Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

如何创建个人专属知识库

Answer

以下是创建个人专属知识库的相关内容:

  • 私人知识库中的内容通常包括从互联网收集的优质信息以及个人日常的思考和分享。
  • 基于私人知识库打造个人专属的 ChatGPT 常见有两种技术方案:
    • 训练专有大模型:可以使用个人知识库训练专有大模型,但此方案并非当下主流,存在高成本、更新难度大等缺陷。
    • 利用 RAG(检索增强生成)技术:先将文本拆分成若干小文本块并转换为 embeddings 向量,保存在向量储存库中。当用户提出问题时,将问题转换为向量与储存库中的向量比对,提取关联度高的文本块与问题组合成新的 prompt 发送给 GPT API。
    • 搭建基于 GPT API 的定制化知识库时,由于 GPT-3.5 一次交互支持的 Token 有限,OpenAI 提供了 embedding API 解决方案。embeddings 是一个浮点数字的向量,向量之间的距离衡量关联性,小距离表示高关联度。
Content generated by AI large model, please carefully verify (powered by aily)

References

这可能是讲 Coze 的知识库最通俗易懂的文章了

私人知识库中内容一般有两种:日常从互联网收集的优质信息个人日常的思考以及分享如果我想基于这套知识库打造个人专属的ChatGPT该怎么做呢?这里面常见的会有两种技术方案1.训练专有大模型2.利用RAG(检索增强生成)技术初次听到这两个名词你可能有点懵,不要慌,接下来我会通俗易懂的语言让你了解他们的原理。[heading3]训练专有大模型[content]KimiChat和ChatGPT等AI聊天软件为什么能够精准的回答问题,因为他们使用了整个互联网的语料进行了训练,从而拥有了整个互联网的知识。看到这里你应该知道我想要讲什么了,对,既然能用整个互联网的知识训练出KimiChat和ChatGPT等大模型,那我能不能使用我的知识库来训练一个专有的大模型呢?当然可以!而且这样的效果是最好的。但是这并不是当下主流的方案,因为他有以下几个缺陷:高成本:训练和维护一个大型专有模型的成本非常高,需要大量的计算资源和专业知识。更新难度:如果需要更新模型的知识,需要重新训练或微调模型,这可能是一个复杂且耗时的过程下面让我们来看另一个方案:RAG(检索增强生成)

从零开始,用GPT打造个人知识库

上面将文本转换成向量(一串数字)能大大节省空间,它不是压缩,可简单理解为索引(Index)。接下来就有意思了。比如我有一个大文本,可以先把它拆分成若干个小文本块(也叫chunk),通过embeddings API将小文本块转换成embeddings向量,这个向量是跟文本块的语义相关。在一个地方(向量储存库)中保存这些embeddings向量和文本块,作为问答的知识库。当用户提出一个问题时,该问题先通过embeddings API转换成问题向量,然后将这问题向量与向量储存库的所有文本块向量比对,查找距离最小的几个向量,把这几个向量对应的文本块提取出来,与原有问题组合成为新的prompt(问题/提示词),发送给GPT API。这样一来就不用一次会话中输入所有领域知识,而是输入了关联度最高的部分知识。一图胜千言,转一张原理图。再举一个极其简单的例子,比如有一篇万字长文,拆分成Chrunks包含:文本块1:本文作者:越山。xxxx。文本块2:公众号越山集的介绍:传播效率方法,分享AI应用,陪伴彼此在成长路上,共同前行。文本块3:《反脆弱》作者塔勒布xxxx。文本块4:“科技爱好者周刊”主编阮一峰会记录每周值得分享的科技内容,周五发布。...文本块n如果提问是”此文作者是谁?“。可以直观的看出上面的文本块1跟这个问题的关联度最高,文本块3次之。通过比较embeddings向量也可以得到这结论。那最后发送给GPT API的问题会类似于”此文作者是谁?从以下信息中获取答案:本文作者:越山。xxxx。《反脆弱》作者塔勒布xxxx。“这样一来,大语言大概率能回答上这个问题。

从零开始,用GPT打造个人知识库

要搭建基于GPT API的定制化知识库,涉及到给GPT输入(投喂)定制化的知识。但GPT-3.5,也就是当前免费版的ChatGPT一次交互(输入和输出)只支持最高4096个Token,约等于3000个单词或2300个汉字。这点容量对于绝大多数领域知识根本不够。为了使用GPT的语言能力来处理大量的领域知识,OpenAI提供了embedding API解决方案。参考OpenAI embedding documents。[heading2]理解embeddings[content]embeddings(直译为嵌入)是一个浮点数字的向量(列表)。两个向量之间的距离衡量它们的关联性。小距离表示高关联度,大距离表示低关联度。进一步解释:向量(列表):向量是数学中表示大小和方向的一个量,通常用一串数字表示。在计算机科学和数据科学中,向量通常用列表(list)来表示。列表是一种数据结构,它包含一组有序的元素。例如,一个二维向量可以表示为[2,3],这意味着沿着两个轴的分量分别为2和3。在这里,"list"是一种编程术语,意味着一系列有序的数据。向量之间的距离:向量之间的距离是一种度量两个向量相似性的方法。有多种方式可以计算两个向量之间的距离,最常见的是欧几里得距离。欧几里得距离计算方法是将两个向量的对应元素相减,然后取平方和,再开平方。例如,向量A =[1,2]和向量B =[4,6]之间的欧几里得距离为sqrt((4-1)^2 +(6-2)^2)= 5。较小距离意味着高相关性,因为向量间相似度高。在OpenAI词嵌入中,靠近向量的词语在语义上相似。例如,“猫”和“狗”距离近,它们都是宠物,与“汽车”距离远,相关性低。文档上给了创建embeddings的示例上面的命令访问embeddings API接口,将input语句,转化成下面这一串浮点数字。

