atom7BChat 模型。 进行推理:创建名为 quick_start.py 的文件,复制相关内容并运行代码。 快速上手 使用 Docker:详情参见,包括准备 docker 镜像,通过 docker 容器启动,通过 dockercompose 启动 chat_gradio。 快速上手 使用 llama.cpp:详情参见。 快速上手 使用 gradio:基于 gradio 搭建问答界面,实现流式输出,复制相关代码到控制台运行,不同模型修改 model_name_or_path 对应的模型名称。 ComfyUI FLUX: 1. 模型的安装部署: 模型:FLUX.1、FLUX.1,建议选择 dev 版本,显卡可以的用 fp16,显卡不够用的选 fp8。模型下载后放入 ComfyUI/models/unet/文件夹中。若爆显存,“UNET 加载器”节点中的 weight_dtype 可设置为 fp8 降低显存使用量,但可能稍降质量。 clip:t5xxl_fp16.safetensors 和 clip_l.safetensors 放在 ComfyUI/models/clip/文件夹里,也可用 t5xxl_fp8_e4m3fn.safetensors 降低内存使用率,有超过 32GB 内存建议用 fp16。 Vae:下载后放入 ComfyUI/models/vae 文件夹。 2. T5(/t5xxl_fp16.safetensors)的这个 clip 原本有输入输出,可能会导致提示词被吞,短提示效果差,训练 flux 或 sd3 时应尽量用长提示词或自然语言。
2025-01-06
模型的部署、容器化
以下是关于模型的部署和容器化的相关信息: ComfyUI ollama 本地大模型部署: 1. 先下载 ollama 安装,安装完成后不会有任何界面弹出,可以在电脑桌面右下角或者隐藏图标里面找到。 2. 之后再去下载对应的模型,选择模型,复制对应的命令。 3. 打开命令行界面,输入对应的模型获取命令,等待下载完成。 4. 下载的模型会保存到 D:\\ollama\\blobs 目录。 5. Docker 安装时会下载一些文件,安装后改下目录,不要放在 C 盘。 6. Open webui 安装,输入相关命令,安装成功后,回到 docker,点击会自动打开网页,第一次使用需注册账号,选择下载好的模型即可开始使用。 7. 若出现端口占用问题,运行特定两条命令可以解决。 8. 相关链接: comfyuiollama:https://github.com/stavsap/comfyuiollama?tab=readmeovfile Ollama:https://ollama.com/ docker:https://www.docker.com/ Open webui:https://openwebui.com/ 模型部署: 1. 选择学习路径: 快速上手 使用 Anaconda: 第 0 步:确保安装了 Python 3.10 以上版本。 第 1 步:准备环境,如需设置环境,安装所需要的软件包,运行特定命令。 第 2 步:从以下来源下载 Atom7BChat 模型:。 第 3 步:进行推理,创建一个名为 quick_start.py 的文件,并将相关内容复制到该文件中,运行 quick_start.py 代码。 快速上手 使用 Docker:详情参见:,包括准备 docker 镜像,通过 docker 容器启动,通过 dockercompose 启动 chat_gradio。 快速上手 使用 llama.cpp:详情参见: 快速上手 使用 gradio:基于 gradio 搭建的问答界面,实现了流式的输出,将特定代码复制到控制台运行,不同模型只需修改 model_name_or_path 对应的模型名称。 ComfyUI FLUX 模型的安装部署: 1. 模型:FLUX.1、FLUX.1,建议选择 dev 版本的,显卡可以的用 fp16,显卡不够用的选 fp8。模型下载后,放入 ComfyUI/models/unet/文件夹中。若爆显存,“UNET 加载器”节点中的 weight_dtype 可设置为 fp8,降低显存使用量,但可能稍降质量。 2. clip:t5xxl_fp16.safetensors 和 clip_l.safetensors,放在 ComfyUI/models/clip/文件夹里面。可以使用 t5xxl_fp8_e4m3fn.safetensors 来降低内存使用率,若有超过 32GB 内存,建议使用 fp16。相关链接:https://huggingface.co/comfyanonymous/flux_text_encoders/tree/main 3. Vae:下载后放入 ComfyUI/models/vae 文件夹。 4. T5(/t5xxl_fp16.safetensors)的这个 clip,原本有一个输入输出,可能会导致提示词被吞,短提示效果差,训练 flux 或者 sd3 时,应尽量用长提示词或自然语言。
2025-01-06
如何本地化部署一个ai助手
