Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

最近想要出一本书,书籍的主题是“Deepseek的应用革命:打造AI时代的竞争力”主要是面相企业家和企业高管,希望能够将知识库内容中关于企业应用的部分提炼成书,请根据知识库素材,输出一个图书内容规划和重点参考资料

Answer

以下是为您规划的图书内容和重点参考资料:

一、图书内容规划

  1. 引言

    • 介绍 AI 时代的背景和企业面临的挑战与机遇。
    • 阐述 DeepSeek 在塑造企业竞争力方面的重要性。
  2. DeepSeek 的技术创新

    • 详细介绍 DeepSeek 最新模型 V3 与 R1 的架构创新,如混合专家(MoE)架构、多头潜注意力(MLA)等。
    • 解释其如何提升计算效率和推理能力,打破算力壁垒。
  3. 多领域的应用案例

    • 字节跳动的新技术 OmniHuman 在视频生成方面的突破。
    • Coinbase 全面推动 AI 应用的实践,如在欺诈预防和客户支持等领域的应用。
  4. 对企业管理的影响

    • 探讨善于沟通上下文、明晰 AI 能力边界、合理授权并监督等管理经验如何提升 AI 协作效率。
  5. 行业趋势与挑战

    • 分析 AI 基础大模型参数量的变化趋势。
    • 讨论初级程序员面临的职业挑战以及编程领域的颠覆性变化。
  6. 未来展望

    • 预测 DeepSeek 及相关技术在未来的发展方向和可能的创新。

二、重点参考资料

  1. 陈巍:DeepSeek 是否有国运级的创新?从 V3 到 R1 的架构创新与误传的万字长文分析(上)
  2. AI「视觉图灵」时代来了!字节 OmniHuman,一张图配上音频,就能直接生成视频
  3. 甲子光年:2025 DeepSeek 开启 AI 算法变革元年
  4. 大模型“注意力简史”:与两位 AI 研究者从 DeepSeek、Kimi 最新改进聊起
  5. DeepSeek 源神!Deepseek 不语,只是一味开源
  6. 《[零基础掌握 Deepseek》》
  7. @小互(@imxiaohu)日报
  8. @宝玉(@dotey)日报
Content generated by AI large model, please carefully verify (powered by aily)

References

2月7日 社区动态速览

《[陈巍:DeepSeek是否有国运级的创新?从V3到R1的架构创新与误传的万字长文分析(上)](https://zhuanlan.zhihu.com/p/21208287743)》DeepSeek最新模型V3与R1采用混合专家(MoE)架构,显著提升计算效率,挑战OpenAI的闭源模型。V3引入多头潜注意力(MLA),将KV缓存压缩至新低,提升计算性能。R1则通过强化学习激活推理能力,首次验证无需监督微调即可实现推理。DeepSeek正以“国运级的创新”打破算力壁垒,开启大模型新时代。《[AI「视觉图灵」时代来了!字节OmniHuman,一张图配上音频,就能直接生成视频](https://mp.weixin.qq.com/s/0OYlkcxoFvx6Z9IN-aq90w)》字节跳动推出的新技术OmniHuman,利用单张图片和音频生成生动的视频,突破了传统技术的局限。它通过多模态混合训练,解决了高质量数据稀缺的问题,实现了对任意尺寸图像的支持,生成自然的人物运动。《[甲子光年:2025 DeepSeek开启AI算法变革元年](https://waytoagi.feishu.cn/record/S5Jtrlw9neyXMccQ6CAcZsxHnXu)》DeepSeek的出现标志着算力效率拐点显现,其通过优化算法架构,显著提升了算力利用效率,打破了算力至上的传统认知。同时,AI基础大模型的参数量迎来拐点,2025年发布的大模型呈现低参数量特征,为本地化部署到AI终端运行提供了可能。此外,报告强调2025年是算法变革的元年,DeepSeek的推理模型开启了算法变革,其训练过程聚焦于强化学习,提升了模型的推理能力。