Others are asking
对作为知识库的数据进行预处理,用哪个软件比较哈
以下是一些可用于对作为知识库的数据进行预处理的软件和方法: 1. LangchainchatGLM:对于知识库内容的组织要求较高,无需微调训练,适合有结构、界限分明的数据。可使用langchain库比对字典的关键词keys部分,找到相似度最高的相关keys对应的内容文本,送进提示词模板(prompt_template),然后送到LLM进行后处理。 2. 在检索原理方面,可通过嵌入模型(如Word2Vec、GloVe、BERT)将问题文本转化为向量,用于后续检索。例如,在商业化问答场景中,会对接收的问题进行预处理和向量化。 3. 在创建知识库并上传表格数据时,可通过API获取在线API的JSON数据上传,或手动自定义创建数据表结构和数据。需注意指定语义匹配字段,在响应用户查询时,将用户查询内容与该字段内容进行比较,根据相似度进行匹配。
2025-02-17
我手里有一个文件知识库,想锻炼一个ai,按照这个文件知识库的习惯帮我改写新的文件
以下是为您整理的内容: 南瓜博士:平生第一次写小说获奖,是 AI 帮我的! 三、丰富细化 接下来要让 AI 一段一段进行细节描写。为确保文章前后一致,先让 AI 帮助写故事概要和角色背景介绍,并按自己的审美略做修改。使用了一个重要技巧,让 AI 以表格形式输出细节描述,这样有三个好处: 1. 打破 AI 原本的叙事习惯,避免出现陈词滥调。 2. 按编号做局部调整容易,指哪改哪,其他内容能稳定不变。 3. 确保内容都是具体细节,避免整段输出时因缩减而丢光细节只剩笼统介绍。 四、串联成文 把上一步生成的五个表格依次复制粘贴,AI 就照着写文章了,偶尔需要帮忙给点建议。 五、失败的局部修改 小说大赛要求最后的作品必须是 AI 直接吐出来的,不能有任何改动且不能超过 2000 字,而自己的小说 2300+字,只好让 GPT4 做修改,一开始它表现不错,但很快暴露出记性不好的缺点。还没来得及高兴,就发现它失忆得很彻底。眼看截止时间快到了,只能求助 Claude,把文章和 GPT 生成的修改意见都给它,让它生成作品,匆匆截图提交。没想到,Claude 把关键情节改没了,如马克偷偷看艾拉、无名猫受伤的原因等。 熊猫 Jay:AI 编程 Cursor 来了,你没理由说不会写代码了 四、初体验:Cursor 的安装和使用 三、新增/修改代码、文字 选中代码,使用 Command+K 打开窗口,并输入修改要求。不选中代码打开窗口,可要求 AI 实现新功能,比如让 AI 增加一个广告位。当然,除了代码,也可选中文字进行修改,如改写、翻译等。 四、自动补全代码、注释、文字 输入代码或注释,Cursor 会自动补全代码,按 Tab 生效。除补全代码外,还能补全文字,可尝试。 五、对话窗口 Mac 使用 Shift+Command+L 打开聊天窗口,输入优化页面的需求,AI 能提供不同方案。比如倾向于使用好看的配色方案,点击 Apply,再点击 Accept 生效。要记得保存文件,Mac 的快捷键是 Command+S。这不是成品,若要做完整功能,需不停和 Cursor 对话,在案例部分会介绍完整制作过程。 六、全局搜索 还可把它当作简易的 AI 搜索工具,让它根据现有文件夹下的内容回答问题,比如问到基于文件内容,温度值设置的误区在哪里,回答准确度很高,甚至能定位到具体文件的行。
2025-02-17
给我flux的提示词结构的知识库我以他作为知识库
以下是关于 Flux 提示词结构的相关知识: 大语言模型就像一个学过无数知识、拥有无穷智慧的人,但在工作场景中,需要通过提示词来设定其角色和专注的技能,使其成为满足需求的“员工”。知识库则相当于给“员工”发放的工作手册,提供特定的信息。 提示词可以设定 Bot 的身份及其目标和技能,例如产品问答助手、新闻播报员、翻译助理等,决定 Bot 与用户的互动方式。详情可参考。 学习提示词可以分为五个维度,从高到低依次是思维框架、方法论、语句、工具和场景。但舒适的学习顺序应反过来,先从场景切入,直接了解在不同场景下提示词的使用及效果对比;然后使用提示词工具,如 Meta Prompt、Al 角色定制等;接着学习有效的提示语句,包括经典论文中的相关语句;再学习有效的方法论,将有效语句及其背后的原理整合成稳定可控的方法;最后掌握思维框架。 此外,还可以通过插件、工作流、记忆库等功能定制 AI Bot。插件可通过 API 连接集成各种平台和服务扩展 Bot 能力,详情参考。
2025-02-16
知识库RAG方案
