直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

webui可以用FLUX模型吗

回答

WebUI 可以使用 FLUX 模型。以下是相关的下载和使用信息:

  • ae.safetensors 和 flux1-dev.safetensors 下载地址:https://huggingface.co/black-forest-labs/FLUX.1-dev/tree/main 。
  • flux 相关模型(体积较大)的夸克网盘链接:https://pan.quark.cn/s/b5e01255608b 。
  • flux 相关模型(体积较大)的百度网盘链接:https://pan.baidu.com/s/1mCucHrsfRo5SttW-03ei0g?pwd=ub9h 提取码:ub9h 。
  • 如果 GPU 性能不足、显存不够,底模可以使用 fp8 的量化版模型,下载地址:https://huggingface.co/Kijai/flux-fp8/tree/main 。
  • 下载 dev 的工作流:dev 的官方原版 workflow.json 或者官方原版的图片链接 https://comfyanonymous.github.io/ComfyUI_examples/flux/flux_dev_example.png ,打开 ComfyUI,把工作流或图片拖拽到 ComfyUI 里。

郑敏轩的 Flux 的 controlnet 系列中 TheMisto.ai 的 MistoLine 版:

  • 注意:该 ControlNet 与 Flux1.dev 的 fp16/fp8 以及使用 Flux1.dev 量化的其他模型兼容。
  • 需要节点(可以 git clone 方式下载或通过以下网盘):
    • 夸克网盘:链接:https://pan.quark.cn/s/ad43dd5152a6 。
    • 百度网盘:链接:https://pan.baidu.com/s/1NcOdG4AV68xTup8FvphsYA?pwd=lpvc 提取码:lpvc 。
  • 模型:
    • 夸克网盘:链接:https://pan.quark.cn/s/5551e813db21 。
    • 百度网盘:链接:https://pan.baidu.com/s/1Ntf4MbTCGJ5TYDv6mgvqNQ?pwd=zhfq 提取码:zhfq 。
  • 处理:将模型放到 ComfyUI\models\TheMisto_model 文件夹中。
  • 导入官方工作流example_workflow.json 。所需要的两个模型:
内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

工具教程:Flux

https://huggingface.co/black-forest-labs/FLUX.1-dev/tree/main我随后也准备一下百度网盘和夸克网盘。更新:(下面准备了夸克和百度的网盘链接,方便部分同学下载)flux相关模型(体积较大)的夸克网盘链接:https://pan.quark.cn/s/b5e01255608bflux相关模型(体积较大)的百度网盘链接:https://pan.baidu.com/s/1mCucHrsfRo5SttW-03ei0g?pwd=ub9h提取码:ub9h如果GPU性能不足、显存不够,底模可以使用fp8的量化版模型,速度会快很多,下载地址:https://huggingface.co/Kijai/flux-fp8/tree/main最后我们再下载dev的工作流:[dev的官方原版workflow.json](https://bytedance.feishu.cn/space/api/box/stream/download/all/KhTAbaxbconU6PxBfJkcAkt8nJc?allow_redirect=1)上面我把工作流复制上了,用上面这个就行。或者下面官方原版的图片链接,图片导入comfyUI就是工作流。https://comfyanonymous.github.io/ComfyUI_examples/flux/flux_dev_example.png我们打开ComfyUI,把工作流或图片拖拽到ComfyUI里:

工具教程:Flux

https://huggingface.co/black-forest-labs/FLUX.1-dev/tree/main我随后也准备一下百度网盘和夸克网盘。更新:(下面准备了夸克和百度的网盘链接,方便部分同学下载)flux相关模型(体积较大)的夸克网盘链接:https://pan.quark.cn/s/b5e01255608bflux相关模型(体积较大)的百度网盘链接:https://pan.baidu.com/s/1mCucHrsfRo5SttW-03ei0g?pwd=ub9h提取码:ub9h如果GPU性能不足、显存不够,底模可以使用fp8的量化版模型,速度会快很多,下载地址:https://huggingface.co/Kijai/flux-fp8/tree/main最后我们再下载dev的工作流:[dev的官方原版workflow.json](https://bytedance.feishu.cn/space/api/box/stream/download/all/KhTAbaxbconU6PxBfJkcAkt8nJc?allow_redirect=1)上面我把工作流复制上了,用上面这个就行。或者下面官方原版的图片链接,图片导入comfyUI就是工作流。https://comfyanonymous.github.io/ComfyUI_examples/flux/flux_dev_example.png我们打开ComfyUI,把工作流或图片拖拽到ComfyUI里:

