Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

stablediffusion在线webui如何开发

Answer

开发 Stable Diffusion 在线 Web UI 可以按照以下步骤进行:

  1. 安装必要的软件环境:
    • 安装 Git 用于克隆源代码。
    • 安装 Python 3.10.6 版本,确保勾选“Add Python 3.10 to PATH”选项。
    • 安装 Miniconda 或 Anaconda 创建 Python 虚拟环境。
  2. 克隆 Stable Diffusion Web UI 源代码: 打开命令行工具,输入命令 git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git ,将源代码克隆到本地目录。
  3. 运行安装脚本: 进入 stable-diffusion-webui 目录,运行 webui-user.bat 或 webui.sh 脚本,它会自动安装依赖项并配置环境。等待安装完成,命令行会显示 Web UI 的访问地址。
  4. 访问 Web UI 界面: 复制命令行显示的本地 Web 地址,在浏览器中打开,即可进入 Stable Diffusion Web UI 的图形化界面。
  5. 学习 Web UI 的基本操作: 了解 Web UI 的各种设置选项,如模型、采样器、采样步数等。尝试生成图像,观察不同参数对结果的影响。学习使用提示词(prompt)来控制生成效果。
  6. 探索 Web UI 的扩展功能: 了解 Web UI 支持的各种插件和扩展,如 Lora、Hypernetwork 等。学习如何导入自定义模型、VAE、embedding 等文件。掌握图像管理、任务管理等技巧,提高工作效率。

在完成了依赖库和 repositories 插件的安装后,还需要进行以下配置: 将 Stable Diffusion 模型放到/stable-diffusion-webui/models/Stable-diffusion/路径下。然后到/stable-diffusion-webui/路径下,运行 launch.py 即可。运行完成后,将命令行中出现的http:// 0.0.0.0:8888输入到本地网页中,即可打开 Stable Diffusion WebUI 可视化界面。进入界面后,在红色框中选择 SD 模型,在黄色框中输入 Prompt 和负向提示词,在绿色框中设置生成的图像分辨率(推荐设置成 768x768),然后点击 Generate 按钮进行 AI 绘画。生成的图像会展示在界面右下角,并保存到/stable-diffusion-webui/outputs/txt2img-images/路径下。

如果选用 Stable Diffusion 作为 AIGC 后台,需要注意: DallE 缺乏室内设计能力,MidJourney 出图效果好但无法基于现实环境重绘,Stable Diffusion 出图成功率较低,但可调用 controlnet 的 MLSD 插件捕捉现实环境线条特征做二次设计。安装 Stable Diffusion WEB UI 后,修改 webui-user.bat 文件加上 listen 和 API 参数,让 Stable Diffusion 处于网络服务状态。代码如下: @echo off set PYTHON= set GIT= set VENV_DIR= set COMMANDLINE_ARGS=--xformers --no-half-vae --listen --api git pull call webui.bat

让 Stable Diffusion 具有 AI 室内设计能力的步骤:

  1. 下载室内设计模型(checkpoint 类型),放到 stable diffusion 目录/models/stable-diffusion 下面。
  2. 安装 controlnet 插件,使用 MLSD 插件,实现空间学习。

通过 API 方式让前端连接到 Stable Diffusion 后台的具体代码在前端开发详细展开,API 参考文档可选读。

Content generated by AI large model, please carefully verify (powered by aily)

References

问:我想学 SD 的 Web UI

[title]问:我想学SD的Web UI学习Stable Diffusion Web UI可以按照以下步骤进行:1.安装必要的软件环境安装Git用于克隆源代码安装Python 3.10.6版本,确保勾选"Add Python 3.10 to PATH"选项安装Miniconda或Anaconda创建Python虚拟环境2.克隆Stable Diffusion Web UI源代码打开命令行工具,输入命令git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git将源代码克隆到本地目录3.运行安装脚本进入stable-diffusion-webui目录运行webui-user.bat或webui.sh脚本,它会自动安装依赖项并配置环境等待安装完成,命令行会显示Web UI的访问地址4.访问Web UI界面复制命令行显示的本地Web地址,在浏览器中打开即可进入Stable Diffusion Web UI的图形化界面5.学习Web UI的基本操作了解Web UI的各种设置选项,如模型、采样器、采样步数等尝试生成图像,观察不同参数对结果的影响学习使用提示词(prompt)来控制生成效果6.探索Web UI的扩展功能了解Web UI支持的各种插件和扩展,如Lora、Hypernetwork等学习如何导入自定义模型、VAE、embedding等文件掌握图像管理、任务管理等技巧,提高工作效率通过这些步骤,相信你可以快速上手Stable Diffusion Web UI,开始探索AI绘画的乐趣。后续还可以深入学习Stable Diffusion的原理,以及在不同场景中的应用。内容由AI大模型生成,请仔细甄别