RAG(检索增强生成)是一种在 AI 领域中用于处理知识库的方案。 大模型的训练数据有截止日期,当需要依靠不包含在大模型训练集中的数据时,RAG 是主要方法之一。 RAG 的应用可以抽象为以下 5 个过程: 1. 文档加载:从多种不同来源加载文档,如 PDF 等非结构化数据、SQL 等结构化数据以及代码等。 2. 文本分割:把文档切分为指定大小的块,称为“文档块”或“文档片”。 3. 存储:包括将切分好的文档块进行嵌入转换成向量形式,并将向量数据存储到向量数据库。 4. 检索:通过某种检索算法找到与输入问题相似的嵌入片。 5. 输出:把问题以及检索出来的嵌入片一起提交给 LLM,LLM 会通过问题和检索出来的提示生成更合理的答案。 基于 Coze 的知识库问答是典型的 RAG 方案,其重要一环是文档切片。但 RAG 方案存在一些缺点,如跨分片总结和推理能力弱、文档有序性被打破、表格解析失败等。 相关的海外官方文档:https://www.coze.com/docs/zh_cn/knowledge.html ,国内官方文档:https://www.coze.cn/docs/guides/use_knowledge 。 在实际操作中,如使用外贸大师产品的帮助文档创建知识库时,要注意文档的分片策略会严重影响查询结果。
2025-02-16
你的知识库架构是怎样的,普通人如何迅速找到目标靶向,比如我想学ai绘画
以下是关于您想学习 AI 绘画的相关内容: 1. 知识库提到明天银海老师将详细讲解 AI agent,同时表示知识库内容丰富,您可挑选感兴趣的部分学习,比如较轻松的 AI 绘画等。 2. 强调 AI 绘画是视觉基础,还介绍了针对 AI 绘画学社做的关键词词库精选活动。 3. 讲述了 AI 绘画中的 stable diffusion 扩散模型的运作方式,是通过加噪和去噪,随机生成种子来形成最终图像,还提到生成式 AI 做高清放大可增加细节的原理。 您可以根据以上信息,逐步深入了解 AI 绘画的相关知识。
2025-02-15
知识库里面哪里有讲解AI在各行业应用现状的材料
以下是知识库中关于 AI 在各行业应用现状的相关材料: 在音乐创作方面,通过输入更高级的词汇与 AI 音乐对话能产生更好效果,有 AI 音乐的版块、挑战、分享会和教程,可通过王贝加入 AI 音乐社区。 在数字人语音合成方面,介绍了声音克隆技术,提到了微软、阿里等的相关成果,常用的是 JPT service。 在 config UI 的应用方面,能降低成本、提高效率,在图书出版、引流等方面有应用,岗位稀缺,社区有相关共学课程。 在零售电商行业,有《2024 生成式 AI 赋能零售电商行业解决方案白皮书》。 在招聘领域,牛客的《AI 面试实践手册(2024)》深入探讨了 AI 面试的应用现状、价值和未来发展,指出其在多个行业尤其在管培生、产品、IT 基础岗位和蓝领岗位中广泛应用。 在 PC 行业,腾讯广告 TMI 与 GfK 联合发布了《AI PC 行业趋势与潜力消费者洞察白皮书(2024 版)》。 在医疗领域,蛋壳研究院发布了《医疗人工智能走到新的十字路口》。 在新闻媒体领域,新华社研究院发布了《人工智能时代新闻媒体的责任与使命》。 在情感陪伴方面,头豹研究院发布了《AI 情感陪伴:缔造温情链接,拥抱智慧关怀新纪元》。
2025-02-15
如何对扣子智能体做专属训练
对扣子智能体进行专属训练时,需要注意以下要点: 1. 跳转设置:扣子在节点切换提供了独立和非独立两种识别模式。独立识别模式中每个节点都有一个独立识别模型,非独立模式则直接使用当前智能体模型进行判断,实际使用中推荐独立模式。 2. 独立模式的选择:独立模式有两种选择。第一种是面对通用指令时,选择已经训练好的、专门用于节点切换的大型模型,其优点是经过特定训练,无需额外操心设计。第二种是在遇到非常复杂的情景时,使用自定义的大型模型,可根据需求定制模型和编写特定提示词以适应复杂交互场景,但实际测试效果不理想,所以推荐使用第一种。 3. 关键注意点:在使用专门训练的意图识别模型进行节点切换时,要特别注意两个关键点。一是每个智能体的用途必须清晰明确,在设计和实现时要清楚标注其功能和目的,以确保系统能准确识别和响应用户意图。二是智能体的名称非常重要,应清晰、易于识别,便于系统识别和记忆。
2025-01-27
如何做一款专属某行业的AI
要开发一款专属某行业的 AI ,可以参考以下要点: 1. 学习模式:AI 应像人类一样学习,例如在医疗保健领域,创建具有潜在空间层次结构的堆叠 AI 模型,反映对每个基本元素的理解或预测能力,可能会以与人脑皮层类似的方式发展,并针对特定任务专门设计神经架构。 2. 特定领域专家 AI:创建特定领域的专家 AI 比创建全能 AI 更容易,预计会创造许多专家 AI ,它们在编码、数据和测试方面采用多样化方法,并提供多种意见。 3. 现实世界互动:让熟练的人类专家配备可穿戴设备,收集现实世界的互动供 AI 学习,同时避免复制危险的偏见。 4. 模型生态系统:以医疗保健为例,应投资创建像优秀医生和药物开发者那样学习的“专家”AI 模型生态系统。成为顶尖人才通常从多年密集信息输入和正规教育开始,再通过学徒实践,AI 学习也应如此,通过堆叠模型训练,而非仅依靠大量数据。 5. 行业调研报告: 步骤:让 AI 阅读学习优秀行业调研报告,总结方法论和操作框架;询问收集行业数据时所用的一手和二手数据及靠谱资料收集网站;要求 AI 推荐行业信息网站和微信公众号,并输出行业调研报告框架;丰富框架每一章节内容。 注意事项:使报告有深度可通过自身对行业的了解整理深度洞察和见解,或深度咨询 AI 并借助其知识学习、研究和总结。 以上是关于如何做一款专属某行业的 AI 的相关内容。
2025-01-22
我想训练一个专属Agent该怎么做?
