Navigate to WaytoAGI Wiki →
Home/question.detail.breadcrumb.questionList/question.detail.breadcrumb.questionDetail

我想做一个知识库管理,用于用户累计只是,在此基础上打造属于用户个人的知识库,通过ai生成用户专属的答案。但是我不知道应该怎么设计这个软件,请为我建议

Answer

设计一个用于用户知识累计和生成专属答案的知识库管理软件,您可以考虑以下几个关键方面:

  1. 数据存储与架构

    • 选择合适的数据库系统,如关系型数据库(如 MySQL、PostgreSQL)或非关系型数据库(如 MongoDB、Cassandra),以有效存储用户的知识数据。
    • 设计合理的数据表结构,包括用户信息表、知识条目表、知识分类表等,确保数据的组织和关联清晰。
  2. 知识录入与编辑

    • 提供直观的用户界面,方便用户录入知识,支持多种格式,如文本、图片、音频、视频等。
    • 具备知识编辑功能,允许用户修改、更新和完善已录入的知识。
  3. 知识分类与标签

    • 建立灵活的知识分类体系,让用户能够将知识分类存放,便于查找和管理。
    • 支持用户为知识添加自定义标签,提高知识检索的准确性。
  4. 搜索与检索功能

    • 实现强大的搜索功能,支持全文搜索、关键词搜索、模糊搜索等多种搜索方式。
    • 优化搜索算法,确保快速返回准确的搜索结果。
  5. AI 模型集成

    • 选择适合的 AI 模型,如自然语言处理模型,用于理解用户的问题和生成答案。
    • 对 AI 模型进行训练和优化,使其能够基于用户的知识库提供准确和有用的回答。
  6. 用户权限管理

    • 设定不同的用户权限级别,如管理员、普通用户等,控制用户对知识库的操作权限,保障数据安全。
  7. 数据备份与恢复

    • 定期自动备份知识库数据,以防止数据丢失。
    • 提供数据恢复功能,确保在意外情况下能够快速恢复知识库。
  8. 界面设计

    • 设计简洁、美观、易用的界面,提高用户体验。
    • 遵循用户习惯和人机交互原则,使操作流程简单直观。
  9. 性能优化

    • 对软件进行性能优化,确保在处理大量知识数据时仍能保持高效运行。
  10. 测试与迭代

    • 进行充分的测试,包括功能测试、性能测试、用户体验测试等。
    • 根据用户反馈和实际使用情况,不断迭代优化软件功能。

希望以上建议对您有所帮助,祝您成功设计出满足需求的知识库管理软件!