郑敏轩 :Flux的controlnet系列

[title]郑敏轩:Flux的controlnet系列[heading2]TheMisto.ai的MistoLine版注意:该ControlNet与Flux1.dev的fp16/fp8以及使用Flux1.dev量化的其他模型兼容。1.需要节点(可以git clone方式下载或下面准备了压缩包)MistoControlNet-Flux-dev在你的\ComfyUI\custom_nodes文件夹里面右键终端命令行,复制下面代码即可下载或者我准备了网盘:夸克网盘:链接:https://pan.quark.cn/s/ad43dd5152a6百度网盘:链接:https://pan.baidu.com/s/1NcOdG4AV68xTup8FvphsYA?pwd=lpvc提取码:lpvc1.模型夸克网盘:链接:https://pan.quark.cn/s/5551e813db21百度网盘:链接:https://pan.baidu.com/s/1Ntf4MbTCGJ5TYDv6mgvqNQ?pwd=zhfq提取码:zhfq1.处理将模型放到你的ComfyUI\models\TheMisto_model文件夹中1.导入官方工作流[example_workflow.json](https://bytedance.feishu.cn/space/api/box/stream/download/all/B2yWbnwd4oyyDcxgOtCc9FJAn3g?allow_redirect=1)所需要的两个模型:

其他人在问
flux lora 训练
以下是关于 Flux 的 Lora 模型训练的详细步骤: 准备工作: 下载所需模型:t5xxl_fp16.safetensors、clip_l.safetensors、ae.safetensors、flux1dev.safetensors。 注意:不使用时模型放置位置不限,只要知道“路径”,后续会引用到“路径”。 训练建议使用 flux1dev.safetensors 版本的模型和 t5xxl_fp16.safetensors 版本的编码器。 下载训练脚本: 夸克网盘链接:https://pan.quark.cn/s/ddf85bb2ac59 百度网盘链接:https://pan.baidu.com/s/1pBHPYpQxgTCcbsKYgBi_MQ?pwd=pfsq 提取码:pfsq 数据集准备: 进入厚德云模型训练数据集:https://portal.houdeyun.cn/sd/dataset 步骤一:创建数据集 在数据集一栏中,点击右上角创建数据集。 输入数据集名称。 可以上传包含图片+标签 txt 的 zip 文件,也可以上传只有图片的文件(之后可在 c 站使用自动打标功能),或者一张一张单独上传照片,但建议提前将图片和标签打包成 zip 上传。 Zip 文件里图片名称与标签文件应当匹配,例如:图片名“1.png”,对应的达标文件就叫“1.txt”。 上传 zip 以后等待一段时间,确认创建数据集,返回到上一个页面,等待一段时间后上传成功,可点击详情检查,预览数据集的图片以及对应的标签。 步骤二:Lora 训练 点击 Flux,基础模型会默认是 FLUX 1.0D 版本。 选择数据集,点击右侧箭头,会跳出所有上传过的数据集。 触发词可有可无,取决于数据集是否有触发词。 模型效果预览提示词则随机抽取一个数据集中的标签填入即可。 训练参数可以调节重复次数与训练轮数,厚德云会自动计算训练步数。如果不知道如何设置,可以默认 20 重复次数和 10 轮训练轮数。 可以按需求选择是否加速,点击开始训练,会显示所需要消耗的算力。 等待训练,会显示预览时间和进度条,训练完成会显示每一轮的预览图。 鼠标悬浮到想要的轮次模型,中间会有个生图,点击会自动跳转到使用此 lora 生图的界面。点击下方的下载按钮则会自动下载到本地。 数据集放置位置:.Flux_train_20.4\\train\\qinglong\\train 运行训练:约 1 2 小时即可训练完成。 验证和 lora 跑图:有 ComfyUI 基础的话,直接原版工作流的模型后面,多加一个 LoraloaderModelOnly 的节点就可以,自行选择您的 Lora 和调节参数。
2024-11-20
在comyui中,使用flux1-dev模型24g显存够吗