要训练一个专属 Agent,以下是一些关键步骤和要点: 1. 明确目标:确定您希望 Agent 实现的特定目标,这将为训练提供方向。 2. 理解智能体的定义:智能体是能够感知环境并采取行动以实现特定目标的实体,可以是软件程序或硬件设备。 3. 规划:将大型任务分解为更小、可管理的子目标,以有效处理复杂任务。 4. 反思和完善:让 Agent 能够对过去的行为进行自我批评和反思,从错误中吸取教训,并针对未来步骤进行完善,提高最终结果质量。 5. 记忆管理:包括短期记忆,利用模型的短期记忆进行学习;长期记忆,通过外部向量存储和快速检索实现长时间信息保留和回忆。 6. 工具使用:训练 Agent 学习调用外部 API 来获取模型权重中缺失的额外信息,包括当前信息、代码执行能力、对专有信息源的访问等。 7. 评估工具使用能力:从调用 API 的能力、检索 API 的能力以及计划 API 超越检索和调用的能力这三个层面进行评估。 在训练过程中,还需要注意模型的上下文窗口长度有限,输入的剧集应足够短以构建多剧集历史,2 4 个剧集的多剧集上下文对于学习近乎最优的上下文强化学习算法是必要的,且上下文强化学习的涌现需要足够长的上下文。
2025-01-17
部署Agent专属的web端应用
以下是关于部署 Agent 专属的 web 端应用的相关内容: 在 Linux 上部署较为简单,前提是您有一张 4G 以上显存的 GPU 显卡。步骤如下: 1. 下载代码仓库。 2. 安装依赖(注意有两个依赖未放在 requirements.txt 里)。 3. 启动 webui 的 demo 程序,然后用浏览器登陆服务器的 ip:8080 就能试玩。此 demo 提供了 3 个参数: server_name:服务器的 ip 地址,默认 0.0.0.0。 servic_port:即将开启的端口号。 local_path:模型存储的本地路径。 4. 第一次启动生成语音时,需查看控制台输出,会下载一些模型文件,可能因网络问题失败,但首次加载成功后后续会顺利。 5. 基于此基础可拓展,比如集成到 agent 的工具中,结合 chatgpt 做更拟人化的实时沟通。 6. webui 上可设置的几个参数说明: text:指需要转换成语音的文字内容。 Refine text:选择是否自动对输入的文本进行优化处理。 Audio Seed:语音种子,是一个用于选择声音类型的数字参数,默认值为 2,是很知性的女孩子的声音。 Text Seed:文本种子,是一个正整数参数,用于 refine 文本的停顿,实测文本的停顿设置会影响音色、音调。 额外提示词(可写在 input Text 里):用于添加笑声、停顿等效果,例如。 以下是一些 Agent 构建平台: 1. Coze:新一代一站式 AI Bot 开发平台,适用于构建基于 AI 模型的各类问答 Bot,集成丰富插件工具拓展 Bot 能力边界。 2. Microsoft 的 Copilot Studio:主要功能包括外挂数据、定义流程、调用 API 和操作,以及将 Copilot 部署到各种渠道。 3. 文心智能体:百度推出的基于文心大模型的智能体(Agent)平台,支持开发者根据需求打造产品能力。 4. MindOS 的 Agent 平台:允许用户定义 Agent 的个性、动机、知识,以及访问第三方数据和服务或执行工作流。 5. 斑头雁:2B 基于企业知识库构建专属 AI Agent 的平台,适用于客服、营销、销售等场景,提供多种成熟模板,功能强大且开箱即用。 6. 钉钉 AI 超级助理:依托钉钉强大的场景和数据优势,提供环境感知和记忆功能,在处理高频工作场景如销售、客服、行程安排等方面表现出色。 以上信息仅供参考,您可根据自身需求选择适合的平台。
2025-01-07
AI+交易:来定制专属于你的私人高级交易顾问吧!
