Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

coze web sdk 的具体测试的案例

Answer

以下是关于 Coze Web SDK 具体测试的案例:

  1. 提示词母体测试:
    • 测试平台包括海外版 Coze 和国内版 Coze。
    • 目的是测试提示词母体模板是否能按规定指令进行生成。
    • 测试模型有 Claude3.5 Sonnet(200K)、GLM(128K)等。
    • 进行了现实主义人物角色、虚幻主义人物角色等方面的测试。
    • 测试感受是基线达到,国内外模型都能按要求生成拟人化提示词,但效果不一,Claude 生成质量最好。
  2. 分步构建和测试 Agent 功能:
    • 进入 Coze 后,点击「个人空间-工作流-创建工作流」打开弹窗。
    • 根据弹窗要求自定义工作流信息,确认后完成新建。
    • 左侧「选择节点」模块中,根据子任务需要实际用到插件、大模型、代码等。
    • 编辑面板中的开始节点和结束节点分别对应分解子任务流程图中的原文输入和结果输出环节。
    • 按照流程图在编辑面板中拖入对应的 LLM 大模型、插件、代码节点即可完成工作流框架搭建。
Content generated by AI large model, please carefully verify (powered by aily)

References

提示词母体系列(2):再进阶,一分钟创建你的拟人化小助理

|测试平台|目的|测试模型||-|-|-||海外版Coze|测试提示词母体模板是否能按规定指令进行生成。|Claude3.5 Sonnet(200K)||国内版Coze||GLM(128K)|先来生成一个现实主义的人物角色。这种角色更贴近我们的日常生活,可以验证模板在创建真实、可信的人物形象方面的能力。这对于创作小说、编写剧本或设计虚拟助手等场景都有重要意义。[heading3]4.1.1国内模型测试——现实主义人物角色[heading3]4.1.2国外模型测试——现实主义人物角色[heading3]4.1.3国内外模型测试——虚幻主义人物角色[content]在这部分测试的最后一段,我将尝试创建一个游戏角色,我选择了广为人知的魔兽世界作为背景,这不仅因为它的知名度,更因为它丰富的世界观和多样化的种族设定为我们的测试提供了理想的素材。这种测试可以检验我们的模板在处理虚构、奇幻元素时的表现,对游戏开发、角色扮演游戏设计等领域有重要参考价值。(由于篇幅有限,在这里只放一张效果图)测试一圈下来我的整体感受就是:基线达到了,国内外的模型都能按要求生成拟人化提示词,但是效果不一。按生成质量来说,Claude最好,GPT其次,MoonShot第三。至于其他的。。。凑合能看吧。所以,我强烈建议大家在条件允许的情况下,优先选择使用Claude模型进行测试和实际应用。它不仅能够生成更加优质的内容,还能带来更多的可能性和创新空间。

一泽Eze:万字实践教程,全面入门 Coze 工作流|用 Coze 打造 AI 精读专家智能体,复刻 10 万粉公众号的创作生产力

首先进入Coze,点击「个人空间-工作流-创建工作流」,打开创建工作流的弹窗。根据弹窗要求,自定义工作流信息。点击确认后完成工作流的新建,可以看到整个编辑视图与功能如下:其中,左侧「选择节点」模块中,根据我们的子任务需要,实际用上的有:1.插件:提供一系列能力工具,拓展Agent的能力边界。本案例涉及的思维导图、英文音频,因为无法通过LLM生成,就需要依赖插件来实现。2.大模型:调用LLM,实现各项文本内容的生成。本案例的中文翻译、英文大纲、单词注释等都依赖大模型节点。3.代码:支持编写简单的Python、JS脚本,对数据进行处理。而编辑面板中的开始节点、结束节点,则分别对应1.2分解子任务流程图中的原文输入和结果输出环节。接下来,按照流程图,在编辑面板中拖入对应的LLM大模型、插件、代码节点,即可完成工作流框架的搭建。

一泽Eze:万字实践教程,全面入门 Coze 工作流|用 Coze 打造 AI 精读专家智能体,复刻 10 万粉公众号的创作生产力