在 ComfyUI 中使用 Flux1dev 模型,24G 显存是可以的,但建议内存尽量高于 32G 以避免意外情况的发生。如果您的显卡是 24G 或更高,右键 24G 那个 train_flux_24GLora 的文件。修改脚本路径和参数时,要注意底模路径、VAE 路径、数据集路径,还有下面的 clip 路径和 T5xxl 路径的正确填写。ae.safetensors 和 flux1dev.safetensors 的下载地址为:https://huggingface.co/blackforestlabs/FLUX.1dev/tree/main 。flux 相关模型(体积较大)的夸克网盘链接:https://pan.quark.cn/s/b5e01255608b ,百度网盘链接:https://pan.baidu.com/s/1mCucHrsfRo5SttW03ei0g?pwd=ub9h 提取码:ub9h 。如果 GPU 性能不足、显存不够,底模可以使用 fp8 的量化版模型,下载地址:https://huggingface.co/Kijai/fluxfp8/tree/main 。最后下载 dev 的工作流: ,或者使用官方原版的图片链接 https://comfyanonymous.github.io/ComfyUI_examples/flux/flux_dev_example.png ,打开 ComfyUI 把工作流或图片拖拽到其中即可。
2024-11-12
在comyui中,使用flux1-dev模型需要多少显存
在 ComfyUI 中使用 flux1dev 模型所需的显存情况如下: 相关模型的下载地址:https://huggingface.co/blackforestlabs/FLUX.1dev/tree/main 。 对于 GPU 性能不足、显存不够的情况,底模可以使用 fp8 的量化版模型,下载地址为:https://huggingface.co/Kijai/fluxfp8/tree/main 。 低显存方案(8G 以下):flux1devbnbnf4.safetensors ,放入 ComfyUI\\models\\checkpoints 文件夹内,下载链接为 https://huggingface.co/lllyasviel/flux1devbnbnf4/blob/main/flux1devbnbnf4.safetensors 。 此外,还提供了以下相关资源链接: BitsandBytes Guidelines and Flux :https://github.com/lllyasviel/stablediffusionwebuiforge/discussions/981 ComfyUI_bitsandbytes_NF4 节点:https://github.com/comfyanonymous/ComfyUI_bitsandbytes_NF4
2024-11-12
我想知道flux相关的提示词描述
Fluffy 相关提示词描述如下: 含义:这个词用来描述某种质地柔软、轻盈、松散或有蓬松感的物体,常用于适配动物的毛发、云彩、食物、布料,美容化妆等多种材料和场景,着重营造一种温馨、舒适、轻松的氛围。 主题风格: 作用: 增强感官体验:Fluffy 描述的物体通常能提供愉悦的触感体验。 营造舒适氛围:在家居装饰、服装设计等方面,营造一种温暖和舒适的氛围。 吸引视觉注意:在广告和视觉艺术中,fluffy 物体常常被用来抓住观众的目光。 技巧: 材料选择:纤维结构和化学组成的不同,造就了不同的手感和光泽,比如羊毛和棉花。 毛发渲染:专门用于生成和渲染细长、柔软的物体,如动物毛发、人类头发、草地等。 材质特性:类似羽毛等轻盈蓬松材质应考虑空气动力学效应——如何在空中漂浮或飘动。 灯光运用:使用柔光或特定角度的照明来突出材质的轻盈和柔软。 应用: 家居和室内设计:Fluffy 的枕头、抱枕、地毯等家居用品。 时尚与服装:在服装设计中,如毛衣、围巾和冬季外套等,保暖性与时尚感兼顾。 食品工业:在食品制作中,如蛋糕、面包、甜点等,fluffy 的质地是吸引消费者的一个重要因素。 动物和宠物产品:宠物床垫、玩具等,fluffy 的材质可以提供给宠物更大的舒适感。 广告和市场营销:使用 fluffy 的概念在广告中创建吸引人的、温馨的图像。
2024-11-09
怎么用FLUX创作艺术作品