以下是关于“AI+交易:来定制专属于你的私人高级交易顾问吧!”的相关内容: 原本是一名 AIGC 创作者,在接触交易后,希望将交易与 AIGC 相结合,打造私人高级交易顾问。学习交易知识后认识到,单纯迷信技术分析提高胜率实现长期稳定盈利对个人投资者不可行,心态关键。新人对交易理论不熟悉更致命,成熟交易员单一策略熟练运用能找进出点、良好心态能长期盈利,但不熟悉行情只能观望。借助 AI 分析行情,期望在不熟悉市场时找到合适进场点,提高资金使用效率,多种策略配合提高理论胜率(有统计数据显示几千名专业交易员一年里平均胜率 70)。 此外,还有以下 AI 与工作场景结合的案例: 1. 销售方面:包括话术总结优缺点、定制销售解决方案。 2. 客服方面:定制客服话术,有关键词库,如产品知识、使用方法等。 3. HR 方面:团队绩效管理,根据绩效数据输出考评和改进建议;面试工具,如使用 GPT4 技术的实时转录工具帮助求职者生成回答。 另外,在七大行业的商业化应用中: 1. 企业运营:包括日常办公文档撰写整理、营销对话机器人等。 2. 教育:协助评估学生学习情况、定制学习内容等。 3. 游戏/媒体:如定制化游戏、出海文案生成等。 4. 零售/电商:包括舆情监测分析、品牌营销内容撰写等。 5. 金融/保险:如个人金融理财顾问、识别欺诈活动风险等。
2024-12-17
如何打造专属自己的ai智能体?让保存的文献资料为自己专属分析只用?
打造专属自己的 AI 智能体并让保存的文献资料为自己专属分析,可参考以下步骤: 1. 设计 AI 智能体架构:先构思整个 AI 智能体的架构。 2. 规定稍后读阅读清单的元数据:新建一个飞书多维表格,根据稍后读的管理需要,定义元数据字段,如“内容(超链接格式,显示页面标题,可点击跳转具体的页面)”“摘要(根据具体内容,总结内容主题、关键信息、阅读价值,并指出适合的读者群体)”“作者”“平台”“状态(阅读状态,收藏的默认态为“仅记录”)”“发布日期”“收集时间”等。您也可以直接复制准备好的模板:【模板】稍后读管理 3. 搭建整理入库工作流: 首先在 Coze 中逐步搭建 AI 智能体,搭建整理入库工作流。这是支撑整个 AI 稍后读服务的前置流程。 新建工作流「url2table」,根据弹窗要求自定义工作流信息。 工作流全局流程设置: 开始节点:输入 url。由于希望收到用户输入的待收藏 url 就开始流程,所以不需要额外配置。 变量节点:引入 bot 变量中保存的飞书多维表格地址。为便于维护充当稍后读存储地址的飞书多维表格链接,需要将这个链接存储在 bot 的变量中,并在工作流运行时进行引用。 插件节点:获取页面内容。这一步直接把开始节点的{{BOT_USER_INPUT}}引入到参数{{url}}中,随便设置{{timeout}}为 60000。
2024-11-29
如何创建属于自己的智能体
以下是创建属于自己的智能体的一般步骤: 1. 对于 Coze 智能体: 打开扣子官网:https://www.coze.cn/ 。 “画小二智能小助手”Coze 商店体验地址:https://www.coze.cn/store/bot/7371793524687241256?panel=1&bid=6cqnnu5qo7g00 。 点击创建 Bot,在对话框中工作空间选择“个人空间”,命名为画小二智能小助手。 设置画小二助手的提示词。 2. 对于用 Coze 的工作流创建: 打开 Coze 官网 https://www.coze.cn/home 。 创建图像工作流,图像流分为智能生成、智能编辑、基础编辑三类。 空间风格化插件有相关参数,如 image_url 是毛坯房的图片地址;Strength 是提示词强度,影响效果图;Style 是生成效果的风格,如新中式、日式、美式、欧式、法式等;user_prompt 是用户输入的 Promot 提示词。 按照构架配置工作流,调试工作流毛坯房测试用例:https://tgi1.jia.com/129/589/29589741.jpg 。 开始节点对应配置三项内容,进行提示词优化。 设定人设和回复逻辑,然后点击右上角发布。 3. 对于智谱 BigModel 共学营第二期的微信助手: 注册智谱 Tokens 智谱 AI 开放平台:https://bigmodel.cn/ 。 参与课程至少需要有 token 体验资源包,获取资源包的方式有:新注册用户注册即送 2000 万 Tokens;充值/购买多种模型的低价福利资源包,如直接充值现金,所有模型可适用:https://open.bigmodel.cn/finance/pay ,语言资源包:免费 GLM4Flash 语言模型/ ,所有资源包购买地址:https://bigmodel.cn/finance/resourcepack ,共学营报名赠送资源包。 先去【财务台】左侧的【资源包管理】查看自己的资源包,本次项目会使用到的有 GLM4、GLM4VPlus、CogVideoX、CogView3Plus 模型。 进入智能体中心我的智能体,开始创建智能体。