首先进入Coze,点击「个人空间-工作流-创建工作流」,打开创建工作流的弹窗。根据弹窗要求,自定义工作流信息。点击确认后完成工作流的新建,可以看到整个编辑视图与功能如下:其中,左侧「选择节点」模块中,根据我们的子任务需要,实际用上的有:1.插件:提供一系列能力工具,拓展Agent的能力边界。本案例涉及的思维导图、英文音频,因为无法通过LLM生成,就需要依赖插件来实现。2.大模型:调用LLM,实现各项文本内容的生成。本案例的中文翻译、英文大纲、单词注释等都依赖大模型节点。3.代码:支持编写简单的Python、JS脚本,对数据进行处理。而编辑面板中的开始节点、结束节点,则分别对应1.2分解子任务流程图中的原文输入和结果输出环节。接下来,按照流程图,在编辑面板中拖入对应的LLM大模型、插件、代码节点,即可完成工作流框架的搭建。

Others are asking
使用COZE搭建智能体的步骤
使用 COZE 搭建智能体的步骤如下: 1. 梳理手捏 AI Agent 的思路: 在上篇文章中提到过 Prompt 工程的必备能力,即通过逻辑思考,从知识经验中抽象表达出关键方法与要求,这一理念同样适用于在 Coze 中创建 AI Agent。 搭建工作流驱动的 Agent 简单情况可分为 3 个步骤: 规划:制定任务的关键方法,包括总结任务目标与执行形式,将任务分解为可管理的子任务,确立逻辑顺序和依赖关系,设计每个子任务的执行方法。 实施:分步构建和测试 Agent 功能。 完善:全面评估并优化 Agent 效果。 2. 分步构建和测试 Agent 功能: 首先进入 Coze,点击「个人空间 工作流 创建工作流」,打开创建工作流的弹窗。 根据弹窗要求,自定义工作流信息。 点击确认后完成工作流的新建,可以看到整个编辑视图与功能。 其中,左侧「选择节点」模块中,根据子任务需要,实际用上的有: 插件:提供一系列能力工具,拓展 Agent 的能力边界。本案例涉及的思维导图、英文音频,因为无法通过 LLM 生成,就需要依赖插件来实现。 大模型:调用 LLM,实现各项文本内容的生成。本案例的中文翻译、英文大纲、单词注释等都依赖大模型节点。 代码:支持编写简单的 Python、JS 脚本,对数据进行处理。 而编辑面板中的开始节点、结束节点,则分别对应分解子任务流程图中的原文输入和结果输出环节。 接下来,按照流程图,在编辑面板中拖入对应的 LLM 大模型、插件、代码节点,即可完成工作流框架的搭建。 3. 全面评估并优化 Agent 效果: 整体试运行 Agent,识别功能和性能的卡点。 通过反复测试和迭代,优化至达到预期水平。
2025-02-17
通过飞书机器人与 Coze 搭建的智能体进行对话
通过飞书机器人与 Coze 搭建智能体进行对话,实现跨平台的稍后读收集与智能阅读计划推荐,具体步骤如下: 1. 前期准备: 设计 AI 稍后读助手的方案思路,包括简化“收集”(实现跨平台收集功能,支持电脑(web 端)、安卓、iOS 多端操作,输入 URL 完成收集,借鉴微信文件传输助手通过聊天窗口输入)、自动化“整理入库”(自动整理每条内容的关键信息,支持跨平台查看)、智能“选择”推荐(根据收藏记录和阅读兴趣生成阅读计划)。 2. 逐步搭建 AI 智能体: 经过配置得到两个可用工作流(整理入库、选择内容),将其编排为完整智能体。 配置过程包括创建 Bot、填写 Bot 介绍、切换模型为“通义千问”、把工作流添加到 Bot 中、新增变量{{app_token}}、添加外层 bot 提示词,完成后可在「预览与调试」窗口与智能体对话并使用全部功能。
2025-02-16
使用飞书机器人(如Coze智能体)自动抓取外部链接(如网页、公众号文章),通过多维表格存储为“稍后读”清单,并自动提取关键信息(标题、摘要、标签)
以下是使用飞书机器人(如 Coze 智能体)自动抓取外部链接(如网页、公众号文章),通过多维表格存储为“稍后读”清单,并自动提取关键信息(标题、摘要、标签)的相关内容: 前期准备: 1. 简化“收集”: 实现跨平台收集功能,支持电脑(web 端)、安卓、iOS 多端操作。 输入一个 URL 即可完成收集,借鉴微信文件传输助手的方式,通过聊天窗口输入更符合用户习惯。 2. 自动化“整理入库”: 系统在入库时自动整理每条内容的关键信息,包括标题、摘要、作者、发布平台、发布日期、收集时间和阅读状态。 阅读清单支持跨平台查看。 3. 智能“选择”推荐: 根据当前收藏记录和用户阅读兴趣进行相关性匹配,生成阅读计划。 