教程:深入浅出完整解析Stable Diffusion(SD)核心基础知识 - 知乎

[title]教程:深入浅出完整解析Stable Diffusion(SD)核心基础知识-知乎[heading2]4.从0到1搭建使用Stable Diffusion模型进行AI绘画(全网最详细讲解)[heading3]4.3零基础使用Stable Diffusion WebUI搭建Stab在完成了依赖库和repositories插件的安装后,我们就可以配置模型了,我们将Stable Diffusion模型放到/stable-diffusion-webui/models/Stable-diffusion/路径下。这样以来,等我们开启可视化界面后,就可以选择Stable Diffusion模型用于推理生成图片了。完成上述的步骤后,我们可以启动Stable Diffusion WebUI了!我们到/stable-diffusion-webui/路径下,运行launch.py即可:运行完成后,可以看到命令行中出现的log:我们将[http:// 0.0.0.0:8888](https://link.zhihu.com/?target=http%3A//0.0.0.0%3A8888)输入到我们本地的网页中,即可打开如下图所示的Stable Diffusion WebUI可视化界面,愉快的使用Stable Diffusion模型进行AI绘画了。Stable Diffusion WebUI可视化界面进入Stable Diffusion WebUI可视化界面后,我们可以在红色框中选择SD模型,然后在黄色框中输入我们的Prompt和负向提示词,同时在绿色框中设置我们想要生成的图像分辨率(推荐设置成768x768),然后我们就可以点击Generate按钮,进行AI绘画了。等待片刻后,图像就生成好了,并展示在界面的右下角,同时也会保存到/stable-diffusion-webui/outputs/txt2img-images/路径下,大家可以到对应路径下查看。

开发:用GPT开发了一个相机APP

1.选用Stable Diffusion作为AIGC后台的原因。DallE缺乏室内设计能力。MidJourney出图效果很好,但无法基于现实环境重绘。Stable Diffusion出图成功率较低,但可调用controlnet的MLSD插件,捕捉现实环境线条特征,做二次设计。2.安装Stable Diffusion WEB UI3.修改webui-user.bat文件加上listen和API参数,让Stable Diffusion处于网络服务状态。代码如下:<br>|@echo offset PYTHON=set GIT=set VENV_DIR=set COMMANDLINE_ARGS=--xformers --no-half-vae --listen --apigit pullcall webui.bat|1.让Stable Diffusion具有AI室内设计能力。1.1.下载室内设计模型(checkpoint类型),放到stable diffusion目录/models/stable-diffusion下面。1.2.安装controlnet插件,使用MLSD插件,实现空间学习。2.通过API方式让前端连接到Stable Diffusion后台,具体代码在前端开发详细展开。API参考文档如下,选读。