以下是使用 FLUX 创作艺术作品的方法: 1. 艺术风格 Lora 方面: 可选择如“art_lora 艺术风格”,其特点包括“Cat,European street,exploration,cozy,mysterious,colorful buildings,sunlight through leaves,cobblestone path,high definition,watercolor painting,warm tones,bright lighting effects,paper texture”。Lora 下载地址为:https://hfmirror.com/Kijai/fluxlorascomfyui/tree/main/xlabs 。 还有“FLUX超写实黑悟空V1”等风格,详情可点击:https://www.liblib.art/modelinfo/5e4a4cc0e3674818a9f8454a63cc0115?from=pic_detail 。 XLabsAI 发布了 6 个不同 Lora,包括“mjv6_lora Midjourney 风格”“realism_lora 写实风格”“anime_lora 动漫风格”“disney_lora 迪斯尼风格”“scenery_lora 风景风格”,并提供了相应示例。 2. Lora 使用方法: 下载 lora 文件。 放入 comfy/models/loras 文件夹内。 使用 ComfyUI 工作流(其实就是上面文生图基础工作流加上一个简易 Lora 加载器),加载您需要的 Lora 风格。工作流文件如“flux1+lora 加载.json”,可通过 https://bytedance.feishu.cn/space/api/box/stream/download/all/KZoGbKe3yo4YHgxnNg6cELfPnwg?allow_redirect=1 下载。 3. 教程参考: 。 4. 示例作品:大家可以在哩布的返图区找到更多灵感,群友作品包括鹏程、海波、CYCHENYUE 等。
2024-10-27
webui可以用FLUX模型吗
WebUI 可以使用 FLUX 模型。以下是相关的下载和使用信息: ae.safetensors 和 flux1dev.safetensors 的下载地址:https://huggingface.co/blackforestlabs/FLUX.1dev/tree/main 。 夸克网盘链接:https://pan.quark.cn/s/b5e01255608b 百度网盘链接:https://pan.baidu.com/s/1mCucHrsfRo5SttW03ei0g?pwd=ub9h 提取码:ub9h 如果 GPU 性能不足、显存不够,底模可以使用 fp8 的量化版模型,下载地址:https://huggingface.co/Kijai/fluxfp8/tree/main 。 dev 的工作流: 官方原版的图片链接:https://comfyanonymous.github.io/ComfyUI_examples/flux/flux_dev_example.png ,打开 ComfyUI ,把工作流或图片拖拽到 ComfyUI 里。 郑敏轩的 Flux 的 controlnet 系列: TheMisto.ai 的 MistoLine 版,该 ControlNet 与 Flux1.dev 的 fp16/fp8 以及使用 Flux1.dev 量化的其他模型兼容。 节点: 可以 git clone 方式下载或通过压缩包。 夸克网盘:链接:https://pan.quark.cn/s/ad43dd5152a6 百度网盘:链接:https://pan.baidu.com/s/1NcOdG4AV68xTup8FvphsYA?pwd=lpvc 提取码:lpvc 模型: 夸克网盘:链接:https://pan.quark.cn/s/5551e813db21 百度网盘:链接:https://pan.baidu.com/s/1Ntf4MbTCGJ5TYDv6mgvqNQ?pwd=zhfq 提取码:zhfq 处理:将模型放到 ComfyUI\\models\\TheMisto_model 文件夹中。 导入官方工作流: ,所需要的两个模型。
2024-10-25
我有一张图像,我要如何用stable Diffusion给它添加噪音。我是一个小白,请给出详细的步骤,用webui来操作。
以下是使用 WebUI 为图像添加噪音的详细步骤: 1. 首先,了解 Stable Diffusion 的加噪原理。从数据集中选择一张干净样本,然后用 random 函数生成 0 3 共 4 种强度的噪声,在每次迭代中随机选择一种强度的噪声添加到干净图片上,完成图片的加噪流程。 2. 在训练过程中,对干净样本进行加噪处理,采用多次逐步增加噪声的方式,直至干净样本转变成为纯噪声。 3. 加噪过程中,每次增加的噪声量级可以不同,假设存在 5 种噪声量级,每次都可以选取一种量级的噪声,以增加噪声的多样性。 4. 与图片生成图片的过程相比,在预处理阶段,先把噪声添加到隐空间特征中。通过设置去噪强度(Denoising strength)控制加入噪音的量。如果去噪强度为 0 ,则不添加噪音;如果为 1 ,则添加最大数量的噪声,使潜像成为一个完整的随机张量。若将去噪强度设置为 1 ,就完全相当于文本转图像,因为初始潜像完全是随机的噪声。