使用步骤: 1. 设置稍后读存储地址: 首次使用,访问。 点击「更多创建副本」,然后复制新表格的分享链接。 将新链接发送到智能体对话中。 还可以发送“查询存储位置”、“修改存储位置”来更换飞书多维表格链接,调整稍后读存储位置。 2. 收藏待阅读的页面链接: 在对话中输入需要收藏的页面链接,第一次使用会要求授权共享数据,授权通过后再次输入即可完成收藏。 目前部分页面链接可能小概率保存失败。 3. 智能推荐想看的内容: 在对话中发送“我想看 xx”、“xx 内容”,即可按个人兴趣推荐阅读计划。 通过飞书机器人与 Coze 搭建的智能体进行对话,在聊天窗口中完成链接输入和阅读计划输出,由 Coze 调用大模型、插件完成内容的整理、推荐,利用飞书多维表格存储和管理稍后读数据,理论上无需开发任何插件、APP,就能实现跨平台的稍后读收集与智能阅读计划的推荐。部署完成后,您可以在电脑、手机端通过飞书机器人与稍后读助手进行对话,也可以直接在 Coze 商店中与 bot 进行对话,如果部署到微信服务号、订阅号,还可以通过这些渠道调用 bot。
2025-02-16
coze教程
以下是关于 Coze 教程的相关内容: 可能是全网最好的 Coze 教程之一,能一次性带您入门 Coze 工作流。即使是非技术出身的爱好者也能上手跟学,一站式学会 AI Agent 从设计到落地的全流程方法论。 阅读指南: 长文预警,请视情况收藏保存。 核心看点: 通过实际案例逐步演示,用 Coze 工作流构建一个能够稳定按照模板要求,生成结构化内容的 AI Agent。 开源 AI Agent 的设计到落地的全过程思路。 10+项常用的 Coze 工作流的配置细节、常见问题与解决方法。 适合人群: 任何玩过 AI 对话产品的一般用户(如果没用过,可以先找个国内大模型耍耍)。 希望深入学习 AI 应用开发平台(如 Coze、Dify),对 AI Agent 工作流配置感兴趣的爱好者。 注:本文不单独讲解案例所涉及 Prompt 的撰写方法。文末「拓展阅读」中,附有相关 Prompt 通用入门教程、Coze 其他使用技巧等内容,以供前置或拓展学习。 此外,还有以下关于 Coze 的介绍: Coze 是新一代一站式 AI Bot 开发平台。无论是否有编程基础,都可以在 Coze 平台上快速搭建基于 AI 模型的各类问答 Bot,从解决简单的问答到处理复杂逻辑的对话。并且,可以将搭建的 Bot 发布到各类社交平台和通讯软件上,与这些平台/软件上的用户互动。 个人认为:Coze 是字节针对 AI Agent 这一领域的初代产品,在 Coze 中将 AI Agent 称之为 Bot。字节针对 Coze 这个产品部署了两个站点,分别是国内版和海外版。 国内版: 网址:https://www.coze.cn 官方文档教程:https://www.coze.cn/docs/guides/welcome 大模型:使用的是字节自研的云雀大模型,国内网络即可正常访问。 海外版: 网址:https://www.coze.com 官方文档教程:https://www.coze.com/docs/guides/welcome 大模型:GPT4、GPT3.5 等大模型(可以在这里白嫖 ChatGPT4,具体参考文档:),访问需要突破网络限制的工具。 参考文档:https://www.coze.com/docs/zh_cn/welcome.html AI Agent 的开发流程: Bot 的开发和调试页面布局主要分为如下几个区块:提示词和人设的区块、Bot 的技能组件、插件、工作流、Bot 的记忆组件、知识库、变量、数据库、长记忆、文件盒子、一些先进的配置、触发器(例如定时发送早报)、开场白(用户和 Bot 初次对话时,Bot 的招呼话语)、自动建议(每当和 Bot 一轮对话完成后,Bot 给出的问题建议)、声音(和 Bot 对话时,Bot 读对话内容的音色)。下面会逐一讲解每个组件的能力以及使用方式。
2025-02-16
coze的deepseek实践