Others are asking
StableDiffusion 云服务
以下是关于 StableDiffusion 云服务的相关信息: 如果您的电脑配置较低,也可以通过云平台畅玩 StableDiffusion 并生成好看的图片。这里推荐使用“青椒云”,您可以点击以下链接下载:http://account.qingjiaocloud.com/signup?inviteCode=R0JJ9CHY 。 云平台的使用方法如下: 1. 点击上述链接,注册账号。 2. 下载并安装后,登录注册好的账户。 3. 点击右上角的个人中心进行实名认证。 4. 实名认证后回到主界面,点击新增云桌面。想玩 StableDiffusion 可以选“AIGC 尝鲜”,新注册一般会有优惠券,可免费试用。大多数云平台每小时费用约 2 3 元。 5. 在新弹出的框框中点击“开机”按钮,稍等之后点击“进入桌面”。进入桌面后弹出的全部框框可直接关掉。 6. 点击新打开桌面的“此电脑”,在 C 盘里找到 SD 的根目录,点击“A 启动器.exe”。 7. 点击右下角的“一键启动”即可进入 SD。 8. 用完云平台记得关机,否则会持续计费。 另外,SD 是 Stable Diffusion 的简称,它是由初创公司 StabilityAI、CompVis 与 Runway 合作开发,2022 年发布的深度学习文本到图像生成模型,主要用于根据文本描述产生详细图像。其代码模型权重已公开发布,当前版本为 2.1 稳定版(2022.12.7),源代码库为 github.com/StabilityAI/stablediffusion 。 如果您要在本地安装部署 ComfyUI 副本,电脑硬件要求如下: 1. 系统:Windows 7 以上。 2. 显卡要求:NVDIA 独立显卡且显存至少 4G 起步。 3. 硬盘留有足够空间,最低 100G 起步(包括模型)。 同时,您需要依次下载并安装 python、Git、VSCode,安装过程中一直点击勾选对应选项,一直下一步。具体下载地址如下: 1. Python:https://www.python.org/downloads/release/python3119/ ,安装时选中“将 Python 添加到系统变量”。 2. VSCode:https://code.visualstudio.com/Download 。 3. Git:https://gitscm.com/download/win 。 4. 安装 CUDA:https://developer.nvidia.com/cuda1220downloadarchive?target_os=Windows&target_arch=x86_64&target_version=11&target_type=exe_network 。
2024-11-23
stablediffusion3.5最新资讯
以下是关于 Stable Diffusion 3.5 的最新资讯: Stability AI 刚刚发布了 Stable Diffusion 3.5,其中 8B 的 Large 和 Turbo 已经开放,2B 的 Medium 会在 10 月 29 日发布。 ComfyUI 官方提供了示例工作流,尤其对于 RAM 低于 32GB 的用户,comfyanonymous 制作了额外的 scaled fp8 clip。 如何使用:https://blog.comfy.org/sd35comfyui/ 工作流:https://huggingface.co/ComfyOrg/stablediffusion3.5fp8/tree/main scaled fp8 clip:https://huggingface.co/ComfyOrg/stablediffusion3.5fp8/blob/main/sd3.5_large_fp8_scaled.safetensors 10 月 29 日将公开发布 Stable Diffusion 3.5 Medium。不久之后,ControlNets 也将推出,为各种专业用例提供先进的控制功能。 Stability AI 社区许可证关键组成部分: 免费用于非商业用途:个人和组织可以免费将该模型用于非商业用途,包括科学研究。 免费用于商业用途(年收入高达 100 万美元):初创公司、中小型企业和创作者可以免费将该模型用于商业目的,只要其年总收入低于 100 万美元。 输出的所有权:保留所生成媒体的所有权,不受限制性许可影响。 对于年收入超过 100 万美元的组织,请在此处联系咨询企业许可证:https://stability.ai/enterprise 访问模型的更多方式: 稳定性 AI API:https://platform.stability.ai/docs/apireferencetag/Generate/paths/~1v2beta~1stableimage~1generate~1sd3/post Replicate 复制:https://replicate.com/stabilityai/stablediffusion3.5large ComfyUI 舒适用户界面:http://blog.comfy.org/sd35comfyui/ DeepInfra 深基础设施 Stability AI 相信安全、负责任的人工智能实践,并采取审慎措施确保诚信从开发的早期阶段开始。这意味着已经并将继续采取合理的措施来防止不良行为者滥用 Stable Diffusion 3.5。有关安全方法的更多信息,请访问稳定安全页面:https://stability.ai/safety
2024-10-23
请用StableDiffusion生成一幅画,钻井现场,旁边的风景很优美,以柳江盆地的地形和风景为主
很抱歉,目前我无法直接使用 StableDiffusion 为您生成这幅画。但您可以通过以下步骤来实现: 1. 准备好 StableDiffusion 软件,并确保您的计算机满足其运行要求。 2. 了解 StableDiffusion 的相关设置和参数调整方法。 3. 在输入描述中详细准确地描述您想要的画面,如“钻井现场,旁边的风景很优美,以柳江盆地的地形和风景为主”,同时可以补充更多细节,比如光线、色彩、物体的具体特征等,以获得更符合您期望的结果。 希望这些信息对您有所帮助。