Content generated by AI large model, please carefully verify (powered by aily)
Others are asking
我想要学习prompt,请你推送10篇知识库相关文章给我
以下是 10 篇与 prompt 相关的知识库文章: 1. 2. 3. 4. 5. 6. 7. 8. 9. 10.
2024-12-26
我如何创建一个自己的知识库和对话机器人,当我有问题时可以根据知识库的内容给我一个回答。
要创建一个自己的知识库和对话机器人,并实现根据知识库内容回答问题,您可以参考以下步骤: 1. 了解 RAG 机制:RAG 机制全称为“检索增强生成”(RetrievalAugmented Generation),是一种用于自然语言处理的技术,结合了检索和生成两种主要的人工智能技术。它先从大型数据集中检索与问题相关的信息,然后利用这些信息生成更准确、相关的回答。 2. 创建知识库:创建一个包含大量相关文章和资料的知识库,例如有关 AI 启蒙和信息来源的知识库。通过手工录入的方式陆续将各个板块的文章和资料导入到知识库中。 3. 设计 Bot:在设计对话机器人时,添加创建好的知识库,并设置合适的搜索策略、最大召回数量和最小匹配度,以更好地利用知识库返回的内容进行结合回答。 4. 配置相关要素:在问答机器人的配置中,包括 AI 模型、提示词和知识库。AI 模型如同学习过无数知识的人;提示词用于指定模型的角色和专注技能;知识库则相当于给员工的工作手册。例如,可以使用阿里千问模型,设定角色为“美嘉”,知识库为《爱情公寓》全季剧情。 通过以上步骤,您可以创建一个能够根据知识库内容回答问题的对话机器人。
2024-12-25
想制作个人的知识库国内有什么好的AI工具么
以下是一些国内可用于制作个人知识库的 AI 工具: 1. Kimi 智能助手:是 ChatGPT 的国产平替,上手体验好,适合新手入门学习和体验 AI。不用科学上网、不用付费、支持实时联网,是国内最早支持 20 万字无损上下文的 AI,对长文理解表现出色,能一次搜索几十个数据来源,无广告,能定向指定搜索源(如小红书、学术搜索)。PC 端可通过下载。 2. 飞书:汇集了各类 AI 优质知识库、AI 工具使用实践,助力人人成为效率高手。可通过下载。 此外,学习使用国内大语言模型工具可以从提示词开始。一些国产大模型如智谱和文心可以实现文生图的功能。
2024-12-24
想建立个人知识库使用什么AI工具更好一些
以下是为您推荐的用于建立个人知识库的 AI 工具: 1. AnythingLLM:包含所有 Open WebUI 的能力,额外支持选择文本嵌入模型、选择向量数据库。安装地址:https://useanything.com/download 。安装完成后需进行配置,主要分为三步:选择大模型、选择文本嵌入模型、选择向量数据库。在使用时,可创建独有的 Workspace 与其他项目数据隔离,包括创建工作空间、上传文档并进行文本嵌入、选择对话模式(Chat 模式会综合训练数据和上传文档给出答案,Query 模式仅依靠文档数据给出答案),配置完成后即可进行对话测试。 2. LlamaIndex:是更高一层 LangChain 的抽象,简化了 LangChain 对文本分割、查询的接口,提供了更丰富的 Data Connector。只针对 GPT Model 做 Index,参考 https://gptindex.readthedocs.io/en/latest/ 。 3. ExoBrain 的集成软件 Maimo.ai:作为外脑的主要记忆空间,能捕获多种数字内容并随时随地访问,可挂接和导入外部记忆,能快速理解捕获内容、灵活创作笔记、生成创作建议,可与外脑知识库对话并自动做外部检索完善答案。今年十一月将开放第一个体验版,关注获取最新信息。
2024-12-24
如何构建自己的知识库和数据集
构建自己的知识库和数据集可以参考以下几种方法: 使用 Dify 构建知识库的具体步骤: 1. 准备数据:收集需要纳入知识库的文本数据,包括文档、表格等格式。对数据进行清洗、分段等预处理,确保数据质量。 2. 创建数据集:在 Dify 中创建一个新的数据集,并将准备好的文档上传至该数据集。为数据集编写良好的描述,描述清楚数据集包含的内容和特点。 3. 配置索引方式:Dify 提供了三种索引方式供选择,包括高质量模式、经济模式和 Q&A 分段模式。根据实际需求选择合适的索引方式,如需要更高准确度可选高质量模式。 4. 集成至应用:将创建好的数据集集成到 Dify 的对话型应用中,作为应用的上下文知识库使用。在应用设置中,可以配置数据集的使用方式,如是否允许跨数据集搜索等。 5. 持续优化:收集用户反馈,对知识库内容和索引方式进行持续优化和迭代。