以下是关于 coze 的 deepseek 实践的相关信息: 一个提示词让 DeepSeek 的能力更上一层楼: 效果对比:用 Coze 做了小测试,可对比查看相关视频。 如何使用:搜索 www.deepseek.com 点击“开始对话”,将装有提示词的代码发给 Deepseek,认真阅读开场白后正式开始对话。 设计思路:将 Agent 封装成 Prompt 并储存在文件,通过提示词文件让 DeepSeek 实现同时使用联网和深度思考功能,在模型默认能力基础上优化输出质量,设计阈值系统,用 XML 进行规范设定。 完整提示词:v 1.3 特别鸣谢:李继刚的【思考的七把武器】提供思考方向,Thinking Claude 是设计灵感来源,Claude 3.5 Sonnet 是得力助手。 字节火山上线了 DeepSeek 系列模型并更改了模型服务价格: 2 月 14 日 8 点有直播,直播结束可看回放,相关学习文档可查看。 重点更新:上线 DeepSeek 系列模型,DeepSeekR1、V3 模型分别提供 50 万免费额度和 API 半价活动,即日起至 2025 年 2 月 18 日 23:59:59 所有用户均可享受价格优惠。 2024 年 7 月 18 日历史更新(归档): 《长文深度解析 Coze 的多 Agent 模式的实现机制》:艾木老师深入研究了 Coze 的多 Agent 模式机制,分析了三种节点跳转模式及应用场景和不足。 《揭秘 DeepSeek: 一个更极致的中国技术理想主义故事》:DeepSeek 以独特技术创新崭露头角,发布颠覆性价格的源模型 DeepSeek V2,创始人梁文锋是技术理想主义者。 《10 万卡集群:通往 AGI 的新门票》:分析了 10 万 GPU 集群建设的相关问题,指出数据中心设计和网络拓扑结构对大型 AI 训练集的重要性。
2025-02-16
coze 教程
以下是为您提供的 Coze 教程相关信息: 一泽 Eze 的教程:可能是全网最好的 Coze 教程之一,一次性带您入门 Coze 工作流。即使是非技术出身的爱好者也能上手跟学,一站式学会 AI Agent 从设计到落地的全流程方法论。阅读指南中提到长文预警,请视情况收藏保存。核心看点包括通过实际案例逐步演示用 Coze 工作流构建能稳定按模板要求生成结构化内容的 AI Agent、开源 AI Agent 的设计到落地的全过程思路、10+项常用的 Coze 工作流的配置细节、常见问题与解决方法。适合人群为玩过 AI 对话产品的一般用户,以及对 AI 应用开发平台(如 Coze、Dify)和 AI Agent 工作流配置感兴趣的爱好者。注:本文不单独讲解案例所涉及 Prompt 的撰写方法。文末「拓展阅读」中,附有相关 Prompt 通用入门教程、Coze 其他使用技巧等内容,以供前置或拓展学习。 相关比赛中的教程: 基础教程: 大圣:胎教级教程:万字长文带你使用 Coze 打造企业级知识库(https://waytoagi.feishu.cn/wiki/CT3UwDM8OiVmOOkohPbcV3JCndb) 大聪明:保姆级教程:Coze 打工你躺平(https://waytoagi.feishu.cn/wiki/PQoUwXwpvi2ex7kJOrIcnQTCnYb) 安仔:Coze 全方位入门剖析免费打造自己的 AI Agent(https://waytoagi.feishu.cn/wiki/SaCFwcw9xi2qcrkmSxscxTxLnxb) 基础教程:Coze“图像流”抢先体验(https://waytoagi.feishu.cn/wiki/AHs2whOS2izNJakGA1NcD5BEnuf) YoYo:Coze 图像流小技巧:探索视觉艺术的隐藏宝藏(https://waytoagi.feishu.cn/wiki/CTajwJnyZizxlJk8a4AcJYywnfe) 【智能体】让 Coze 智能体机器人连上微信和微信群详细配置文档(https://waytoagi.feishu.cn/wiki/ExHMwCDZ7i6NA7knCWucFvFvnvJ)
2025-02-16
对比sdk 用什么工具推荐