2025-02-16
怎么创建自己的知识库
以下是创建自己知识库的步骤: 1. 来到个人空间,找到知识库导航栏,点击创建知识库。需要注意的是,知识库是共享资源,您的多个 Bot 可以引用同一个知识库。 2. 选择知识库的格式并填写一些信息。目前(2024.06.08)支持三种格式:文档、表格(CSV、Excel 等)、图片(上传一张图片并填写图片文字说明)。格式并不重要,重要的是要了解影响 RAG 输出质量的因素。 3. 以本地文档为例(问答对可以选择表格),选择自定义的文档切割。 4. 完成数据处理。处理完成后,一个问答对会被切割成一个文档片。 关于使用知识库,您可以参考这篇教程: 。 创建知识库的小技巧:知识库好不好用,跟内容切分粒度有很大关系,我们可以在内容中加上一些特殊分割符,比如“”,以便于自动切分数据。分段标识符号要选择“自定义”,内容填“”。最终的知识库结果中,同一颜色代表同一个数据段,如果内容有误需要编辑,可以点击具体内容,鼠标右键会看到“编辑”和“删除”按钮,可以进行编辑或删除。
2025-02-15
教培机构怎么创建一个智能体帮我给每一个学生写评价
以下是为教培机构创建一个能为每个学生写评价的智能体的相关指导: 首先,明确评价的维度和标准。可以参考以下几个方面: 1. 语言的准确性、清晰度和规范性,每项 5 分,共 5 分。 2. 讲授的严密性和逻辑性,每项 5 分,共 5 分。 3. 语言的生动性和趣味性,每项 5 分,共 5 分。 4. 针对学生实际的可接受性和启发性,每项 5 分,共 5 分。 5. 语言的艺术性,每项 5 分,共 5 分。 在评价作文方面,需要考虑多个因素,包括:错别字、词、标点识别;好词好句识别、内容评价、逻辑结构评价、语言表达评价、段落评价等。利用大模型高效、准确、丰富知识的优秀特点,对学生作文进行综合打分。 在创建智能体时,要注重以下几点: 1. 让智能体具备深层次语义理解能力,即便处于复杂语境,也能有效辨识出不恰当的词汇和错误的句子构造。 2. 利用大规模数据识别能力,使其能够辨别出哪些词汇或句子搭配在正式书面语中较为罕见,进而准确标出错词错句。 3. 培养智能体基于上下文来判定词语和句子的恰当性,即便是语法正确但语境不适宜的用词也能被有效识别。 4. 让智能体掌握语法规则习得能力,使其能够检测句子是否遵守了语法标准。 同时,写好提示词是创建智能体的第一步。可以参考一些相关的示例,如儿童寓意故事创作者的知识库中的故事,从中学习如何构思和组织语言。 另外,还可以参考之前让 AI 当评委的经验,如通义听悟录音转文字,丢给自编的多个智能体出分数并填结果。结果显示分数高的五位和三位人类评委选出来的前五一致,只是排名有一位的差异。 总之,创建这样的智能体需要综合考虑多方面的因素,并不断优化和改进,以提高评价的准确性和有效性。
2025-02-15
目前我有个数据源头,可能是excle或mysql数据库。他们都含义以下字段: 发货日期 物料编号 物料描述 板块 实际已交货量 销售单位 金额(RMB) 金额(不含税RMB) 国家 品牌; 我需要创建一个智能体助手,用于分析这些数据,这个智能通助手需要能按用户需要,分析各个维度的数据,并按板块等维度汇总,并转为柱状图图表表现出现,并表现用户所有日期的近一周的变化,并阐明变化或波动是由哪些数据导致的? 结合以上需求,我需要在飞书上构建一个企业每日利润表分析与汇报助手,该选定哪种prompt框架
很抱歉,目前飞书知识库中没有关于您所描述的这种特定需求下应选定哪种 prompt 框架的相关内容。但一般来说,构建这样的企业每日利润表分析与汇报助手的 prompt 框架可以考虑以下几个方面: 1. 明确数据来源和格式:清晰描述数据来自 Excel 或 MySQL 数据库,以及包含的具体字段。 2. 定义分析维度和指标:如按板块、国家等维度汇总数据,关注利润相关的指标。 3. 设定时间范围:明确分析近一周的数据变化。 4. 描述图表要求:指定以柱状图展示数据。 5. 解释变化原因:阐明导致数据变化或波动的关键因素。 您可以根据实际情况进一步细化和完善这个框架。
2025-02-15
目前我有个数据源头,可能是excle或mysql数据库。他们都含义以下字段: 发货日期 物料编号 物料描述 板块 实际已交货量 销售单位 金额(RMB) 金额(不含税RMB) 国家 品牌; 我需要创建一个智能体助手,用于分析这些数据,这个智能通助手需要能按用户需要,分析各个维度的数据,并按板块等维度汇总,并转为柱状图图表表现出现,并表现用户所有日期的近一周的变化,并阐明变化或波动是由哪些数据导致的?