2024-11-18
stablediffusion在线webui如何开发
开发 Stable Diffusion 在线 Web UI 可以按照以下步骤进行: 1. 安装必要的软件环境: 安装 Git 用于克隆源代码。 安装 Python 3.10.6 版本,确保勾选“Add Python 3.10 to PATH”选项。 安装 Miniconda 或 Anaconda 创建 Python 虚拟环境。 2. 克隆 Stable Diffusion Web UI 源代码: 打开命令行工具,输入命令 git clone https://github.com/AUTOMATIC1111/stablediffusionwebui.git ,将源代码克隆到本地目录。 3. 运行安装脚本: 进入 stablediffusionwebui 目录,运行 webuiuser.bat 或 webui.sh 脚本,它会自动安装依赖项并配置环境。等待安装完成,命令行会显示 Web UI 的访问地址。 4. 访问 Web UI 界面: 复制命令行显示的本地 Web 地址,在浏览器中打开,即可进入 Stable Diffusion Web UI 的图形化界面。 5. 学习 Web UI 的基本操作: 了解 Web UI 的各种设置选项,如模型、采样器、采样步数等。尝试生成图像,观察不同参数对结果的影响。学习使用提示词(prompt)来控制生成效果。 6. 探索 Web UI 的扩展功能: 了解 Web UI 支持的各种插件和扩展,如 Lora、Hypernetwork 等。学习如何导入自定义模型、VAE、embedding 等文件。掌握图像管理、任务管理等技巧,提高工作效率。 在完成了依赖库和 repositories 插件的安装后,还需要进行以下配置: 将 Stable Diffusion 模型放到/stablediffusionwebui/models/Stablediffusion/路径下。然后到/stablediffusionwebui/路径下,运行 launch.py 即可。运行完成后,将命令行中出现的输入到本地网页中,即可打开 Stable Diffusion WebUI 可视化界面。进入界面后,在红色框中选择 SD 模型,在黄色框中输入 Prompt 和负向提示词,在绿色框中设置生成的图像分辨率(推荐设置成 768x768),然后点击 Generate 按钮进行 AI 绘画。生成的图像会展示在界面右下角,并保存到/stablediffusionwebui/outputs/txt2imgimages/路径下。 如果选用 Stable Diffusion 作为 AIGC 后台,需要注意: DallE 缺乏室内设计能力,MidJourney 出图效果好但无法基于现实环境重绘,Stable Diffusion 出图成功率较低,但可调用 controlnet 的 MLSD 插件捕捉现实环境线条特征做二次设计。安装 Stable Diffusion WEB UI 后,修改 webuiuser.bat 文件加上 listen 和 API 参数,让 Stable Diffusion 处于网络服务状态。代码如下: @echo off set PYTHON= set GIT= set VENV_DIR= set COMMANDLINE_ARGS=xformers nohalfvae listen api git pull call webui.bat 让 Stable Diffusion 具有 AI 室内设计能力的步骤: 1. 下载室内设计模型(checkpoint 类型),放到 stable diffusion 目录/models/stablediffusion 下面。 2. 安装 controlnet 插件,使用 MLSD 插件,实现空间学习。 通过 API 方式让前端连接到 Stable Diffusion 后台的具体代码在前端开发详细展开,API 参考文档可选读。
2024-11-01
相同的参数下,用SD comfyui出图可以和SD webui出图保持图片效果一模一样么?