以下是关于对比相关内容的介绍: Midjourney v6.0 与 v6.1 版本对比: 在 Discord 上输入/settings 打开,或者描述词后面输入v 6.1 即可;网页端默认选择 v6.1 版本,直接使用即可。 对比的前提包括文字的摆放是否更完整,实物物体能否从 v6.0 版本复杂化到简单化,人物面部细节处理,肢体和图画比例是否协调,以及插画类在这次版本中的表现。 文字测试结果:v6.0 版本文字方面已不错,但 v6.1 版本表现更好。 实物测试结果:左侧细节过于复杂,右侧简洁合理,此次版本更新情况较诡异。 不同大型语言模型的性能对比: 需考虑多个维度,如理解能力(对语法、语义、上下文和隐含意义的理解)、生成质量(文本的流畅性、相关性和准确性)、知识广度和深度(对广泛主题的知识掌握程度及特定领域的理解深度)、泛化能力(处理未见过的任务或数据的表现)、鲁棒性(对错误输入等的应对能力)、偏见和伦理(生成文本是否存在偏见及是否遵循伦理标准)、交互性和适应性(在交互环境中的表现)、计算效率和资源消耗(模型大小、训练和运行所需的计算资源)、易用性和集成性(是否易于集成到不同应用和服务中及提供的 API 和工具的易用性)。 为进行有效比较,可采用标准基准测试(如使用 GLUE、SuperGLUE、SQuAD 等)、自定义任务(根据特定需求设计)、人类评估(结合主观评价)、A/B 测试(在实际应用场景中比较)、性能指标(如准确率、召回率、F1 分数、BLEU 分数等)。
2024-11-08
嵌入式WEB翻译插件
以下是关于嵌入式 WEB 翻译插件的相关信息: SD 提示词自动翻译插件 promptallinone: 作者:白马少年 发布时间:20230529 20:00 原文网址:https://mp.weixin.qq.com/s/qIshiSRZiTiKGqDFGjD0g 在 Stable Diffusion 中输入提示词只能识别英文,秋叶整合包包含提示词联想插件。 常用翻译软件如 DeepL(网址:https://www.deepl.com/translator,可下载客户端)、网易有道翻译(可 ctrl+alt+d 快速截图翻译),但复制粘贴来回切换麻烦。 自动翻译插件 promptallinone 安装方式:在扩展面板中搜索 promptallinone 直接安装,或把下载好的插件放在“……\\sdwebuiakiv4\\extensions”路径文件夹下,安装完成后重启 webUI。 插件特点: 一排小图标,第一个可设置插件语言为简体中文。 第二个图标是设置,点开后点击第一个云朵图标可设置翻译接口,点击第一行下拉菜单可选择翻译软件。 AIGC 落地应用 Open AI Translator(强烈推荐): 推荐指数:🌟🌟🌟🌟🌟 是接入了 GPT 能力的文本翻译、总结、分析类产品,翻译功能适合浏览网页时查询个别单词、句子。 最大优势是可在脱离只提供产品内 AI 能力的场景使用,如任何 web 场景,配合 Arc Browser 而非 Chrome 使用效果更佳。 调用方式:选中页面中的文本后会悬浮该插件,点击即可翻译,速度极快,摆脱“复制打开翻译软件粘贴翻译”的流程。 可用于文本分析、分析代码,搭配 Chat GPT 使用效果好。 开发者模式下也可辅助使用。 注:安装后需获取 Open AI 的 API Key,首次打开插件设置好 Open AI Key 地址,找地方保存好 API Key 方便使用。 下载地址:
2025-02-15
RuntimeError: Couldn't clone Stable Diffusion. Command: "git" clone --config core.filemode=false "https://github.com/Stability-AI/stablediffusion.git" "/Users/lichenhui/stable-diffusion-webui/repositories/stable-diffusion-stability-ai" Error code: 12
以下是关于您遇到的“RuntimeError: Couldn't clone Stable Diffusion”错误的分析和解决建议: 这个错误通常表示在克隆 Stable Diffusion 时出现问题。可能的原因包括: 1. 库的某些文件或依赖项已更改或已移除,导致无法找到所需的提交。 2. Git 存储库的状态不正确。 3. 网络连接存在问题。 解决方法如下: 1. 尝试清除本地库并重新克隆 Stable Diffusion,然后再次运行代码。 2. 运行以下命令来检查网络连接:ping files.pythonhosted.org
2025-02-12
comfy ui 和 web ui是什么关系?有什么区别?