定期更新知识库,增加新的内容以保持知识库的时效性。 创建并使用知识库(上传表格数据): 1. API 方式: 获取在线 API 的 JSON 数据,将 JSON 数据上传至知识库。 在表格格式页签下,选择 API,然后单击下一步。 单击新增 API。 输入网址 URL 并选择数据的更新频率,然后单击下一步。 输入单元名称或使用自动添加的名称,然后单击下一步。 配置数据表信息后,单击下一步。 确认表结构:系统已默认获取了表头的列名,您可以自定义修改列名,或删除某一列名。 指定语义匹配字段:选择哪个字段作为搜索匹配的语义字段。在响应用户查询时,会将用户查询内容与该字段内容的内容进行比较,根据相似度进行匹配。 查看表结构和数据,确认无误后单击下一步。 完成上传后,单击确定。 2. 自定义方式: 在表格格式页面下,选择自定义,然后单击下一步。 输入单元名称。 在表结构区域添加字段,单击增加字段添加多个字段。 设置列名,并选择指定列字段作为搜索匹配的语义字段。在响应用户查询时,会将用户查询内容与该字段内容的内容进行比较,根据相似度进行匹配。 单击确定。 单击创建分段,然后在弹出的页面输入字段值,然后单击保存。 从零开始,用 GPT 打造个人知识库: 要搭建基于 GPT API 的定制化知识库,涉及到给 GPT 输入(投喂)定制化的知识。但 GPT3.5(当前免费版的 ChatGPT)一次交互(输入和输出)只支持最高 4096 个 Token,约等于 3000 个单词或 2300 个汉字。这点容量对于绝大多数领域知识根本不够。为了使用 GPT 的语言能力来处理大量的领域知识,OpenAI 提供了 embedding API 解决方案。embeddings 是一个浮点数字的向量(列表),两个向量之间的距离衡量它们的关联性。小距离表示高关联度,大距离表示低关联度。向量是数学中表示大小和方向的一个量,通常用一串数字表示。在计算机科学和数据科学中,向量通常用列表(list)来表示。向量之间的距离是一种度量两个向量相似性的方法,最常见的是欧几里得距离。在 OpenAI 词嵌入中,靠近向量的词语在语义上相似。文档上给了创建 embeddings 的示例,上面的命令访问 embeddings API 接口,将 input 语句,转化成下面这一串浮点数字。
2024-12-23
在WAY TO AGI 知识库有没有适合老师备课用的AI?请推荐
以下是为老师备课推荐的一些 AI 相关内容: B 站 up 主 Nally 的课程,免费且每节 15 分钟,内容很棒。 14、15 号左右白马老师和麦菊老师将带大家用 AI 做生图、毛毡字、光影字、机甲字等。 16 号晚上中老师将带大家动手操作炼丹,炼丹可能需要准备一些图,后续会让中老师提前发布内容方便大家准备。 工程生产有很多可控性,AI 视频相关内容丰富,文档会列出工具优劣及操作。很多工具每天有免费积分,共学课程基本不用花钱。每周有 AI 视频挑战赛。 有 AI 音乐的流派和 prompt 电子书,格林同学做了翻译。 此外,还有以下相关信息: 高效 PB 及相关案例:高效 PB 投入力度大,有厉害的伙伴,案例在社区,有多种 battle 方式,会有菩萨老师专门介绍。 11 月 2 号左右将开展博物馆奇妙日主题活动,在各地博物馆进行新创意。 关于 AI 知识库及学习路径的介绍,包括时代杂志评选的领军人物、AI 相关名词解释、知识库的信息来源、社区共创项目、学习路径、经典必读文章、初学者入门推荐、历史脉络类资料等。
2024-12-20
chatgpt最快达到1亿用户应用
ChatGPT 是最快达到 1 亿用户的应用程序,在短短 6 周内就自然实现了这一成就。相比之下,Instagram 花了 2.5 年,WhatsApp 花了 3.5 年,YouTube 和 Facebook 花了 4 年才达到相同的用户需求水平。ChatGPT 并非孤立现象,Character AI 的参与深度(平均每次会话 2 小时)、Github Copilot 的生产力益处(效率提高 55%)以及 Midjourney 的商业化路径(数亿美元的收入)都表明第一批杀手级应用已经到来。OpenAI 对 ChatGPT 的反响感到震惊,尽管其内部的兴奋点更多集中在 GPT4 上,但 ChatGPT 让公众意识到必须应对 AI 这一现实,它成为了历史上增长最快的消费者应用,据说已积累 1 亿用户(OpenAI 不愿证实这一点,只说它拥有数百万用户)。
2024-12-25
哪个智能体能够根据用户的购物历史、浏览行为和偏好,提供个性化的产品推荐。