理论上,在应用完全相同参数(如 Step、CFG、Seed、prompts)的情况下,SD ComfyUI 出图和 SD WebUI 出图应当能保持图片效果一模一样。但在实际操作中可能会存在一些差异,比如: 提示词的多个条件下,SD 生成的图像可能无法全部满足,这与提示词引导系数有关,该系数关系到出图与文字的相关程度。 不同的模型和配置也可能影响出图效果,例如 SDXL 的大模型分为 base、refiner 以及配套的 VAE 模型,用于调节图片的画面效果和色彩。 需要注意的是,相同参数下要达到完全一致的出图效果并非绝对,还会受到多种因素的综合影响。
2024-10-14
Flux 的lora模型训练教程,我想用用diffuser代码训练,而不是webui或comfyui
以下是关于 Flux 的 lora 模型训练的相关信息: Flux GGUF 模型:https://huggingface.co/city96/FLUX.1devgguf/tree/main GGUF 配套节点插件:https://github.com/city96/ComfyUIGGUF 在最新版本的 ComfyUI 中,GGUF 的节点插件可在 Manager 管理器中搜到下载安装,但 NF4 的配套节点插件搜不到。 注意使用精度优化的低配模型时,工作流和原版不同。把官方的 fp8 工作流中底模的节点换成 NF4 或者 GUFF 即可。 相关生态发展迅速,有 Lora、Controlnet、IPadpter 相关生态建设,字节最近发布的 Flux Hyper lora 可用于 8 步快速生图。下节将先讲讲 Flux 的 lora 训练。
2024-09-05
我添加flux的模型后,在webui中要从哪里找到
在 webui 中找到添加的 flux 模型的方法如下: 首先,您可以安装 Civitai 助手插件。如果您上不了 C 站,可以去我的百度云盘里下载,然后放在“……\\sdwebuiakiv4\\extensions”路径文件夹下。安装完成后,重启 webUI,就可以在上方的标签选项卡中找到这个插件。 另外,下载模型后需要将之放置在指定的目录下,不同类型的模型放置目录不同: 1. 大模型(Ckpt):放入 models\\Stablediffusion。 2. VAE 模型:一些大模型需要配合 vae 使用,对应的 vae 同样放置在 models\\Stablediffusion 或 models\\VAE 目录,然后在 webui 的设置栏目选择。 3. Lora/LoHA/LoCon 模型:放入 extensions\\sdwebuiadditionalnetworks\\models\\lora,也可以在 models/Lora 目录。 4. Embedding 模型:放入 embeddings 目录。 模型的类型可以通过检测。安装 Civitai 助手插件后,它可以自动扫描您的所有文件,如果您的模型是从 C 站下载的,它会帮您自动匹配好缩略图。点击刷新旁边的按钮,再把鼠标放在模型的名字上,可以看见新的四个图标:🖼:用当前生成图替换为预览图;🌐:在新标签页打开这个模型的 Civitai 页面;💡:一键添加这个模型的触发词到关键词输入框;🏷:一键使用这个模型预览图所使用的关键词。
2024-08-22
现在哪几家的大模型支持通过手机视频多模态实时交流?
以下几家的大模型支持通过手机视频多模态实时交流: 1. PandaGPT:能够理解不同模式的指令并根据指令采取行动,包括文本、图像/视频、音频、热、深度和惯性测量单位。 2. VideoLLaMA:引入了多分支跨模式 PT 框架,使语言模型能够在与人类对话的同时处理给定视频的视觉和音频内容。 3. 视频聊天 GPT:专门为视频对话设计,能够通过集成时空视觉表示来生成有关视频的讨论。 4. NExTGPT:端到端、通用的 anytoany 多模态语言模型,支持图像、视频、音频、文本的自由输入输出。
2024-11-22
siri是不是使用大模型技术
Siri 目前并非使用大模型技术。苹果公司的 Siri 概念虽好,但由于技术限制,其表现未达到人工智能的水平,常被称为“人工智障”。不过,随着技术发展,未来可能会用大模型重新改造 Siri,将手机上的所有功能控制起来,使其成为真正的智能助理。例如,苹果公司在手机算力的芯片发展到能够支撑大模型上手机的情况下,可能会推出大模型的小数据量、专业的版本来替代 Siri。同时,苹果公司若 All in 手机,其大模型可能会是本地化的,以重视个人数据保护和隐私。
2024-11-21
sairi是不是使用大模型技术