2024-09-03
stablediffusion和midjourney有啥关系
Stable Diffusion 和 Midjourney 是 AI 绘画领域的两个重要模型,它们有以下关系和区别: 关系:都是用于 AI 绘画的工具。 区别: Stable Diffusion 是完全开源的项目,包括模型、代码、训练数据、论文、生态等全部开源,能快速构建强大繁荣的上下游生态,吸引了众多 AI 绘画爱好者加入,推动 AIGC 领域的发展。但它需要较好的电脑配置,尤其是显卡。 Midjourney 操作简单方便,创作内容丰富,但需要科学上网并且付费,每月使用费大概在 200 多元。
2024-08-13
我有一张图像,我要如何用stable Diffusion给它添加噪音。我是一个小白,请给出详细的步骤,用webui来操作。
以下是使用 WebUI 为图像添加噪音的详细步骤: 1. 首先,了解 Stable Diffusion 的加噪原理。从数据集中选择一张干净样本,然后用 random 函数生成 0 3 共 4 种强度的噪声,在每次迭代中随机选择一种强度的噪声添加到干净图片上,完成图片的加噪流程。 2. 在训练过程中,对干净样本进行加噪处理,采用多次逐步增加噪声的方式,直至干净样本转变成为纯噪声。 3. 加噪过程中,每次增加的噪声量级可以不同,假设存在 5 种噪声量级,每次都可以选取一种量级的噪声,以增加噪声的多样性。 4. 与图片生成图片的过程相比,在预处理阶段,先把噪声添加到隐空间特征中。通过设置去噪强度(Denoising strength)控制加入噪音的量。如果去噪强度为 0 ,则不添加噪音;如果为 1 ,则添加最大数量的噪声,使潜像成为一个完整的随机张量。若将去噪强度设置为 1 ,就完全相当于文本转图像,因为初始潜像完全是随机的噪声。
2024-11-18
webui可以用FLUX模型吗
WebUI 可以使用 FLUX 模型。以下是相关的下载和使用信息: ae.safetensors 和 flux1dev.safetensors 下载地址:https://huggingface.co/blackforestlabs/FLUX.1dev/tree/main 。 flux 相关模型(体积较大)的夸克网盘链接:https://pan.quark.cn/s/b5e01255608b 。 flux 相关模型(体积较大)的百度网盘链接:https://pan.baidu.com/s/1mCucHrsfRo5SttW03ei0g?pwd=ub9h 提取码:ub9h 。 如果 GPU 性能不足、显存不够,底模可以使用 fp8 的量化版模型,下载地址:https://huggingface.co/Kijai/fluxfp8/tree/main 。 下载 dev 的工作流: 或者官方原版的图片链接 https://comfyanonymous.github.io/ComfyUI_examples/flux/flux_dev_example.png ,打开 ComfyUI,把工作流或图片拖拽到 ComfyUI 里。 郑敏轩的 Flux 的 controlnet 系列中 TheMisto.ai 的 MistoLine 版: 注意:该 ControlNet 与 Flux1.dev 的 fp16/fp8 以及使用 Flux1.dev 量化的其他模型兼容。 需要节点(可以 git clone 方式下载或通过以下网盘): 夸克网盘:链接:https://pan.quark.cn/s/ad43dd5152a6 。 百度网盘:链接:https://pan.baidu.com/s/1NcOdG4AV68xTup8FvphsYA?pwd=lpvc 提取码:lpvc 。 模型: 夸克网盘:链接:https://pan.quark.cn/s/5551e813db21 。 百度网盘:链接:https://pan.baidu.com/s/1Ntf4MbTCGJ5TYDv6mgvqNQ?pwd=zhfq 提取码:zhfq 。 处理:将模型放到 ComfyUI\\models\\TheMisto_model 文件夹中。 导入官方工作流 。所需要的两个模型:
2024-10-25
webui可以用FLUX模型吗
WebUI 可以使用 FLUX 模型。以下是相关的下载和使用信息: ae.safetensors 和 flux1dev.safetensors 的下载地址:https://huggingface.co/blackforestlabs/FLUX.1dev/tree/main 。 夸克网盘链接:https://pan.quark.cn/s/b5e01255608b 百度网盘链接:https://pan.baidu.com/s/1mCucHrsfRo5SttW03ei0g?pwd=ub9h 提取码:ub9h 如果 GPU 性能不足、显存不够,底模可以使用 fp8 的量化版模型,下载地址:https://huggingface.co/Kijai/fluxfp8/tree/main 。 dev 的工作流: 官方原版的图片链接:https://comfyanonymous.github.io/ComfyUI_examples/flux/flux_dev_example.png ,打开 ComfyUI ,把工作流或图片拖拽到 ComfyUI 里。 郑敏轩的 Flux 的 controlnet 系列: TheMisto.ai 的 MistoLine 版,该 ControlNet 与 Flux1.dev 的 fp16/fp8 以及使用 Flux1.dev 量化的其他模型兼容。 节点: 可以 git clone 方式下载或通过压缩包。 夸克网盘:链接:https://pan.quark.cn/s/ad43dd5152a6 百度网盘:链接:https://pan.baidu.com/s/1NcOdG4AV68xTup8FvphsYA?pwd=lpvc 提取码:lpvc 模型: 夸克网盘:链接:https://pan.quark.cn/s/5551e813db21 百度网盘:链接:https://pan.baidu.com/s/1Ntf4MbTCGJ5TYDv6mgvqNQ?pwd=zhfq 提取码:zhfq 处理:将模型放到 ComfyUI\\models\\TheMisto_model 文件夹中。 导入官方工作流: ,所需要的两个模型。