要创建这样一个智能体助手来分析您提供的数据,以下是一些建议的步骤: 1. 数据获取与预处理: 从 Excel 或 MySQL 数据库中读取数据。 对数据进行清洗和预处理,例如处理缺失值、异常值等。 2. 数据分析与计算: 按照用户需求的维度(如板块、国家、品牌等)对数据进行分组和汇总计算。 计算近一周的数据变化情况。 3. 图表生成: 使用合适的图表库(如 matplotlib、Seaborn 等)将汇总后的数据以柱状图的形式展示。 4. 变化原因分析: 通过比较不同维度的数据,找出导致变化或波动的关键因素。 在技术实现方面,您可以使用 Python 编程语言来完成上述任务。例如,使用 Pandas 库进行数据处理和分析,使用 Matplotlib 库生成图表。希望这些建议对您有所帮助,如果您在实现过程中遇到具体的技术问题,欢迎随时向我咨询。
2025-02-15
如何创建一个含有物理试题库且能分析试题、命制试题和组卷的的智能体
要创建一个含有物理试题库且能分析试题、命制试题和组卷的智能体,您可以参考以下步骤: 1. 阿里云百炼: 访问百炼控制台中“我的应用”,单击新增应用,在智能体应用页签,单击直接创建。如果您之前已创建过应用,则单击右上角的新增应用。控制台页面链接:https://bailian.console.aliyun.com/?spm=5176.29619931.J__Z58Z6CX7MY__Ll8p1ZOR.1.2f3e59fciQnmL7/home 进入智能体应用管理界面后,选择大模型并进行参数配置。您可以参考相关图示,单击设置,并在模型选择的下拉菜单中选择模型,比如通义千问Max。您可以根据需求进行模型参数的配置。 选择大模型之后,您就在百炼创建完成了一个智能体应用。您可以输入问题进行测试。 2. 智谱BigModel: 注册智谱Tokens:智谱AI开放平台:https://bigmodel.cn/ 参与课程至少需要有token体验资源包,获取资源包的方式有:新注册用户,注册即送2000万Tokens;充值/购买多种模型的低价福利资源包,直接充值现金,所有模型可适用:https://open.bigmodel.cn/finance/pay ;语言资源包:免费GLM4Flash语言模型/ ;所有资源包购买地址:https://bigmodel.cn/finance/resourcepack ;共学营报名赠送资源包。 先去【财务台】左侧的【资源包管理】看看自己的资源包,本次项目会使用到的有GLM4、GLM4VPlus、CogVideoX、CogView3Plus模型。 进入智能体中心我的智能体,开始创建智能体。 3. Coze智能体: 知识库: 本次创建知识库使用手动清洗数据,上节课程是自动清洗数据:,自动清洗数据会出现目前数据不准的情况,本节视频就尝试使用手动清洗数据,提高数据的准确性。 在线知识库:点击创建知识库,创建一个画小二课程的FAQ知识库。知识库的飞书在线文档,其中每个问题和答案以分割。选择飞书文档,选择自定义的自定义,输入,然后他就将飞书的文档内容以区分开来,这里可以点击编辑修改和删除。点击添加Bot,添加好可以在调试区测试效果。 本地文档:本地word文件,注意如何拆分内容,提高训练数据准确度,将海报的内容训练的知识库里面。画小二这个课程80节课程,分为了11个章节,不能一股脑全部放进去训练。正确的方法,首先将11章的大的章节名称内容放进来,章节内详细内容格式按固定方式进行人工标注和处理,然后选择创建知识库自定义清洗数据。 发布应用:点击发布,确保在Bot商店中能够搜到。
2025-02-10
搭建个人知识库的具体操作是什么?
搭建个人知识库的具体操作如下: 1. 了解 RAG 技术: 利用大模型的能力搭建知识库是 RAG 技术的应用。 大模型训练数据有截止日期,当需要依靠不在训练集中的数据时,通过检索增强生成 RAG 实现。 RAG 应用包括文档加载、文本分割、存储、检索和输出 5 个过程。 文档加载可从多种来源加载不同类型的文档。 文本分割器把文档切分为指定大小的块。 存储涉及将切分好的文档块嵌入转换成向量形式,并将向量数据存储到向量数据库。 通过检索算法找到与输入问题相似的嵌入片。 把问题以及检索出来的嵌入片一起提交给 LLM 生成答案。 2. 本地知识库进阶: 若要更灵活掌控知识库,需使用 AnythingLLM 软件,其包含 Open WebUI 的所有能力,并额外支持选择文本嵌入模型和向量数据库。 安装地址:https://useanything.com/download 。 安装完成后进入配置页面,主要分为三步:选择大模型、选择文本嵌入模型、选择向量数据库。 在 AnythingLLM 中创建独有的 Workspace 与其他项目数据隔离。 操作包括创建工作空间、上传文档并进行文本嵌入、选择对话模式(Chat 模式综合给出答案,Query 模式仅依靠文档数据给出答案)、测试对话。 3. 使用 embeddings: 将文本转换成向量能节省空间,可理解为索引。 把大文本拆分成小文本块,通过 embeddings API 转换成向量,在向量储存库保存向量和文本块作为知识库。 用户提问时,问题先转成向量,与储存库中的向量比对,提取关联度高的文本块与问题组合成新的 prompt 发送给 GPT API 。 例如,对于“此文作者是谁?”的问题,通过比较向量可找到关联度高的文本块。
2025-02-13
我想用deepseek 写微信公众号文章,我将要写的主题告诉他,让它为我生成个人角度的文章,我要写的主题一般围绕着软件分享,技术分享等。请你根据我的要求为我写一份适用的提示词
以下是为您生成的适用于使用 DeepSeek 写微信公众号文章的提示词: 我要写一篇关于软件分享或技术分享的微信公众号文章,文章标题要足够吸引人,以便能广泛传播。文章内容要详细且有条理,先介绍分享的软件或技术的基本情况,包括其功能、特点和优势;然后结合实际案例或个人使用体验,阐述其在实际应用中的效果和价值;最后总结并展望其未来的发展前景。请为我生成这样一篇完整的文章。