以下智能体能够根据用户的购物历史、浏览行为和偏好提供个性化的产品推荐: 1. 电子商务网站:通过收集用户的购物历史和浏览习惯等数据,使用机器学习和数据挖掘技术进行分析,从而推荐相似产品。 2. 基于人工智能的语音助手:可以分析用户行为、偏好以及历史购买记录,为用户提供更个性化的商品推荐,提升购物体验。 3. 中小企业:利用 AI 分析客户行为数据,包括购买历史、浏览记录、反馈等,基于分析结果生成个性化的产品推荐和服务。 4. 扣子模板中的个性化推荐引擎:利用人工智能和机器学习算法,根据用户的历史行为和偏好,实时推荐最相关的产品或服务,以提升转化率。
2024-12-20
我想用coze搭建一个智能体,关于自然语言课程的期末复习指南,要将我的教材导入扣子作为知识库,智能体支持用户提问,搜索知识点,结合知识库和互联网搜索的内容给出问答,需要使用多智能体或工作流,使用卡片功能进行显示,请给出我搭建这个智能体的步骤
以下是使用 Coze 搭建一个关于自然语言课程期末复习指南智能体的步骤: 1. 访问 Coze 官网(https://www.coze.cn),注册并登录。 2. 点击页面左上角的⊕,通过【标准创建】填入智能体的基本信息。 3. 了解 Bot 开发调试界面: 人设与回复逻辑(左侧区域):设定智能体的对话风格、专业领域定位,配置回复的逻辑规则和限制条件,调整回复的语气和专业程度。 功能模块(中间区域): 技能配置: 插件:扩展智能体的专业能力,如计算器、日历等工具。 工作流:设置固定的处理流程和业务逻辑。 图像流:处理和生成图像的相关功能。 触发器:设置自动化响应条件。 知识库管理: 文本:存储文字类知识材料。 表格:结构化数据的存储和调用。 照片:图像素材库。 记忆系统: 变量:存储对话过程中的临时信息。 数据库:管理持久化的结构化数据。 长期记忆:保存重要的历史对话信息。 文件盒子:管理各类文档资料。 交互优化(底部区域): 开场白:设置初次对话的问候语。 用户问题建议:配置智能推荐的后续问题。 快捷指令:设置常用功能的快速访问。 背景图片:自定义对话界面的视觉效果。 预览与调试(右侧区域):实时测试智能体的各项功能,调试响应效果,优化交互体验。 4. 设定智能体的人设与回复逻辑后,为智能体配置对应的技能,以保证其可以按照预期完成目标任务。例如,以获取 AI 新闻的智能体为例,需要为它添加一个搜索新闻的接口来获取相关新闻。具体操作如下: 在智能体编排页面的技能区域,单击插件功能对应的+图标。 在添加插件页面,选择相关功能,然后单击新增。 修改人设与回复逻辑,指示智能体使用相应插件来搜索所需内容。 (可选)为智能体添加开场白,让用户更好地了解智能体的功能。开场白功能目前支持豆包、微信公众号(服务号)。 5. 配置好智能体后,在预览与调试区域中测试智能体是否符合预期。可单击清除图标清除对话记录。 6. 完成测试后,将智能体发布到社交渠道中使用。具体操作如下: 在智能体的编排页面右上角,单击发布。 在发布页面输入发布记录,并勾选发布渠道。 单击发布。 更多内容,请访问 Coze 官方文档: 英文版:https://www.coze.com/docs/welcome.html 中文版:https://www.coze.cn/docs/guides/welcome
2024-12-20
用户声音分析
以下是关于用户声音分析的相关内容: 人工智能音频初创公司: :通过更强的听觉感知创造卓越的人类体验。 :先进的声音识别解决方案,能够分类如尖叫、枪声、咳嗽和哭泣等声音。 :下一代声音 AI 平台,能够像人类一样理解任何声音。 :语音控制的家庭自动化系统。 :世界上首个智能家居听觉系统。 :可用于从音频源中提取隐藏数据的 AI 模型。 :无需键盘、按钮或触摸屏,无缝融合物理世界和数据世界。 :为手机、VR/AR 头戴设备、智能手表、扬声器和笔记本电脑提供上下文感知。 :智能音频穿戴设备。 :我们将声音转化为信息。 :使用先进的深度学习技术进行声音事件检测和上下文识别,为世界上的每一个声音赋予意义。 分析报告范例: GPT + SBERT 做用研统计:无法做 SBERT 统计频次。 邬嘉文:AI 做用户研究|Claude 3 Opus 可以直接输出用户研究报告:无法做 SBERT 统计频次。报告中提到了眼镜佩戴的相关问题,如长时间佩戴的不适(鼻垫、耳杆问题)、大小和重量问题、对特定用户群体的不适(视力、眼间距问题)、音频体验的限制等。
2024-12-19
用扣子智能体制作一个有关热门旅游景点攻略小助手的工作流,能够根据不同用户的需求,制定个性化的旅行计划,涵盖各种热门旅游景点,提供详细的行程安排、交通指南和景点特色介绍