2024-10-25
相同的参数下,用SD comfyui出图可以和SD webui出图保持图片效果一模一样么?
理论上,在应用完全相同参数(如 Step、CFG、Seed、prompts)的情况下,SD ComfyUI 出图和 SD WebUI 出图应当能保持图片效果一模一样。但在实际操作中可能会存在一些差异,比如: 提示词的多个条件下,SD 生成的图像可能无法全部满足,这与提示词引导系数有关,该系数关系到出图与文字的相关程度。 不同的模型和配置也可能影响出图效果,例如 SDXL 的大模型分为 base、refiner 以及配套的 VAE 模型,用于调节图片的画面效果和色彩。 需要注意的是,相同参数下要达到完全一致的出图效果并非绝对,还会受到多种因素的综合影响。
2024-10-14
Flux 的lora模型训练教程,我想用用diffuser代码训练,而不是webui或comfyui
以下是关于 Flux 的 lora 模型训练的相关信息: Flux GGUF 模型:https://huggingface.co/city96/FLUX.1devgguf/tree/main GGUF 配套节点插件:https://github.com/city96/ComfyUIGGUF 在最新版本的 ComfyUI 中,GGUF 的节点插件可在 Manager 管理器中搜到下载安装,但 NF4 的配套节点插件搜不到。 注意使用精度优化的低配模型时,工作流和原版不同。把官方的 fp8 工作流中底模的节点换成 NF4 或者 GUFF 即可。 相关生态发展迅速,有 Lora、Controlnet、IPadpter 相关生态建设,字节最近发布的 Flux Hyper lora 可用于 8 步快速生图。下节将先讲讲 Flux 的 lora 训练。
2024-09-05
我添加flux的模型后,在webui中要从哪里找到
在 webui 中找到添加的 flux 模型的方法如下: 首先,您可以安装 Civitai 助手插件。如果您上不了 C 站,可以去我的百度云盘里下载,然后放在“……\\sdwebuiakiv4\\extensions”路径文件夹下。安装完成后,重启 webUI,就可以在上方的标签选项卡中找到这个插件。 另外,下载模型后需要将之放置在指定的目录下,不同类型的模型放置目录不同: 1. 大模型(Ckpt):放入 models\\Stablediffusion。 2. VAE 模型:一些大模型需要配合 vae 使用,对应的 vae 同样放置在 models\\Stablediffusion 或 models\\VAE 目录,然后在 webui 的设置栏目选择。 3. Lora/LoHA/LoCon 模型:放入 extensions\\sdwebuiadditionalnetworks\\models\\lora,也可以在 models/Lora 目录。 4. Embedding 模型:放入 embeddings 目录。 模型的类型可以通过检测。安装 Civitai 助手插件后,它可以自动扫描您的所有文件,如果您的模型是从 C 站下载的,它会帮您自动匹配好缩略图。点击刷新旁边的按钮,再把鼠标放在模型的名字上,可以看见新的四个图标:🖼:用当前生成图替换为预览图;🌐:在新标签页打开这个模型的 Civitai 页面;💡:一键添加这个模型的触发词到关键词输入框;🏷:一键使用这个模型预览图所使用的关键词。
2024-08-22
帮我找个在线文字生成图片的网站工具
以下是一些在线文字生成图片的网站工具: 1. DALL·E:由 OpenAI 推出,可根据输入的文本描述生成逼真的图片。 2. StableDiffusion:开源的文生图工具,能生成高质量图片,支持多种模型和算法。 3. MidJourney:因其高质量的图像生成效果和用户友好的界面设计而受欢迎,在创意设计人群中流行。 您还可以在 WaytoAGI 网站(https://www.waytoagi.com/category/104)查看更多文生图工具。 另外,以下是一些图片生成 3D 建模的工具: 1. Tripo AI:VAST 发布的在线 3D 建模平台,能利用文本或图像在几秒钟内生成高质量且可立即使用的 3D 模型。 2. Meshy:功能全面,支持文本生成 3D、图片生成 3D 以及 AI 材质生成。 3. CSM AI:支持从视频和图像创建 3D 模型,Realtime Sketch to 3D 功能支持通过手绘草图实时设计 3D 形象。 4. Sudo AI:支持通过文本和图像生成 3D 模型,适用于游戏领域的模型生成。 5. VoxCraft:由生数科技推出的免费 3D 模型生成工具,能将图像或文本快速转换成 3D 模型,并提供多种功能。 这些工具通常具有用户友好的界面,无需专业的 3D 建模技能即可操作,广泛应用于游戏开发、动画制作、3D 打印、视觉艺术等领域。 内容由 AI 大模型生成,请仔细甄别。
2024-12-17
免费在线文本转语音
