Navigate to WaytoAGI Wiki →
Home
Events
Websites
Agents
Prompts
Chat with Wiki
Blog
🇺🇸 English
Login
Home
/
Question List
/
Question Detail
端到端是什么意思?
Answer
端到端指的是输入端到输出端的整个流程,即从原始数据输入到最终结果输出的全过程。在 AI 领域中,端到端模型是指一种能够直接从输入数据到输出结果的模型,无需中间步骤的转换或预处理。
Content generated by AI large model, please carefully verify (powered by aily)
References
XiaoHu.AI日报
质朴发言:大模型时代下的具身智能|Z 沙龙第 5 期
XiaoHu.AI日报
EP.3 - IP Adapter 对话阿文:一图定风格,我和 AI 的契约
质朴发言:AI Native 硬件:端侧 AI 革新将至|Z 沙龙第 7 期
Ask Again
Others are asking
端到端语音技术现在进展到什么程度了
端到端语音技术目前取得了显著进展。 在语音合成方面: 语音合成将文本转换为可听的声音信息,是人机交互的重要接口,一般包括 TTS、歌唱合成等领域。 当代工业界主流语音合成系统包括文本前端和声学后端两个部分。文本前端将输入文本转换为层次化的语音学表征,声学后端基于此生成语音,主要技术路线包括单元挑选波形拼接、统计参数和端到端语音合成方法,当代主要采用端到端声学后端。 端到端声学后端一般包括声学模型和声码器两部分,也出现了直接从音素映射为波形的完全端到端语音合成系统。 在全模态智能体方面: OpenAI 发布的 GPT4o 是新模型通过端到端的神经网络,把视觉、语音和文本数据混合训练,对音频输入的平均反应时间为 300 毫秒,与人类对话的反应时间相似。 直接拿音频数据来训练的好处是模型能从数据中感悟到人类表达的情绪、语调、风格等,能听到几乎真实的人类的声音。 OpenAI 未公开 GPT4o 的技术细节,唯一线索来自内部模型炼丹师的一篇博客,项目名是 AudioLM,目标是用端到端的方式扩大语音模型的能力。
2025-01-03
端到端 模型的应用场景
端到端模型的应用场景包括以下方面: 硬件领域,如机器人、耳机等。 处理垃圾情绪。 音视频应用,效果良好。 手机侧,作为原生 AI OS 的未来重点方向,有望成为新的交互入口,除生成内容外,还能调用手机上的各类应用程序,方便用户完成各类操作。 自动驾驶,输入为视觉,输出为油门、刹车、方向盘等。 物体分拣,输入包括视觉、指令、数值传感器,输出为抓取目标物体并放置到目标位置。
2025-01-02
如果要创建一个和你一样的ai,你可以把技术栈给我罗列出来吗,从数据库到后端到前端分别用到了哪些技术
如果要创建一个类似我的 AI ,以下是从数据库到后端到前端可能用到的技术栈: 前端:推荐使用 React.js 或 Vue.js 框架,它们适合构建动态的用户界面,且有丰富的组件库支持多媒体内容展示。 后端:采用 Node.js 加上 Express.js ,能使用 JavaScript 同时开发前端和后端,简化开发过程,Node.js 的非阻塞 IO 特性适合处理实时通讯需求。 数据库:选择 MongoDB ,对于可能需要存储的文档形式数据(如离谱生物档案和相关事件),它在存储此类灵活数据方面表现良好。 语音处理:可以考虑使用 Google Cloud SpeechtoText 和 TexttoSpeech API 来实现语音与文本的相互转换,以支持语音对话。
2024-08-25
什么是端到端,在智驾中体现在什么地方
端到端是指在处理问题或完成任务时,直接将输入数据映射到输出结果,中间不进行明显的分段或模块划分,实现从起点到终点的一体化处理。 在智驾中,端到端的体现主要有以下方面: 对于端到端训练的模型,类似 RFM1 的路径,直接将多模态输入(如传感器数据、图像等)映射到输出动作(如车辆的转向、加速、减速等)。 在具身智能中,存在大脑与小脑统一在一个大模型之中的端到端具身大模型解决方案。但在实际应用中,对于诸如力矩控制、电流控制等具体环节,对于做到哪一步才算端到端存在争议。 总之,端到端在智驾中的应用仍在不断探索和发展中。