要使用扣子智能体制作一个有关热门旅游景点攻略小助手的工作流,以下是一些参考信息: 1. 扣子智能体通常由工作流和数据库组成。工作流的设计相对简单,一个输入对接知识库,搭载豆包 function call 大模型,最后输出。数据库的收集和整理需要一定专业知识,并进行手动二次校对。 2. 插件方面,扣子平台有多种类型的插件,如看新闻、规划旅行、提高办公效率、理解图片内容等的 API,还可根据需求自制插件。 3. 工作流就像可视化的拼图游戏,由多个节点组成,包括大语言模型、代码块等,能创造复杂稳定的业务流程。 4. 扣子预置了各种场景的 Bot,如旅游大师 Bot。在 Bot 商店可查看精选的预置 Bot,选择后会被引导至编排页面,该页面分为顶部区域(显示所用大型语言模型)、人设与回复逻辑区域、技能区域(展示配置的功能,如查询航班的插件、推荐景点的工作流等)、预览与调试区域(展示交互运行结果)。 基于以上信息,您可以尝试设计热门旅游景点攻略小助手的工作流,根据不同用户需求制定个性化旅行计划,涵盖热门景点、行程安排、交通指南和景点特色介绍。但需要注意的是,工作流的设计和数据库的整理需要精心规划和准确操作。
2024-12-16
目前中国用户最多的AI应用
目前中国用户较多的 AI 应用有: 1. 500px 摄影社区:这是一个 AI 摄影比赛平台,运用图像识别、数据分析技术,市场规模达数亿美元。它举办摄影比赛,展示优秀摄影作品,利用 AI 技术对参赛作品进行评选和分类,为摄影爱好者提供展示和交流的平台。 2. Logic Pro X 教学软件:作为 AI 音乐制作教学平台,采用机器学习、音频处理技术,市场规模达数亿美元。它为用户提供个性化的音乐制作教学服务,帮助用户掌握音乐制作技巧。 3. 鲁班到家 APP:这是一个 AI 家居维修服务平台,借助数据分析、自然语言处理技术,市场规模达数亿美元。它能分析用户的维修需求和地理位置,为用户推荐附近的专业维修人员。 4. 雪球财经 APP:作为 AI 金融投资教育平台,运用数据分析、自然语言处理技术,市场规模达数亿美元。它为用户提供个性化的金融投资教育服务,包括投资课程、市场分析和投资策略等。 5. WPS 文档翻译功能:这是一个 AI 办公文档翻译工具,使用自然语言处理技术,市场规模达数亿美元。它可以快速翻译办公文档,提高工作效率。 6. 美丽修行 APP:这是一个 AI 美容护肤产品推荐平台,通过数据分析、自然语言处理技术,市场规模达数亿美元。它根据用户肤质推荐适合的美容护肤产品。 7. 360 儿童手表:作为 AI 儿童安全监控系统,运用图像识别、机器学习技术,市场规模达数亿美元。它实现定位、通话、安全区域设置等功能,家长可实时监控孩子的位置和活动情况。 8. 汽车之家 APP:这是一个 AI 汽车保养提醒系统,借助数据分析、机器学习技术,市场规模达数亿美元。它根据用户的汽车型号、行驶里程等信息提醒车主进行定期保养。 9. 彩云天气专业版:这是一个 AI 天气预报定制服务应用,利用数据分析、机器学习技术,市场规模达数亿美元。它根据用户需求提供个性化天气预报服务。 10. 微医 APP:作为 AI 医疗健康管理平台,运用数据分析、机器学习技术,市场规模达数十亿美元。它分析用户的健康数据,为用户提供个性化的健康管理方案。 11. 腾讯会议策划工具:这是一个 AI 会议策划助手,使用自然语言处理、数据分析技术,市场规模达数亿美元。它协助用户策划会议,提高会议效率和质量。 12. 雅昌艺术网拍卖频道:这是一个 AI 书法作品拍卖平台,借助图像识别、数据分析技术,市场规模达数亿美元。它对书法作品进行鉴定和评估,为书法爱好者提供作品拍卖服务。
2024-12-13
openai 发布的sora最新模型中,生成视频的提示词与一般问答提示词有什么区别或者注意事项?
Sora 是 OpenAI 于 2024 年 2 月发布的文本到视频的生成式 AI 模型。 生成视频的提示词与一般问答提示词的区别和注意事项如下: 1. 对于视频生成,神经网络是单射函数,拟合的是文本到视频的映射。由于视频的动态性高,值域大,因此需要丰富且复杂的提示词来扩大定义域,以学好这个函数。 2. 详细的文本提示能迫使神经网络学习文本到视频内容的映射,加强对提示词的理解和服从。 3. 和 DALL·E 3 一样,OpenAI 用内部工具(很可能基于 GPT4v)给视频详尽的描述,提升了模型服从提示词的能力以及视频的质量(包括视频中正确显示文本的能力)。但这会导致在使用时的偏差,即用户的描述相对较短。OpenAI 用 GPT 来扩充用户的描述以改善这个问题,并提高使用体验和视频生成的多样性。 4. 除了文本,Sora 也支持图像或者视频作为提示词,支持 SDEdit,并且可以向前或者向后生成视频,因此可以进行多样的视频编辑和继续创作,比如生成首尾相连重复循环的视频,甚至连接两个截然不同的视频。 以下是一些 Sora 的案例提示词,如:“小土豆国王戴着雄伟的王冠,坐在王座上,监督着他们广阔的土豆王国,里面充满了土豆臣民和土豆城堡。”“咖啡馆的小地图立体模型,装饰着室内植物。木梁在上方纵横交错,冷萃咖啡站里摆满了小瓶子和玻璃杯。”“一张写有‘SORA’的写实云朵图像。”“一群萨摩耶小狗学习成为厨师的电影预告片‘cinematic trailer for a group of samoyed puppies learning to become chefs’”