本地化部署一个 AI 助手可以参考以下几种方式: 1. 在网站上增加 AI 助手: 搭建示例网站: 创建应用:点击打开函数计算应用模板,参考相关选择直接部署、填写百炼应用 ID 以及 APIKEY,其他表单项保持默认,点击创建并部署默认环境,等待项目部署完成(预计耗时 1 分钟)。 访问网站:应用部署完成后,在应用详情的环境信息中找到示例网站的访问域名,点击即可查看,确认示例网站已经部署成功。 为网站增加 AI 助手: 增加 AI 助手相关代码:回到应用详情页,在环境详情的最底部找到函数资源,点击函数名称,进入函数详情页。在代码视图中找到 public/index.html 文件,取消相关位置的代码注释。最后点击部署代码,等待部署完成。 验证网站上的 AI 助手:重新访问示例网站页面以查看最新效果,网站的右下角会出现 AI 助手图标,点击即可唤起 AI 助手。 2. 从 LLM 大语言模型、知识库到微信机器人的全本地部署(以 windows10 系统为例): 本地 Hook 或 COW 机器人(二选一,建议先选择 COW): 注意:本教程完成后,程序将在您的电脑本地运行,假如关掉了窗口,进程也就结束。所以,如果想让 AI 持续使用,就必须保持窗口打开和运行,也就是电脑不能关。 安装环境: 点击电脑“系统”,直接输入“cmd”,点击回车,打开命令窗口。 在命令窗口中,粘贴入相关代码,确认是否有 python 和 pip。 如果没有,先进行 python 的安装,可点击下载:。 部署项目:下载 COW 机器人项目,解压缩。 3. 把大模型接入小米音箱(node.js): 第四步:填写 API 服务: 智普:接口地址:https://open.bigmodel.cn/api/paas/v4,模型:glm4flash。 硅基:选择 AI 服务为自定义,接口地址:https://api.siliconflow.cn/v1。 其他模型的 API 端口请参考官方文档:https://migptgui.com/docs/apply/。 第五步:语音服务:官方说明:https://migptgui.com/docs/faqs/tts。 第六步:启动服务:在最上方可导出编辑的内容,格式为 json 格式,如果改错了可以导入之前保存的配置。单击启动,回到 powshell 界面。每次调整设置都需要重置后重新启动。建议回答完毕后增加结束的提示语,可以提高连续对话的稳定性。官方常见问题文档:https://migptgui.com/docs/faqs/noreply。
2025-01-05
能够本地化部署的AI文字助手
以下是关于本地化部署的 AI 文字助手以及相关排版和润色工具的信息: 本地化部署的 AI 文字助手: 在让 AI 助手能准确回答问题之前,可先快速将其集成到网站中。 1. 搭建示例网站: 创建应用:点击打开函数计算应用模板,参考相关选择直接部署、填写百炼应用 ID 以及 APIKEY,其他表单项保持默认,点击创建并部署默认环境,等待项目部署完成(预计耗时 1 分钟)。 访问网站:应用部署完成后,在应用详情的环境信息中找到示例网站的访问域名,点击查看确认部署成功。 2. 为网站增加 AI 助手: 增加 AI 助手相关代码:回到应用详情页,在环境详情底部找到函数资源,点击函数名称进入函数详情页,在代码视图中找到 public/index.html 文件,取消相关位置的代码注释,最后点击部署代码等待完成。 验证网站上的 AI 助手:重新访问示例网站页面查看最新效果,会发现网站右下角出现 AI 助手图标,点击唤起。 AI 文章排版工具: 主要用于自动化和优化文档布局和格式,特别是处理学术论文和专业文档。一些流行的工具包括: 1. Grammarly:不仅是语法和拼写检查工具,还提供排版功能,改进文档风格和流畅性。 2. QuillBot:AI 驱动的写作和排版工具,改进文本清晰度和流畅性。 3. Latex:广泛用于学术论文排版,使用标记语言描述格式,有许多 AI 辅助的编辑器和插件简化排版过程。 4. PandaDoc:文档自动化平台,使用 AI 帮助创建、格式化和自动化文档生成,适合商业和技术文档。 5. Wordtune:AI 写作助手,重新表述和改进文本,使其更清晰专业。 6. Overleaf:在线 Latex 编辑器,提供丰富模板和协作工具,适合学术写作和排版。 选择合适的工具取决于具体需求,如文档类型、出版标准和个人偏好。对于学术论文,Latex 和 Overleaf 受欢迎;对于一般文章和商业文档,Grammarly 和 PandaDoc 等可能更适用。 文章润色工具: 常见的有: 1. Wordvice AI:集校对、改写转述和翻译等功能于一体,基于大型语言模型提供全面的英文论文润色服务。 2. ChatGPT:由 OpenAI 开发的大型语言模型,可用于多方面写作辅助。 3. Quillbot:人工智能文本摘要和改写工具,可用于快速筛选和改写文献资料。 4. HyperWrite:基于 AI 的写作助手和大纲生成器,帮助写作前头脑风暴和大纲规划。 5. Wordtune:AI 驱动的文本改写和润色工具,优化文章语言表达。 6. Smodin:提供 AI 驱动的论文撰写功能,可根据输入生成符合要求的学术论文。 这些 AI 工具涵盖文章润色的各个环节,可提高写作效率和质量,科研人员和学生可根据自身需求选择。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-01-05