以下是为您推荐的 AI 入门必读书籍:
了解AI基本概念:首先,建议阅读「[从这里启程](https://waytoagi.feishu.cn/wiki/PFXnwBTsEiGwGGk2QQFcdTWrnlb?table=blkjooAlLFNtvKJ2)」部分,熟悉AI的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。浏览入门文章,这些文章通常会介绍AI的历史、当前的应用和未来的发展趋势。开始AI学习之旅:在「[入门:AI学习路径](https://waytoagi.feishu.cn/wiki/ZYtkwJQSJiLa5rkMF5scEN4Onhd?table=tblWqPFOvA24Jv6X&view=veweFm2l9w)」中,你将找到一系列为初学者设计的课程。这些课程将引导你了解生成式AI等基础知识,特别推荐李宏毅老师的课程。通过在线教育平台(如Coursera、edX、Udacity)上的课程,你可以按照自己的节奏学习,并有机会获得证书。选择感兴趣的模块深入学习:AI领域广泛(比如图像、音乐、视频等),你可以根据自己的兴趣选择特定的模块进行深入学习。我建议你一定要掌握提示词的技巧,它上手容易且很有用。实践和尝试:理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出你的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎你实践后的分享。体验AI产品:与现有的AI产品进行互动是学习AI的另一种有效方式。尝试使用如ChatGPT、Kimi Chat、智谱、文心一言等AI聊天机器人,了解它们的工作原理和交互方式。通过与这些AI产品的对话,你可以获得对AI在实际应用中表现的第一手体验,并激发你对AI潜力的认识。
We picked 50 paper/models/blogs across 10 fields in AI Eng:LLMs,Benchmarks,Prompting,RAG,Agents,CodeGen,Vision,Voice,Diffusion,Finetuning.If you're starting from scratch,start here.我们挑选了50篇论文/模型/博客,涉及人工智能工程的10个领域:LLMs、基准、提示、RAG、代理、CodeGen、视觉、语音、扩散、微调。如果您想从零开始,请从这里开始。The picks from all the speakers in our[Best of 2024 series](https://www.youtube.com/watch?v=wT636THdZZo&list=PLWEAb1SXhjlfG63F03R52DZXpHzVB1_5j)catches you up for 2024,but since we wrote about running[Paper Clubs](https://www.latent.space/p/paperclub),we’ve been asked many times for a reading list to recommend for those starting from scratch at work or with friends.We started with[the 2023 a16z Canon](https://a16z.com/ai-canon/),but it needs a 2025 update and a practical focus.我们的"2024年度最佳"系列中所有演讲者的精选文章为您的2024年划上了句号,但自从我们写了关于开办论文俱乐部的文章后,我们多次被要求为那些在工作中或与朋友一起从零开始的人推荐一份阅读清单。我们从2023年的a16z Canon开始,但它需要2025年的更新和实用重点。Here we curate“required reads”for the AI engineer.Our design goals are:在这里,我们为人工智能工程师策划了"必读书目"。我们的设计目标是:
作者:[Derrick Harris](https://a16z.com/author/derrick-harris/),[Matt Bornstein](https://a16z.com/author/matt-bornstein/)和[Guido Appenzeller](https://a16z.com/author/guido-appenzeller/)原文地址:https://a16z.com/2023/05/25/ai-canon/译者:通往AGI之路后半部分:[目录:a16z推荐进阶经典](https://ywh1bkansf.feishu.cn/wiki/EXX1w3QyFiBz8fknLFYce7gvnug)人工智能的研究正在以指数级别的速度增长。对于AI专家来说,跟上所有新发布的内容已经非常困难,对于初学者来说更是难上加难。因此,在这篇文章中,我们分享了一份我们信赖的、用于更深入了解现代AI的精选资源列表。我们称之为“AI典藏”,因为这些论文、博客文章、课程和指南在过去几年中对该领域产生了巨大影响。我们首先对Transformer和Latent Diffusion(潜在扩散)模型进行了简单的介绍,这些模型正在推动当前的AI浪潮。接下来,我们深入研究了技术学习资源;构建大型语言模型(LLMs)的实用指南;以及AI市场的分析。最后,我们列出了一份里程碑式研究成果的参考列表,从2017年谷歌发布的“Attention is All You Need”开始——这篇论文向世界介绍了Transformer模型,并开启了生成AI的时代。