以下是为您推荐的免费在线文本转语音工具: 1. Eleven Labs:https://elevenlabs.io/ 这是一款功能强大且多功能的 AI 语音软件,能生成逼真、高品质的音频,可高保真地呈现人类语调和语调变化,并能根据上下文调整表达方式。 2. Speechify:https://speechify.com/ 这是一款人工智能驱动的文本转语音工具,可将文本转换为音频文件,能作为 Chrome 扩展、Mac 应用程序、iOS 和 Android 应用程序使用,用于收听网页、文档、PDF 和有声读物。 3. Azure AI Speech Studio:https://speech.microsoft.com/portal 这是一套服务,赋予应用程序“听懂、理解并与客户进行对话”的能力,提供了支持 100 多种语言和方言的语音转文本和文本转语音功能,还提供了自定义的语音模型。 4. Voicemaker:https://voicemaker.in/ 可将文本转换为各种区域语言的语音,并允许创建自定义语音模型,易于使用,适合为视频制作画外音或帮助视障人士。 语音转文本(Speech to text)支持的语言包括:南非荷兰语、阿拉伯语、亚美尼亚语、阿塞拜疆语、白俄罗斯语、波斯尼亚文、保加利亚文、加泰罗尼亚文、中文、克罗地亚文、捷克文、丹麦文、荷兰文、英国英语、爱沙尼亚文、芬兰文、法国法式英语、加利西亚语、德语、希腊语、希伯来语、印地语、匈牙利语、冰岛语、印度尼西亚语、意大利语、日本语、卡纳达语、哈萨克语、韩国语、拉脱维亚语、立陶宛语、马其顿语、马来语、马拉地语、毛里求斯语、尼泊尔语、挪威语、波斯语、波苏尼语、塔加洛语、泰米尔语、泰语、土耳其语、乌克兰语、乌尔都语等。 语音转文本 API 提供了两个端点,即基于最先进的开源大型v2 Whisper 模型的转录和翻译。它们可用于:将音频转录为任何语言;将音频翻译并转录成英语。目前文件上传限制为 25MB,并支持以下输入文件类型:mp3、mp4、mpeg、mpga、m4a、wav 和 webm。转录 API 的输入是要进行转录的音频文件以及所需输出格式的音频文字稿,默认情况下,响应类型将是包含原始文本的 JSON。翻译 API 以任何支持的语言作为输入音频文件,并在必要时将音频转录成英文,目前仅支持英语翻译。 内容由 AI 大模型生成,请仔细甄别。
2024-12-12
帮我安排一些ai学习资源,在线课程平台,寻找相关的入门课程。
以下是为您安排的 AI 学习资源和入门课程: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,您可以找到一系列为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 6. 工具推荐: 对于需要使用模型的同学,Kimi 智能助手是 ChatGPT 的国产平替,实际上手体验最好,推荐新手用 Kimi 入门学习和体验 AI。 不用科学🕸️、不用付费、支持实时联网,是国内最早支持 20 万字无损上下文的 AI,也是目前对长文理解做的最好的 Ai 产品,能一次搜索几十个数据来源,无广告,能定向指定搜索源。 点我去下载 7. 友情链接: 「飞书」:一款汇集了各类 AI 优质知识库、AI 工具使用实践的效率工具,助力人人成为效率高手。 👇浏览飞书社区的精选课程、先进客户实践: 此外,对于通过 AI 开发应用的同学,您可以阅读 OpenAI API 文档(),注:进阶课程请从第 5 节开始阅读。
2024-12-08
在线ai换脸
以下是关于在线 AI 换脸的相关内容: 使用 FaceFusion 进行 AI 换脸的步骤: 1. 打开快捷工具中的 JupyterLab。 2. 点击顶部的“+”号选项卡,新打开一个终端窗口。 3. 在终端区域启动终端选项卡。 4. 在终端窗口中输入以下命令: 输入“ls”并按回车,查看文件列表。 输入“cd facefusion”并按回车,进入 facefusion 目录。 输入“python./run.py executionproviders cuda cpu”启动程序。(注意:后面的参数“executionproviders cuda cpu”非常重要,如果不加 cuda,则默认不使用 GPU 能力,推理将非常慢。) 5. 当出现提示信息时,说明启动成功。 6. 打开 facefusion 软件,返回实例列表,点击自定义服务按钮,会打开新的浏览器窗口,通过 web 浏览器访问 facefusion 提供的 UI 界面。 7. 在 facefusion 软件界面上传准备好的图片、视频,在右侧可看到预览效果,点击下方的开始按钮执行换脸处理。 8. 执行完成后,在输出位置会出现处理后的视频,输出窗口右上角有下载按钮,可导出变量后的视频到本地。 相关辅助工具: 1. FaceFusion:一款面部交换和面部增强的开源软件,可以在本地运行。不仅能将源图像中的面部与目标图像或视频中的面部进行交换,还提供多种面部和帧处理器以改进或定制面部特征。1.1.0 版本更新增加了摄像头功能,可以进行实时换脸和面部改造。有多种选项和参数允许用户定制,内置检查机制防止用于不道德或非法用途。开源地址:https://github.com/facefusion/facefusion 。 2. Xpression Camera:实时 AI 换脸应用,适用于视频聊天和直播流。只需一张照片就可以立即转变成任何人或任何有面部的事物。 实现方式: 1. 本机解决方案:此软件需要 python 环境及安装视频解码器等多个依赖软件,有一定编程知识要求。且 facefusion 的运行推理计算速度依赖 GPU,本地计算机若无 GPU 或 GPU 显存较小,执行速度会很慢。 2. 云服务解决方案:可利用云厂商如阿里云的 PAI 和 AutoDL 已提供的大模型运行环境和计算能力,但会产生一定费用。以 AutoDL 为例,注册完成后在算力市场中选择能接受价格的算力服务器,建议选取 GPU 配置更高的算力设备。在算法社区查找 facefusion 镜像,使用已制作好包含所需环境软件安装的镜像,点击创建实例按钮启动实例。
2024-12-02
如何根据文本内容从在线图片库、本地图片库中精准检索出与其文本内容相对应的图片?有没有对应的工作流推荐?
以下是根据文本内容为您整理的从在线图片库、本地图片库中精准检索对应图片的方法和工作流推荐: 在线图片库检索: 利用公众号搜索同行的封面图。例如,在微信中搜一搜相关关键词,如“Claude”,查看文章中的封面图。若正文里没有封面图,可使用壹伴浏览器插件的“查看封面”按钮(需会员),或者使用秘塔 AI 搜索工具,输入文章链接获取封面。工具链接:https://www.mgpaiban.com/tool/wxfm.html 。 本地图片库检索: 对于一些特定的设计工具,如星流一站式 AI 设计工具,其左侧图片案例板块具有图像筛选功能,包括根据正常生图参数进行推荐、推荐热门图片以及输入需求描述进行搜索。同时,还可以通过点击“发送到画布”将图像发送到“无限画布”中,或者进行生图参数的整体或单个调取。 在图像检索过程中,还涉及到一些其他相关操作,如视频理解模型测试、图像风格化转换、OCR 识别、图片分享工作流、智能抠图、画板操作与背景添加、品牌 LOGO 添加与自适应调整、图像流与工作流结合,以及在图像与文本处理工作中的调试与优化,包括获取文本信息与调整提示词、处理图像流与添加参数、解决排版与发布中的问题等。