2024-08-13
什么端到端
端到端(Endtoend)在不同领域有不同的含义: 在自动驾驶领域,基于深度强化学习的端到端控制架构是新兴研究热点,能克服传统方式依赖先验环境建模的问题,直接实现从感知到控制功能的映射。 在大模型领域,一个 AI 模型只要输入原始数据就可以输出最终结果。例如 Google 的 RTX 系列专注于机器人 HighLevel 决策问题,其中就使用 Transformer Model 进行端到端训练。
2024-08-13
多模态大模型是什么意思
多模态大模型(MLLM)是一种在统一框架下,集成多种不同类型数据处理能力的深度学习模型,这些数据包括文本、图像、音频和视频等。通过整合多样化的数据,MLLM 能够更全面地理解和解释现实世界中的复杂信息,在面对复杂任务时表现出更高的准确性和鲁棒性。其架构通常包括一个编码器、一个连接器和一个 LLM,还可选择性地在 LLM 上附加一个生成器以生成除文本之外的更多模态。连接器大致可分为基于投影的、基于查询的和基于融合的三类。 Google 的人工智能多模态大模型叫 Gemini,是 Google DeepMind 团队开发的。Gemini 不仅支持文本、图片等提示,还支持视频、音频和代码提示,能够理解和处理几乎任何输入,结合不同类型的信息,并生成几乎任何输出,被称为 Google 迄今为止最强大、最全面的模型,从设计之初就支持多模态,能够处理语言、视觉、听觉等不同形式的数据。 学习多模态大模型很有必要,因为它可以从图像中提取文本,理解图像或视频中发生的事情,识别物体、场景甚至情绪。例如,有人想为猫买新衣服,可给模型提供猫的图片和文本提示,模型会给出适合猫的衣服建议;在学生解决物理问题的例子中,模型能根据包含问题和答案的图像以及文本提示,进行推理并判断答案是否正确。输入可以是文本、图像、音频的混合,顺序很重要。
2025-01-02
scalinglaw什么意思
Scaling Law(规模定律)指的是在模型预训练中,只要三个关键因素——模型大小、数据量、训练时间(计算量)不断增长,模型性能就能大斜率指数级爆发式提升。足够的规模带来——“涌现”,即自发地产生复杂智能,完成复杂问题的推理、并形成非同分布下的泛化性提升。 2024 年整年,一个争论笼罩着 AI 界——Scaling Law 是正确的,但在现实中,Scaling Law 是不是已经触及天花板。算力需求已达惊人规模,基础设施跟不上发展速度,优质数据接近极限,合成数据训练存在“近亲繁殖”问题可能导致模型能力长期衰退。 在 OpenAI 的相关研究中,“良好且通用的数据表示,良好且通用的数据标注,良好且通用的算法”为检测 Scaling Law 做好了准备。同时,在 Sora 的研究中,也遵循了 Scaling Law,即在足量的数据、优质的标注、灵活的编码下,Scaling Law 在 transformer+diffusion model 的架构上继续成立,其想法很大程度上沿袭了大语言模型的经验。
2024-12-30
绘画提示词中的“P”是什么意思?
在绘画提示词中,“P”通常不是一个具有特定普遍含义的独立符号或缩写。但“POV”是“Point of View”的缩写,意为“视角”。在美术创作中,尤其是绘画和摄影领域,视角指的是观察者或摄像机所在的位置和角度。选择不同的视角可以极大地影响作品的视觉效果和观众对作品的感受。 视角在绘画中的作用包括: 1. 视觉引导:可以用来引导观众的视线,通过选择特定的角度,艺术家可以强调作品中的某些元素,使它们更加突出。 2. 情感表达:不同的视角可以传达不同的情感和氛围。例如,从高处看的视角可能会让物体显得更小、更脆弱,而从低处看的视角可能会让物体显得更强大、更有威严。 3. 空间感:通过精确的透视技巧,视角可以帮助艺术家在二维平面上创造出深度和空间感,使画面更加立体和真实。 4. 故事叙述:视角可以用来讲述故事,通过选择与故事内容相匹配的视角,艺术家可以增强叙事的力度和清晰度。 在创作提示词时,有一些技巧: 1. 透视:了解和运用透视原理是掌握不同视角的关键。透视可以创造出深度感和空间感,使画面更加逼真。 2. 构图:选择合适的视角可以帮助艺术家更好地构图,通过角度和视点的选择来平衡画面,创造出和谐的画面效果。 3. 光影:不同的视角会影响光线的方向和强度,艺术家需要根据所选的视角来调整光影效果,以增强画面的真实感和表现力。 在提示词的语法方面,根据自己想画的内容写出提示词,多个提示词之间使用英文半角符号。一般而言,概念性的、大范围的、风格化的关键词写在前面,叙述画面内容的关键词其次,最后是描述细节的关键词。提示词的顺序很重要,越靠后的权重越低。关键词最好具有特异性,措辞越不抽象越好,尽可能避免留下解释空间的措辞。还可以使用括号人工修改提示词的权重。