ComfyUI 是一个基于节点流程式的 stable diffusion AI 绘图工具 WebUI。 它们的关系是:ComfyUI 可以和 WebUI 共享环境和模型。 区别主要包括以下方面: 操作方面:ComfyUI 操作门槛高,需要有清晰的逻辑;WebUI 相对操作更简便。 性能方面:ComfyUI 对显存要求相对较低,启动速度快,出图速度快;系统资源占用更少。 自由度方面:ComfyUI 具有更高的生成自由度。 生态方面:WebUI 的生态比 ComfyUI 更多,但 ComfyUI 也有针对其开发的有趣插件。 种子处理和提示词权重处理:处理方式不同,会导致图像不同。例如种子处理,ComfyUI 通过 GPU 计算种子噪声,WebUI 通过 CPU。 硬件配置方面:ComfyUI 配置更低,最低可在小于 3G 的 GPU 上运行,甚至没有 GPU 光用 CPU 也可以运行,但速度极慢。而 SDXL 出来后,ComfyUI 运行配置提高,最低需要 8GB 显存+32GB 运行内存,12GB 流畅运行,推荐 16GB 以上。玩 SDwebui 和 ComfyUI 建议使用 6GB 以上的显存的 NVIDIA 显卡,内存在 16G 以上。硬盘最好使用 SSD 以提高加载模型速度。
2025-02-08
哪些应用或者是web服务可以使用api
以下是一些可以使用 API 的应用和 Web 服务: 1. TMDB 提供了搜索电影的 API,其文档网址为 https://developer.themoviedb.org/reference/searchmovie 。在该网站的开发者相关页面或 API 文档中,可获取 API 规则。通过在右上角的认证里能看到 API 读访问令牌,配置文件中包含了如 url、请求方法 get、查询参数 query 和 language 等。输入关键词和相关语言设置,如“奥本海默”和“zhCN”,点击 Try it 即可获取数据,返回的数据格式为 JSON。 2. RAG 加速器的数据抽取服务,基于 FastAPI 和 Postgresql 搭建,并提供了标准的 REST API 接口,附带有 dockercompose 文件方便搭建服务环境。该服务支持定义并持久化“抽取器”,包含抽取结构的图式(Schema)、抽取上下文的指令(Prompt)和抽取样例(Reference examples)。此外,提供了提交文件进行抽取的端点和通过 RemoteRunnable 使抽取服务在 LangChain Expression Language链中更易用的端点。预设了基于 MIME 类型的解析器,支持 PDF 和 HTML 文档的解析,还可扩展支持其他文件类型。使用时可通过 JSON 模式定义提取信息、指定样例提升提取结果质量,传入原始文本或二进制文件。 如果您对 Action 很感兴趣,可以从以下方向继续学习: 1. 系统学习 API 相关知识。 2. 在网上寻找可用的 API 进行练习。 3. 发掘 GPT Action 的更多潜力。
2025-01-23
部署Agent专属的web端应用
以下是关于部署 Agent 专属的 web 端应用的相关内容: 在 Linux 上部署较为简单,前提是您有一张 4G 以上显存的 GPU 显卡。步骤如下: 1. 下载代码仓库。 2. 安装依赖(注意有两个依赖未放在 requirements.txt 里)。 3. 启动 webui 的 demo 程序,然后用浏览器登陆服务器的 ip:8080 就能试玩。此 demo 提供了 3 个参数: server_name:服务器的 ip 地址,默认 0.0.0.0。 servic_port:即将开启的端口号。 local_path:模型存储的本地路径。 4. 第一次启动生成语音时,需查看控制台输出,会下载一些模型文件,可能因网络问题失败,但首次加载成功后后续会顺利。 5. 基于此基础可拓展,比如集成到 agent 的工具中,结合 chatgpt 做更拟人化的实时沟通。 6. webui 上可设置的几个参数说明: text:指需要转换成语音的文字内容。 