2024-11-29
正在在线学习,需要一款能实时记录课程学习中的知识点,做好笔记,做好思维导图的强大AI
以下为您提供的相关学习笔记: 笔记主题为“Generative AI for Everyone 吴恩达”,作者是心威。起因是自学 AI 并观看吴恩达老师的相关课程时边看边做的笔记。 生成式人工智能的工作原理:在整体的人工智能领域中,监督学习用于标记事物,一直占据很大比例。现在生成式 AI 近期快速崛起,强化学习与无监督学习也是重要工具。生成式 AI 由监督学习技术搭建,2010 2020 年是大规模监督学习的十年,为现代人工智能奠定基础。生成文本会使用到大语言模型,其生成过程是不断预测下一个词语。 大语言模型是思考的朋友:运用大语言模型写故事、修改文本非常有用。网络搜索与 LLM 有区别,LLM 会编造故事产生错误信息,需鉴别信息准确。 人工智能是一种通用技术(可以应用的空间):人工智能有大量运用空间,包括基于网络界面应用和基于软件程序应用。 写作:使用 LLM 写作进行集思广益、头脑风暴非常有用,网页版聊天需提供更多信息,翻译也可使用 LLM,但网络文本较少时效果不太好,可让 LLM 将内容翻译为海盗英语测试翻译准确度。 还有笔记主题为“AI for everyone 吴恩达”,作者也是心威。 以上笔记可能存在错误,如有需要可联系作者(右侧二维码),希望对您有所帮助。但这些笔记可能无法完全满足您需要一款能实时记录课程学习中的知识点、做好笔记和做好思维导图的强大 AI 的需求。
2024-11-28
Agent开发案例产品售后客服问答
以下是一些常见的 Agent 构建平台: 1. Coze:它是新一代的一站式 AI Bot 开发平台,适用于构建基于 AI 模型的各类问答 Bot,集成了丰富的插件工具,能极大地拓展 Bot 的能力边界。 2. Microsoft 的 Copilot Studio:主要功能有外挂数据、定义流程、调用 API 和操作,还能将 Copilot 部署到各种渠道。 3. 文心智能体:百度推出的基于文心大模型的智能体(Agent)平台,支持开发者根据自身需求打造大模型时代的产品能力。 4. MindOS 的 Agent 平台:允许用户定义 Agent 的个性、动机、知识,以及访问第三方数据和服务或执行设计良好的工作流。 5. 斑头雁:2B 基于企业知识库构建专属 AI Agent 的平台,适用于客服、营销、销售等多种场景,提供多种成熟模板,功能强大且开箱即用。 6. 钉钉 AI 超级助理:依托于钉钉强大的场景和数据优势,提供更深入的环境感知和记忆功能,在处理高频工作场景如销售、客服、行程安排等方面表现出色。 以上信息由 AI 大模型生成,请您仔细甄别,并根据自己的需求选择适合的平台进行进一步探索和应用。
2025-01-07
Agent开发案例产品售后客服问答
以下是一些常见的 Agent 构建平台: 1. Coze:它是新一代的一站式 AI Bot 开发平台,适用于构建基于 AI 模型的各类问答 Bot,且集成了丰富插件工具,能极大拓展 Bot 能力边界。 2. Microsoft 的 Copilot Studio:主要功能有外挂数据、定义流程、调用 API 和操作,还能将 Copilot 部署到各种渠道。 3. 文心智能体:百度推出的基于文心大模型的智能体(Agent)平台,支持开发者按自身需求打造产品能力。 4. MindOS 的 Agent 平台:允许用户定义 Agent 的个性、动机、知识,能访问第三方数据和服务或执行设计良好的工作流。 5. 斑头雁:2B 基于企业知识库构建专属 AI Agent 的平台,适用于客服、营销、销售等场景,提供多种成熟模板,功能强大且开箱即用。 6. 钉钉 AI 超级助理:依托钉钉强大的场景和数据优势,提供更深入的环境感知和记忆功能,在处理高频工作场景如销售、客服、行程安排等方面表现出色。 以上信息提供了这 6 个平台的概述,您可根据自身需求选择适合的平台进一步探索和应用。请注意,内容由 AI 大模型生成,请仔细甄别。
2025-01-07
开发功能完善的 Agent
开发功能完善的 Agent 可以参考以下内容: 1. 搭建工作流驱动的 Agent 简单情况分为 3 个步骤: 规划:制定任务的关键方法,包括总结任务目标与执行形式,将任务分解为可管理的子任务,确立逻辑顺序和依赖关系,设计每个子任务的执行方法。 实施:分步构建和测试 Agent 功能,在 Coze 上搭建工作流框架,设定每个节点的逻辑关系,详细配置子任务节点,并验证每个子任务的可用性。 完善:全面评估并优化 Agent 效果,整体试运行 Agent,识别功能和性能的卡点,通过反复测试和迭代,优化至达到预期水平。 2. 一些 Agent 构建平台包括: Coze:新一代一站式 AI Bot 开发平台,集成丰富插件工具,拓展 Bot 能力边界。 Microsoft 的 Copilot Studio:主要功能有外挂数据、定义流程、调用 API 和操作,以及部署到各种渠道。 文心智能体:百度推出的基于文心大模型的智能体平台,支持开发者打造产品能力。 MindOS 的 Agent 平台:允许用户定义 Agent 的个性、动机、知识,以及访问第三方数据和服务或执行工作流。 斑头雁:2B 基于企业知识库构建专属 AI Agent 的平台,适用于多种场景,提供多种成熟模板。 钉钉 AI 超级助理:依托钉钉优势,提供环境感知和记忆功能,在高频工作场景表现出色。
2025-01-07
开发简单的 Agent 助手