2025-02-12
个人知识库
以下是关于个人知识库的相关内容: 使用 GPT 打造个人知识库: 将文本拆分成小文本块(chunk),通过 embeddings API 转换成 embeddings 向量,在向量储存库中保存这些向量和文本块作为问答的知识库。 当用户提出问题时,问题先转换成问题向量,与向量储存库中的文本块向量比对,提取关联度高的文本块,与问题组合成新的 prompt 发送给 GPT API。 例如对于“此文作者是谁?”的问题,可根据向量关联度提取相关文本块,如“本文作者:越山。xxxx。”“《反脆弱》作者塔勒布xxxx。” 理解 embeddings: embeddings 是浮点数字的向量(列表),两个向量之间的距离衡量它们的关联性,小距离表示高关联度,大距离表示低关联度。 向量是数学中表示大小和方向的量,通常用一串数字表示,在计算机科学和数据科学中常用列表表示。 向量之间的距离有多种计算方式,常见的是欧几里得距离。 在 OpenAI 词嵌入中,靠近向量的词语在语义上相似。 手把手教你本地部署大模型以及搭建个人知识库: 思路来源于视频号博主黄益贺。 作者按照视频进行实操并附加了关于 RAG 的额外知识。 读完本文可学习到如何使用 Ollama 一键部署本地大模型、了解 ChatGPT 的信息流转、RAG 的概念及核心技术、通过 AnythingLLM 搭建本地化数据库等。
2025-02-12
写一篇关于个人AI生存协作的探索指南
以下是一篇关于个人 AI 生存协作的探索指南: 一、相关研究和报告 1. 平安证券发布的《AI 系列深度报告(六):AI 智能眼镜:AI 技术应用落地新风口,25 年有望迎来新品密集发布》指出,AI 技术推动终端创新,AI 智能眼镜成为新风口,具有轻薄、功能聚焦视听、佩戴舒适等特点,预计 2025 年新品将密集发布,销量有望翻倍。 2. 腾讯研究院发布的《2025 年 AI 转型的进展洞察报告》深入探讨了 AI 转型的定义、内涵、应用现状、投资情况、挑战与风险以及未来展望。报告指出企业对生成式 AI 的探索集中在核心业务环节,但在职能性环节成熟度更高,应用时以多目标为导向,优先聚焦提升核心能力和优化现有业务。 二、基础篇 过去一年持续进行了关于 AI 协作探索的研究和分享,包括 AI 产品的流量和竞争视角分析等。 三、协同智能的七种武器 1. 认知层/武器一:As Team,Be Leader 2. 视角层/武器二:AI as Person 3. 视角层/武器三:AI as ME 4. 视角层/武器四:AI as Alien 5. 实践层/武器五:AI as Tool 6. 实践层/武器六:AI as Mirror&Coach 7. 实践层/武器七:AI as Coworker&Friend 四、拓展阅读 包括 Gamma embed、AIGC 行业、AI 变革、公司/产业实践等方面的内容。 五、人类价值的低替代、提升方向和方式重塑 在领导决策、创新思维、沟通能力等方面,思考和创新占 70%,想法的实现执行和与 AI 协作执行占 30%。
2025-02-12
架设个人AI
以下是关于架设个人 AI 的相关信息: 大圣是一位 AI 超级个体打造者,主业为程序员,专注于 AI Agent、AI 编程以及 AI 写作领域,热爱写作与分享,擅长将复杂的 AI 知识通俗易懂地讲解。他计划一年内将自己的工作流全部 AI 化以实现十倍提效,目前的工作流主要包括阅读与写作、自媒体个人 IP、做公开课程与付费课程以及女儿日常陪伴。 用 Coze 免费打造自己的微信 AI 机器人的步骤: 设计 AI 机器人时,要确定功能范围。 编写【prompt】提示词,设定 Bot 的身份和目标。 创建【知识库】,整理“关键字”与“AI 相关资料链接”的对应关系并存储,创建知识库路径为个人空间知识库创建知识库,支持本地文档、在线数据、飞书文档、Notion 等类型,本次使用【本地文档】,按照操作指引上传文档、分段设置、确认数据处理,可在内容中加上特殊分割符“”便于自动切分数据,分段标识符号选择“自定义”,内容填“”,若内容有误可编辑或删除。 创建【工作流】,告诉 AI 机器人处理信息的流程,创建工作流路径为个人空间工作流创建工作流,工作流设计好后先试运行,无误后发布,若任务和逻辑复杂,可结合“节点”工具,如调用【大模型】总结分析知识库内容、调用【数据库】存储用户输入信息、调用【代码】处理复杂逻辑等,工作流不必复杂,能实现目的即可,所以在设计 Bot 前确定目的和功能范围很重要。
2025-02-12
现在个人应用场景下最新的产品是什么
在个人应用场景下,最新的产品包括以下方面: 个人实操案例: 产品使用场景:为本篇文章配图,通过不同提示词生成搞笑图片等。 产品开发场景:搭建 AI 访谈 bot,以了解做 AI 朋友的访谈意愿和产出内容质量水平;对内容推荐机制感兴趣,希望 bot 具备内容推荐能力。实现方案有简单和复杂之分,复杂方案需考虑用户识别、记录存储入库可查看等问题,在扣子搭建 bot 时存在工作流触发不成功导致访谈记录未成功存储入库的情况。由于要发布到公众号作为订阅号助手,目前部署的是扣子版本,回复关键词【元器】可体验元器版本。 AIGC 落地应用: 筛选出 5 大应用场景、17 个细分方向、40+大模型案例。 使用场景分为改善大模型产品的使用体验、助力用户工作流、细分场景独立实用工具、AI 社区、Chatbot 五个方向。 产品形态分为插件(Chat GPT/Chrome 等)、辅助现有产品能力、深度结合 LLM 能力的独立网站&应用、AI 社区四种。目前产品大多分布在 PC 端。
2025-02-11