2024-12-27
哪个AI伴写好一些
以下为您介绍关于 AI 伴写的相关内容: 在“他山之石|如何防止 AI 取代人类思考一切?”中,主要探讨了一些较为奇特和夸张的想法,并未直接涉及 AI 伴写的评价。 “陈财猫:如何用 AI 写出比人更好的文字?”提到了一些利用 AI 进行写作的实践方法,如从场景出发裂变、由假设出发衍生故事、利用特定流派的套路作为种子等,还介绍了故事灵感的裂变工具及效果。 “夙愿:AI 工作流,赋能我的十倍增长”中关于 AI 写作的观点认为,AI 虽能写出看似不错的文章,但不应完全依赖它来写作。写作不仅是产出内容,更是思考过程,对于想做 IP 账号的人,个人特色很关键。不过,AI 可在头脑风暴、查找资料、优化表达和拓展思路等方面成为写作的得力助手。 综合来看,目前没有明确指出哪个 AI 伴写更好,选择时需考虑自身需求和使用场景,合理利用 AI 辅助写作,提升写作效果。
2024-12-27
伴写文档AI
以下是关于伴写文档 AI 的相关内容: 一份关于 AI Liability Directive 的文档,其中包含了相关的标题、内容和多个文件编号,如 SEC344 final 等,还涉及到解释性备忘录、提案背景等方面。 南瓜博士指出,担心 AI 削弱孩子思考力是因为用法不对。在相关文章中提到,如果孩子用 AI 搜索回答封闭性问题迅速结束任务,AI 看似是好奇心的毒药;但改为开放性问题或让其帮助提出拓展思考的问题,能激发更大的好奇心。对于 AI 辅助写作文,若担心孩子偷懒,可让孩子提交与 AI 共同完成作文的聊天记录,由 AI 写作,孩子点评批改并让其迭代出更好的文章,评价重点在于孩子能否说清 AI 作文的优缺点及如何修改。
2024-12-27
前沿AI硬件
以下是关于前沿 AI 硬件的相关信息: 由郎瀚威 Will 发起的 GenAI 硬件榜单: 定义:利用 GenAI 技术(主要是 LLM),与音频生成、翻译、视觉采集并解读相结合,以可穿戴为主逐步渗透的新品类硬件,以 Meta 雷朋眼镜为代表。 本期情况:未收录较大的 GenAI 硬件如 AI PC、AI 手机,以可穿戴、AI 助理相关硬件为起点。 榜单受众:GenAI 硬件创始人、投资人、从业者等。 榜单标的:以北美市场的视角,销量、影响力为主。 榜单初心:随着 Meta 眼镜的成功,GenAI 硬件爆发在即,每月从多角度围观这一现象,旨在给创业者提供参考。 本次更新(9.19): 更新亚马逊销量、独立站流量、新品发布、融资信息,排序标准从媒体综合指数改为 Tiktok 热度。 完善挂件、戒指、眼镜等分类榜数据。 榜单目录:包括 GenAI 硬件北美公开销量榜、GenAI 硬件亚马逊销量榜等共 15 个重要榜单。更多榜单可文末点击“阅读原文”免费访问或直接访问飞书:https://zw73xyquvv.feishu.cn/wiki/IqcqwTDiYiKttNktBg3cg8HgnLh 。数据来源:google、tiktok、twitter、亚马逊。对于榜单内容有疑问想交流的 GenAI 硬件创始人,或者想合作转载内容的公众号博主,请加微信,或者在本文末留言。 今年很火的几款 AI native 硬件: Rewind Pendant:可穿戴设备,能捕捉现实中所说和听到的内容,进行录音转录、数据加密和本地存储,保障安全性和隐私保护。https://www.rewind.ai/pendant Rabbit R1:新型人工智能驱动的移动设备,通过高级语音命令简化应用程序使用,售价 199 美元,配备 360 度摄像头、触摸屏和 4G 连接。Rabbit OS 基于 Large Action Model(LAM 大动作模型),能处理自然语言并转化为可执行任务,与常见应用交互,支持语音命令执行复杂任务,未来用户可教会其执行特定任务。https://www.rabbit.tech/
2024-12-27
AI 3D建模
以下是一些 AI 3D 建模的工具和相关介绍: 1. Tripo AI:这是 VAST 发布的在线 3D 建模平台,基于数十亿参数级别的 3D 大模型,能利用文本或图像在几秒钟内生成高质量且可立即使用的 3D 模型,支持快速的 2D 到 3D 转换,具有 AI 驱动的精准度和细节。在“Create”界面,可通过输入提示词(不支持中文)生成 3D 模型,每次生成 4 个基础模型,不满意可点击“Retry”重新生成,对满意的模型可点击“Refine”精修,精修进度在“My Models”中查看,约 5 分钟完成。 2. Meshy:功能全面,支持文本生成 3D、图片生成 3D 以及 AI 材质生成。用户上传图片并描述材质和风格可生成高质量 3D 模型。 