Sora 是使用大模型技术的。周鸿祎认为 Open AI 训练这个模型会阅读大量视频,大模型加上 Diffusion 技术需要对世界进一步了解,学习样本以视频和摄像头捕捉到的画面为主。Sora 在训练数据上采用在原始尺寸上进行训练的策略,避免了传统 AI 对人为抽象的依赖。此外,Sora 还采用了一些数据预处理技术,如将视觉图块压缩成低维潜在表示,并将其排列成序列,注入噪声后输入扩散变换器的输入层,同时采用时空分块化来降低后续对时间信息建模的复杂性。这种对原始视频和图像特征的细腻处理标志着生成模型领域的重大进步。
2024-11-21
模型微调怎么解决多轮对话容易受到上轮对话的影响问题
在解决模型微调中多轮对话容易受到上轮对话影响的问题时: 对于多轮对话,现实中常伴随指代问题,如使用“它”“他们”“我们”等代词。若仅依据原始提问检索知识片段,可能导致结果不精确或无法检索到信息。同时,对模型回复内容的限制可能影响多轮对话流畅性甚至中断。 为提升对话系统性能和用户体验,需开发提示词解决多轮对话中的指代消解问题,确保模型能在连续交流中提供准确连贯回答。但由于“指代消解”需多轮对话完成,单次交互无法达成,所以要转换测试形式,先解决“指代消解”问题再进行下一轮答复。 首先准备指代消解所需提示词,这里使用的“指代消解”提示词是用 CoT 写出的思维链,列举不同推理情景,让模型适应并推理出需消解的代词,再根据结果重新组织问题。 接着复现指代消解步骤,如进行第一轮对话,提出问题“尼罗河是什么?”,系统召回相关知识片段并回复,然后开始指代消解。 另外,聊天模型通过一串聊天对话输入并返回生成消息输出。聊天格式虽为多轮对话设计,但对单轮任务也有用。会话通过 messages 参数输入,包含不同角色和内容的消息对象数组。通常会话先有系统消息设定助手行为,再交替使用用户和助手消息。当指令涉及之前消息时,包含聊天历史记录有帮助,若超出模型限制需缩减会话。
2024-11-21
企业做自己的小模型,需要用到的工具及工具背后的公司都有哪些?
企业做自己的小模型,可能会用到以下工具及背后的公司: 1. 在编排(Orchestration)方面,涉及的公司如 DUST、FIAVIE、LangChain 等,其提供的工具可帮助管理和协调各部分及任务,确保系统流畅运行。 2. 部署、可扩展性和预训练(Deployment, Scalability, & PreTraining)类别中,像 UWA mosaicm、NMAREL、anyscale 等公司提供的工具,有助于部署模型、保证可扩展性及进行预训练。 3. 处理上下文和嵌入(Context & Embeddings)的工具,相关公司有 TRUDO、Llamalndex、BerriAI 等,能帮助模型处理和理解语言上下文,并将词语和句子转化为计算机可理解的形式。 4. 质量保证和可观察性(QA & Observability)方面,例如 Pinecone、drant、Vald 等公司提供的工具,可确保模型表现并监控其性能和状态。 此外,还有以下工具和相关公司: 1. 图片生成 3D 建模工具,如 Tripo AI(由 VAST 发布)、Meshy、CSM AI(Common Sense Machines)、Sudo AI、VoxCraft(由生数科技推出)等。 企业还可能涉及具身智能、3D 眼镜、AI 绘本、AI 图书、学习机、飞书的多维表格、蚂蚁的智能体、Coze 的智能体、Zeabur 等云平台、0 编码平台、大模型(通义、智谱、kimi、deepseek 等)、编程辅助、文生图(可灵、即梦等)等方面,可能需要相应资质。
2024-11-20
你认为目前最好用的大模型有哪些?
目前最好用的大模型包括: 1. OpenAI 的 GPT4:是最先进和广泛使用的大型语言模型之一,在多种任务上表现卓越,如文本生成、理解、翻译及各种专业和创意写作任务,能通过大量数据学习理解和生成人类语言,处理复杂问题和理解上下文能力出色。 2. Anthropic 公司的 Claude 3。 3. 谷歌的 Gemini。 4. 百度的文心一言。 5. 阿里巴巴的通义大模型。 大型模型主要分为两类: 1. 大型语言模型:专注于处理和生成文本信息。 2. 大型多模态模型:能够处理包括文本、图片、音频等多种类型的信息。 大型多模态模型与大型语言模型的不同点: 1. 处理的信息类型不同:大型语言模型专注于文本,大型多模态模型能处理多种类型信息。 2. 应用场景不同:大型语言模型主要用于自然语言处理任务,大型多模态模型应用领域更广泛。 3. 数据需求不同:大型语言模型依赖大量文本数据训练,大型多模态模型需要多种类型数据训练。 此外,如果想了解国内的大模型效果,可以参考第三方基准评测报告: 。需注意,内容由 AI 大模型生成,请仔细甄别。
2024-11-19