2024-12-26
AI提示词的意思是指训练自己的AI智能体吗
AI 提示词并非仅仅指训练自己的 AI 智能体。 智能体大多建立在大模型之上,其发展从基于符号推理的专家系统逐步演进而来。基于大模型的智能体具有强大的学习能力、灵活性和泛化能力。智能体的核心在于有效控制和利用大型模型以达到设定目标,这通常涉及精确的提示词设计,提示词的设计直接影响智能体的表现和输出结果。 设计提示词本质上是对模型进行“编程”,通常通过提供指令或示例完成。与多数其他 NLP 服务不同,补全和聊天补全几乎可用于任何任务,包括内容或代码生成、摘要、扩展、对话、创意写作、风格转换等。 我们的模型通过将文本分解为标记来理解和处理文本,在给定的 API 请求中处理的标记数量取决于输入和输出长度。对于英文文本,1 个标记大约相当于 4 个字符或 0.75 个单词,文本提示词和生成的补全合起来不能超过模型的最大上下文长度。
2024-12-25
生成式人工智能或者专门的书籍教程是什么意思?这种人工智能有什么用?现在市面上有免费的吗?要是没有免费的我去翻外网也可以
生成式人工智能是一种能够创建新内容的人工智能技术。以下是关于生成式人工智能的一些详细信息: 课程方面: 台湾大学李宏毅教授的生成式 AI 课程,主要介绍了其基本概念、发展历程、技术架构和应用场景等内容。课程共 12 讲,每讲约 2 小时。通过学习该课程,可掌握基本概念和常见技术,能使用相关框架搭建简单模型,了解发展现状和未来趋势。学习内容包括: 1. 什么是生成式 AI:定义和分类,与判别式 AI 的区别,应用领域。 2. 生成式模型:基本结构和训练方法,评估指标,常见模型及其优缺点。 3. 生成式对话:基本概念和应用场景,系统架构和关键技术,基于模型的对话生成方法。 4. 预训练语言模型:发展历程和关键技术,优缺点,在生成式 AI 中的应用。 5. 生成式 AI 的挑战与展望:面临的挑战和解决方法,未来发展趋势和研究方向。 改变创意工作方面: 生成式人工智能在创意工作中发挥着重要作用。例如,生成模型经过训练后,可针对特定内容领域进行“微调”,催生了用于生物医学、法律、法语等的专用模型,以及适用于不同目的的 GPT3 等。NVIDIA 的 BioNeMo 是用于在超级计算规模上训练、构建和部署大型语言模型的框架,适用于生成化学、蛋白质组学和 DNA/RNA 等内容。但使用生成式人工智能仍需人工参与,人类要输入提示让其创建内容,创造性的提示会产生创造性的输出,“即时工程师”可能成为新职业。该领域已出现 DALLE 2 图像提示书和提示市场。 学习资源: 1. 教材:《生成式 AI 导论 2024》,李宏毅。 2. 参考书籍:《深度学习》,伊恩·古德费洛等。 3. 在线课程:李宏毅的生成式 AI 课程。 4. 开源项目:OpenAI GPT3、字节跳动的云雀等。 学习方法:根据课程内容和资源,制定适合自己的学习计划,多实践、多思考。 目前市面上有部分免费的生成式人工智能资源,但也有收费的。需要注意的是,未经许可翻外网可能存在法律风险,请您谨慎选择。
2024-12-24
深度学习是什么意思?
深度学习是一种源于新方法和策略的技术,旨在通过克服梯度消失问题来生成深层的非线性特征层次,从而能够训练具有数十层非线性层次特征的体系结构。 深度学习不仅与学习深度非线性层次特征有关,还与学习检测序列数据中非常长的非线性时间依赖性有关。例如,长短时记忆循环神经网络允许网络收集过去几百个时间步的活动,从而做出准确的预测。 深度学习是一种参照人脑神经网络和神经元的方法,由于具有很多层所以称为“深度”。神经网络可以用于监督学习、无监督学习、强化学习等。 自 2010 年早期,结合 GPUs 和激活函数提供更好的梯度流,足以在没有重大困难的情况下训练深层结构,人们对深度学习的兴趣与日俱增。自 2013 年以来,长短时记忆网络的使用量迅速增长,与卷积网络一起构成了深度学习的两大成功案例之一。
2024-12-24