Refine text:选择是否自动对输入的文本进行优化处理。 Audio Seed:语音种子,是一个用于选择声音类型的数字参数,默认值为 2,是很知性的女孩子的声音。 Text Seed:文本种子,是一个正整数参数,用于 refine 文本的停顿,实测文本的停顿设置会影响音色、音调。 额外提示词(可写在 input Text 里):用于添加笑声、停顿等效果,例如。 以下是一些 Agent 构建平台: 1. Coze:新一代一站式 AI Bot 开发平台,适用于构建基于 AI 模型的各类问答 Bot,集成丰富插件工具拓展 Bot 能力边界。 2. Microsoft 的 Copilot Studio:主要功能包括外挂数据、定义流程、调用 API 和操作,以及将 Copilot 部署到各种渠道。 3. 文心智能体:百度推出的基于文心大模型的智能体(Agent)平台,支持开发者根据需求打造产品能力。 4. MindOS 的 Agent 平台:允许用户定义 Agent 的个性、动机、知识,以及访问第三方数据和服务或执行工作流。 5. 斑头雁:2B 基于企业知识库构建专属 AI Agent 的平台,适用于客服、营销、销售等场景,提供多种成熟模板,功能强大且开箱即用。 6. 钉钉 AI 超级助理:依托钉钉强大的场景和数据优势,提供环境感知和记忆功能,在处理高频工作场景如销售、客服、行程安排等方面表现出色。 以上信息仅供参考,您可根据自身需求选择适合的平台。
2025-01-07
有没有关于软件测试的ai工具,可以辅助我测试web网页
目前在 AI 领域中,专门用于辅助测试 Web 网页的工具相对较少。但一些通用的 AI 工具和技术可能会对软件测试有所帮助,例如利用自然语言处理技术来分析测试需求和报告,或者使用机器学习算法来预测可能出现的错误类型。不过,这些应用可能需要一定的定制和整合才能更好地适应 Web 网页测试的特定需求。
2024-12-09
飞书接入deepseek 多维表格处理案例
以下是关于飞书接入 DeepSeek 多维表格处理的相关案例和信息: 自定义 AI(DeepSeek 版):https://bytedance.larkoffice.com/base/extension/replit_3f6c0f185eac23fb ,支持 DeepSeek R1、V3 模型,以及 DeepSeek 官方、火山方舟、硅基流动三个服务商。 有案例如“笨笨 v 泡泡”的 deepseekr1:7b 模型行测试题分析过程及结果,可参考:https://mp.weixin.qq.com/s/kjYiRS9RE25vywm0EsP6A?token=8615663&lang=zh_CN 。 相关文章和教程: 《突破 DeepSeek R1 能力天花板,火山引擎扣子+飞书一站式企业解决方案》:https://waytoagi.feishu.cn/wiki/RZE9wP94tiEO6bkU5cTcyecHnnb 。 《羊毛快薅|字节火山上线了 DeepSeek 系列模型并悄悄更改了模型服务价格...》:https://waytoagi.feishu.cn/wiki/HzHSwEwtCiBmWrkRm6fc0J0Qneh 。 《喂饭级教程:飞书多维表格+DeepSeek=10 倍速用 AI》:https://mp.weixin.qq.com/s/aIi4tIy0CCINyQE_3AfF_Q ,介绍了如何结合实现批量处理信息、提升工作效率等。 飞书多维表格的接入方法在整理列上这两天直播教程中的所有模板中有提及。 2 月 10 日的社区动态中有 DeepSeek R1 赏析分享会等相关内容。 2 月 14 日的社区动态中有关于另外一款推理模型 zero 的推理过程等相关内容。
2025-02-17
目前针对H5,有哪些可以和ai结合的案例
目前在 H5 领域,与 AI 结合的案例相对较少。但一些可能的方向包括:利用 AI 进行个性化内容推荐,根据用户的浏览历史和偏好为其推送相关的 H5 页面内容;通过 AI 实现智能客服,在 H5 页面中为用户提供实时的问题解答和帮助;运用 AI 图像识别技术,让用户可以通过拍照或上传图片在 H5 页面中获取相关信息或进行互动。