3. CSM AI:支持从视频和图像创建 3D 模型,其 Realtime Sketch to 3D 功能支持通过手绘草图实时设计 3D 形象再转换为 3D 模型。 4. Sudo AI:支持通过文本和图像生成 3D 模型,特别适用于游戏领域的模型生成。 5. VoxCraft:由生数科技推出的免费 3D 模型生成工具,能将图像或文本快速转换成 3D 模型,并提供图像到 3D、文本到 3D 和文本到纹理等多种功能。 此外,provisual.app 是一个 3D 模型在线可视化平台,具有易于使用、无需特殊技能或软件、可节省时间和成本等优点,功能包括在线协作、实时渲染、无限视角、材质和纹理编辑、高质量输出等,适用于产品设计、营销、教育等领域,目标客户为营销机构、创意机构、包装公司、在线商店、设计院的设计师、美术师等。 这些工具通常具有用户友好的界面,允许用户通过简单的操作来生成 3D 模型,无需专业的 3D 建模技能,可广泛应用于游戏开发、动画制作、3D 打印、视觉艺术等领域。
2024-12-27
什么是AI
AI 是一门令人兴奋的科学,它是指某种模仿人类思维可以理解自然语言并输出自然语言的东西,其生态位是一种似人而非人的存在。 对于没有理工科背景的人来说,可以将 AI 当成一个黑箱。最初,计算机是按照明确定义的程序来运算的,但对于像根据照片判断一个人的年龄这类无法明确编程的任务,正是 AI 所感兴趣的。 AI 健身是利用人工智能技术来辅助或改善健身训练和健康管理的方法,能为用户提供个性化的指导。例如 Keep、Fiture、Fitness AI、Planfit 等都是不错的 AI 健身工具。
2024-12-27
AI+交易:来定制专属于你的私人高级交易顾问吧!
以下是关于“AI+交易:来定制专属于你的私人高级交易顾问吧!”的相关内容: 原本是一名 AIGC 创作者,在接触交易后,希望将交易与 AIGC 相结合,打造私人高级交易顾问。学习交易知识后认识到,单纯迷信技术分析提高胜率实现长期稳定盈利对个人投资者不可行,心态关键。新人对交易理论不熟悉更致命,成熟交易员单一策略熟练运用能找进出点、良好心态能长期盈利,但不熟悉行情只能观望。借助 AI 分析行情,期望在不熟悉市场时找到合适进场点,提高资金使用效率,多种策略配合提高理论胜率(有统计数据显示几千名专业交易员一年里平均胜率 70)。 此外,还有以下 AI 与工作场景结合的案例: 1. 销售方面:包括话术总结优缺点、定制销售解决方案。 2. 客服方面:定制客服话术,有关键词库,如产品知识、使用方法等。 3. HR 方面:团队绩效管理,根据绩效数据输出考评和改进建议;面试工具,如使用 GPT4 技术的实时转录工具帮助求职者生成回答。 另外,在七大行业的商业化应用中: 1. 企业运营:包括日常办公文档撰写整理、营销对话机器人等。 2. 教育:协助评估学生学习情况、定制学习内容等。 3. 游戏/媒体:如定制化游戏、出海文案生成等。 4. 零售/电商:包括舆情监测分析、品牌营销内容撰写等。 5. 金融/保险:如个人金融理财顾问、识别欺诈活动风险等。
2024-12-17
如何打造专属自己的ai智能体?让保存的文献资料为自己专属分析只用?
打造专属自己的 AI 智能体并让保存的文献资料为自己专属分析,可参考以下步骤: 1. 设计 AI 智能体架构:先构思整个 AI 智能体的架构。 2. 规定稍后读阅读清单的元数据:新建一个飞书多维表格,根据稍后读的管理需要,定义元数据字段,如“内容(超链接格式,显示页面标题,可点击跳转具体的页面)”“摘要(根据具体内容,总结内容主题、关键信息、阅读价值,并指出适合的读者群体)”“作者”“平台”“状态(阅读状态,收藏的默认态为“仅记录”)”“发布日期”“收集时间”等。您也可以直接复制准备好的模板:【模板】稍后读管理 3. 搭建整理入库工作流: 首先在 Coze 中逐步搭建 AI 智能体,搭建整理入库工作流。这是支撑整个 AI 稍后读服务的前置流程。 新建工作流「url2table」,根据弹窗要求自定义工作流信息。 工作流全局流程设置: 开始节点:输入 url。由于希望收到用户输入的待收藏 url 就开始流程,所以不需要额外配置。 变量节点:引入 bot 变量中保存的飞书多维表格地址。为便于维护充当稍后读存储地址的飞书多维表格链接,需要将这个链接存储在 bot 的变量中,并在工作流运行时进行引用。 插件节点:获取页面内容。这一步直接把开始节点的{{BOT_USER_INPUT}}引入到参数{{url}}中,随便设置{{timeout}}为 60000。
2024-11-29
如何创建个人专属知识库