开发简单的 Agent 助手可以参考以下内容: 基于结构化数据来 RAG 实战:以餐饮生活助手为例,它是基于结构化数据 RAG 方法的应用,能从大规模餐饮数据集中检索合适餐厅并提供信息服务。实现餐饮生活助手 RAG 的 Langchain 代码实战需完成以下步骤:定义餐饮数据源,将其转化为 Langchain 可识别和操作的形式并注册;定义 LLM 的代理,通过 Langchain 的代理根据用户问题提取信息、形成查询语句、检索数据源并生成答案。 从基础案例入门: 三分钟捏 Bot: 登录控制台:登录扣子控制台(coze.cn),使用手机号或抖音注册/登录。 在我的空间创建 Agent:在扣子主页左上角点击“创建 Bot”,选择空间名称为“个人空间”、Bot 名称为“第一个 Bot”并确认。 编写 Prompt:填写 Prompt,即 Bot 功能说明,第一次可用简短词语作为提示词。 优化 Prompt:点击“优化”进行优化。 设置开场白及其他环节。 发布到多平台&使用。 进阶之路: 15 分钟:查看其他 Bot 获取灵感。 1 小时:找到与兴趣、工作方向结合的 Bot 深入沟通,阅读相关文章。 一周:了解基础组件,寻找不错的扣子借鉴复制,加入 Agent 共学小组,尝试在群里问第一个问题。 一个月:合理安排时间,参与 WaytoAGI Agent 共学计划,创建 Agent 并分享经历心得。 《执笔者》:基于多 Agent 模式的全能写手: 操作步骤: 多 agent 模式切换:在 bot 编排页面点选多 agent 模式,页面自动切换,相比单 agent 多了中间的 agent 连接区。 添加合适节点:有两种方式选择,用已发布的 bot 或创建新的 agent,按需选取并连接在默认总管 agent 后面,无结束节点。 添加合适的 prompt:为每个 agent 填写合适 prompt,外围人设填写主要功能,内部 bot 填写应用场景。 调试与美化:经过以上三步基本搭建完成,后续需调试,调整提示词优化交互。
2025-01-07
客服 开发
以下是关于客服开发的相关内容: 从 GPTs/GLMs 如何赚钱谈起,对于 Agent 应用开发,如果从做产品的角度,熟悉业务并结合 AI 能力打磨产品是护城河,这也是 AI 应用开发者应坚持的方向。 GPT 智能客服部署方面: GPTs 是 GPT 的一种 ID 账号形态,类似微信公众号,用户可开发自己垂类应用,开放门槛低,基本是 0 代码,开发方式包括自然语言(prompt)、知识库(knowledge)、第三方 API 对接(Action)。 GPTs 实现目前最强的智能客服,具有对话流畅,多观点融合,答案准确等特点,不太擅长推理计算。其实现原理是将 FAQ 上传到知识库,让 GPTs 具有客服应答能力,猜测类似检索增强生成技术(RAG),将知识库(knowledge)和问题(prompt)一起做 embedding,扔给 LLM 作答。 零成本、零代码搭建一个智能微信客服的实操步骤: 访问微信客服 https://kf.weixin.qq.com/,点击开通,勾选同意,点击下一步。 按步骤填写,勾选同意,注册企业微信。 完成上述步骤后,进行以下配置操作: 点击配置>到微信客服的企业信息,复制企业 ID>到 coze 页面进行粘贴填写企业 ID,并点击下一步。 到微信客服的开发配置,找到回调配置,复制 Token、EncodingAESKey(如果还是空的,点击“随机获取”即可),到 coze 页面进行粘贴,点击下一步。 到微信客服的开发配置,配置回调地址 URL、复制 Secret 到 coze 的页面粘贴。 到微信客服的客服账号,创建一个客服账号,复制客服账号名称,到 coze 的页面粘贴,点击保存。保存后,在 coze 发布页面的发布平台的微信客服这里,显示“已配置”,剩下的就是勾选,点击发布。 需要注意的是,第一次设置回调地址时,目前需要企业认证,才可以进行接入微信客服。如果企业没有进行认证,则会在配置回调 URL 时报错:回调域名校验失败。另外,之前未进行企业认证就发布过微信客服的不受影响。
2025-01-06
我是一个公司的的开发人员,希望找到几个AI培训工具能够针对办公环境下的不同场景对员工进行培训使用。并且可以提供给员工使用
以下为您推荐一些适用于办公环境下对员工进行培训的 AI 培训工具: 1. AI 辅助决策工具:可在小规模决策中使用,例如分析客户反馈或市场趋势数据,作为决策参考。 2. 员工培训计划制定工具:帮助制定 AI 工具使用的培训计划,让团队成员了解如何在日常工作中有效利用 AI。 3. 流程优化工具:识别公司中可能受益于 AI 自动化的重复性任务,并测试 AI 解决方案的效果。 4. AI 伦理和政策制定工具:用于制定公司的 AI 使用政策,确保 AI 的应用符合伦理标准和法律要求。 对于不同场景和人员,还有以下针对性的工具: 1. 对于教育工作者: AI 辅助教案设计工具:尝试使用 AI 来帮助设计课程大纲或生成教学材料 ideas。 个性化学习路径工具:探索如何使用 AI 分析学生的学习数据,为不同学生制定个性化的学习计划。 创新教学方法工具:考虑如何将 AI 工具整合到课堂活动中,例如使用 AI 生成的案例研究或模拟场景。 AI 素养教育工具:开发一个简单的课程模块,教导学生了解 AI 的基础知识、应用领域及其对社会的影响。 2. 在职业规划方面: 职业选择和规划工具:学生可以通过产品了解 AI 技术在不同职业中的应用,评估自己的兴趣和技能,选择合适的职业路径,并制定详细的职业规划。 技能提升工具:根据职业目标,学生可以获得个性化的学习建议和资源,提升自己在 AI 领域的技能,为未来的就业做好准备。 职业发展指导工具:职场新人可以根据自身的职业目标和市场需求,制定职业发展计划,明确短期和长期的职业目标。 职业转型支持工具:对于希望从其他领域转型到 AI 相关领域的从业者,产品可以提供详细的转型路径和必要的技能培训资源,帮助他们顺利转型。 在 PPT 制作方面,以下 AI 工具可供选择: 1. MindShow 2. 爱设计 3. 闪击 4. Process ON 5. WPS AI 选择工具时应根据实际需求进行调整,试用和体验总比盲目跟风更为明智。
2025-01-06