2025-02-17
AI智能体在企业应用案例
以下是一些 AI 智能体在企业中的应用案例: 决策智能体: 以 Anterior 为例,它是一家健康计划自动化公司,开发了用于自动化理赔提交审核的临床决策引擎。将付款方规则转换为有向无环图,智能体遍历决策树,利用 LLM 评估相关临床文件是否符合规则,在复杂任务中选择最佳方法并更新状态,直至最终确定。 Norm AI 正在为监管合规打造 AI 智能体,Parcha 正在为 KYC 建立智能体。 检索增强生成(RAG): 以 Sana 的企业搜索用例为例,应用程序加载和转换无结构文件,将其分块并作为向量嵌入存储在数据库中。当用户提问时,系统检索相关上下文块,折叠到“元提示”中与检索信息一起喂给 LLM,合成答复返回给用户。 Eve 法律研究的共同驾驭员会将研究查询分解为独立提示链,运行每个提示链生成中间输出,并综合编写最终备忘录。 生成式 AI 应用: 具有搜索、合成和生成三个核心用例,Menlo Ventures 投资组合公司如 Sana(企业搜索)、Eve(法律研究副驾驶)和 Typeface(内容生成 AI)是早期突破性的代表。 领先的应用程序构建商如 Anterior、Sema4 和 Cognition 正在建立解决方案,处理之前只能由大量人力解决的工作流程。借助多步逻辑、外部内存以及访问第三方工具和 API 等新型构建块,拓展 AI 能力边界,实现端到端流程自动化。
2025-02-16
开源模型的MIT模式、Apache、GPL、BSD模式的模型案例有哪些?
目前开源模型的 MIT 模式、Apache、GPL、BSD 模式的具体案例众多且不断更新。MIT 模式的开源模型如 TensorFlow Lite;Apache 模式的有 MXNet;GPL 模式的像 Gnuplot;BSD 模式的例如 OpenCV 等。但请注意,这只是其中的一部分,实际情况可能会有所变化。
2025-02-14
闭源模型分类和典型案例
以下是一些常见的闭源模型分类和典型案例: 通用大模型:字节云雀大模型。 行业大模型:如蚂蚁金融大模型等。 在 2023 年,还有众多闭源模型的发布和升级,例如: 文心一言:经历了从 1.0 到 V3.5 的版本升级。 星火:科大讯飞发布的星火 1.0 及后续的升级版本。 此外,Qwen 系列模型也有出色表现,Qwen2 在性能上超越了目前所有开源模型和国内闭源模型,如文心 4.0 等。Qwen2 具有多种尺寸的预训练和指令调整模型,在大量基准评估中表现出先进的性能,提升了代码、数学、推理等多方面的能力,并在多个国际权威测评中获得冠军。
2025-02-14
AI视频,用海螺走T台的案例
以下是关于 AI 视频中用海螺走 T 台的相关内容: 全新 AI 整活计划第三期:巨大萌物 奖励方式:使用海螺 AI 进行视频制作,海螺 AI 会评选出预计 10 位创意奖,给大家颁发海螺会员+现金奖励。 制作教程: 第一步:点开 whisk 网站(https://labs.google/fx/zh/tools/whisk),找到两张图(如:皮卡丘和埃菲尔铁塔),然后传上去,样式风格空着,写一句 Prompt(如:巨大的皮卡丘抱着埃尔菲铁塔)合成出来一张图片。 第二步:点开海螺网站(https://hailuoai.com),例如 Prompt:巨大的可达鸭在斗兽场上熟睡并打呼,肚皮缓慢起伏,马路上的车在行驶,突然斗兽场塌了,冒出滚滚沙尘,可达鸭突然惊恐地睁大眼睛;巨大的卡比兽,把一碗雪倒扣在富士山上,富士山瞬间被雪覆盖。并提供了相关视频案例的链接。 视频模型:MiniMax 海螺 AI 中级实现精准的画面控制和高画面表现,精准美学控制,给出了现代都市街道上摩托车与警车追逐的 Prompt 示例及相关视频。 实际运用案例(电影、广告片、宣传片、短视频),包括场戏分镜头拆解梳理,如男人无奈起身开门、开门、开门走出、门外小女孩要糖、男人拒绝等情节的视频生成方式及相关视频链接。
2025-02-13