以下是创建个人专属知识库的相关内容: 私人知识库中的内容通常包括从互联网收集的优质信息以及个人日常的思考和分享。 基于私人知识库打造个人专属的 ChatGPT 常见有两种技术方案: 训练专有大模型:可以使用个人知识库训练专有大模型,但此方案并非当下主流,存在高成本、更新难度大等缺陷。 利用 RAG(检索增强生成)技术:先将文本拆分成若干小文本块并转换为 embeddings 向量,保存在向量储存库中。当用户提出问题时,将问题转换为向量与储存库中的向量比对,提取关联度高的文本块与问题组合成新的 prompt 发送给 GPT API。 搭建基于 GPT API 的定制化知识库时,由于 GPT3.5 一次交互支持的 Token 有限,OpenAI 提供了 embedding API 解决方案。embeddings 是一个浮点数字的向量,向量之间的距离衡量关联性,小距离表示高关联度。
2024-11-16
如何制作一个专属的工作机器人
以下是制作专属工作机器人的两种方式: 基于 GitHub 开源项目 chatgptonwechat 实现 chatgptonwechat项目是使用 ChatGPT 搭建的智能聊天机器人,在 GPT3.5/4.0 API 及 itchat 框架的基础上实现,支持个人微信、公众号、企业微信部署,能生成文本、语音和图片,访问操作系统和互联网。项目地址:https://github.com/zhayujie/chatgptonwechat 。 基于 Coze 直聘的职业助手 Bot 实现 1. 职业助手 Bot 是一个专为帮助用户找到理想工作而设计的智能机器人。只需输入求职信息和偏好,就能迅速匹配适合的工作机会,并提供全面的求职支持。 2. 设计理念:旨在通过智能化和个性化的服务,帮助求职者更快、更精准地找到理想工作。 高效匹配:利用先进的算法和大数据分析,迅速从海量招聘信息中筛选出最适合用户的职位,节省时间,提高求职效率。 实时更新:持续跟踪最新招聘信息,通过即时通知功能让用户掌握最新求职动态。 个性化推荐:根据用户的职业目标、工作经验、技能、地域偏好等信息提供高度个性化的职位推荐服务。 数据安全:重视用户数据的安全与隐私,采用最先进的安全技术确保用户个人信息和求职数据不被泄露。 3. 创建 Bot: 在 Coze 的主页创建 Bot。 输入 Bot 名称与 Bot 介绍,并使用 AI 功能生成图标(也可上传自己喜欢的图标)。 4. 人设与回复逻辑:简单描述 Bot 的人设与逻辑,然后使用 AI 助手进行优化。例如:角色为一个专业的职业助手 Bot,能够根据用户输入信息为用户精准提供匹配的职位推荐。 5. 技能:为 Bot 增加一些技能。 6. 插件:增加一个新闻类插件,来捕捉行业相关的动态。
2024-10-31
怎们架构专属自己企业的AI系统
要架构专属自己企业的 AI 系统,可以参考以下步骤: 一、逐步搭建 AI 智能体 1. 搭建整理入库工作流 新建工作流「url2table」,根据弹窗要求自定义工作流信息。 工作流全局流程设置需根据实际需求进行。 2. 在外层 bot 中封装工作流,完成整体配置 创建 Bot。 填写 Bot 介绍。 切换模型为“通义千问”,测试下来通义对提示词理解和执行效果较好。 把配置好的工作流添加到 Bot 中。 新增变量{{app_token}}。 添加外层 bot 提示词(可按需求和实际效果优化调整)。 二、相关术语 以下是一些在 AI 系统架构中可能涉及的术语: 1. AI 或 AI 系统或 AI 技术:具有“适应性”和“自主性”的产品和服务,如在定义的第 3.2.1 节中所述。 2. AI 供应商:在 AI 系统的研究、开发、培训、实施、部署、维护、提供或销售中发挥作用的任何组织或个人。 3. AI 用户:使用 AI 产品的任何个人或组织。 4. AI 生命周期:与 AI 系统的寿命相关的所有事件和过程,从开始到退役,包括其设计、研究、培训、开发、部署、集成、操作、维护、销售、使用和治理。 5. AI 生态系统:在 AI 生命周期中实现 AI 使用和供应的复杂网络,包括供应链、市场和治理机制。 6. 基础模型:在大量数据上训练的一种 AI 模型,可适用于广泛的任务,可作为构建更具体 AI 模型的基础。 经过上述配置,您可以在「预览与调试」窗口与 AI 智能体对话并使用全部功能。
2024-09-11
如何训练专属我的问答机器人
要训练专属您的问答机器人,基于飞书能力开发时,首先需要了解问答机器人的底层原理——RAG 技术。 RAG 的基本流程如下: 1. 当接收到用户的输入,比如一个问题或一个话题,RAG 会从数据源(如网页、文档或数据库记录)中检索出与之相关的文本片段,这些文本片段被称为上下文。 2. 接着,RAG 会将用户的输入和检索到的上下文拼接成一个完整的输入,并传递给大语言模型(例如 GPT)。这个输入通常会包含一些提示,用于指导模型生成期望的输出,比如一个答案或一个摘要。 3. 最后,RAG 会从大语言模型的输出中提取或格式化所需的信息,再返回给用户。
2024-08-19