4.4 历史更新

《[大模型“注意力简史”:与两位AI研究者从DeepSeek、Kimi最新改进聊起](https://mp.weixin.qq.com/s/cByoldudiAuyUBaVhzrG3g)》本期节目邀请了两位AI研究者探讨大模型中的注意力机制改进。肖朝军与傅天予分别分享了InfLLM和MoBA的创新,聚焦于如何在推阶段高效处理超长文本。注意力机制的核心在于理解词与上下文的关系,克服了传统RNN的遗忘问题,推动了长文本处理的革命。正如他们所言:“注意力机制就是让模型记住过去的每一个词,进而理解未来。”《[你的职业规划跟上AI节奏了吗?Anthropic CEO:初级程序员确定将在18个月内被淘汰](https://mp.weixin.qq.com/s/OolPSzldMvYD0iGA9YHcWg)》在Hard Fork播客中,Anthropic CEO Dario Amodei透露,AI将在18个月内替代初级程序员,强调"现实世界任务"和"扩展思考模式"是Claude 3.7的创新之处。虽然短期内AI助力程序员提升生产力,但长远看,编程领域将迎来颠覆性变化。此外,他对中美AI竞争表示关注,指出中国企业在技术创新上已与西方并肩,Dario公开支持通过技术封锁来遏制中国发展。《[DeepSeek源神!Deepseek不语,只是一味开源](https://mp.weixin.qq.com/s/kdwDf51ZnuupoQqCu9csNQ)》DeepSeek于2025年3月1日圆满结束为期六天的“开源周”,推出六项颠覆性技术,涵盖AI计算、通信和存储等领域,开启AI时代的“基建革命”。其创新如FlashMLA优化GPU资源分配,DeepEP提升数据传输效率,DeepGEMM简化矩阵乘法代码,极大提升算力和效率。

2月24日 社区动态速览

[@小互(@imxiaohu)](https://x.com/imxiaohu)日报📚《零基础掌握Deepseek》正式上市这是首本介绍Deepseek的图书,适合零基础入门学习。上市后迅速售罄,展现“中国速度”。🔗[查看详情](https://x.com/imxiaohu/status/1893641076659097811)>>更多详细内容查看[XiaoHu.AI日报](https://waytoagi.feishu.cn/wiki/T2fUwmHBSiHU6Ukq9Imcu7n7nMh)[@宝玉(@dotey)](https://x.com/dotey)日报1⃣️🧑‍💻管理经验加持AI应用善于沟通上下文,明晰AI能力边界,合理授权并监督,提升AI协作效率。🔗[详情](https://x.com/dotey/status/1893538744671641649)2⃣️⚠️医保严禁AI自动开处方由于DeepSeek、Grok等AI工具过于快速,湖南省医保局明确禁止使用人工智能生成医疗处方。🔗[详情](https://x.com/dotey/status/1893533370535051528)3⃣️🚀Coinbase全面推动AI应用工程师广泛使用Cursor AI工具,提升效率,AI应用于欺诈预防、客户支持等领域,计划实现自动化需求生成PR代码。🔗[微信全文](https://mp.weixin.qq.com/s/dXodWGaPQgcOoMqwi7U_lQ)丨🔗[详情](https://x.com/dotey/status/1893071537835557363)>>更多详细内容查看[宝玉日报](https://waytoagi.feishu.cn/wiki/RleQwkybeiZ2jfkaQdgcIrrdnRd)

Others are asking
本地部署deep seek后如何搭建个人知识库,详细说明一下每个步骤
以下是本地部署 Deep Seek 后搭建个人知识库的详细步骤: 1. 在 RAGFlow 中配置 Deep Seek 模型 返回 RAGFlow ,打开右上角设置,进入模型提供商界面。 配置本地部署的 Deep Seek 模型,选择 Ollama ,并根据运行的模型配置相关信息。 设置基础 URL 。 点击确定。 2. 导入嵌入模型 导入一个用于文本向量化的嵌入模型。 3. 设置系统模型设置 4. 创建知识库 返回知识库,进入数据集,导入文件或设置文件夹当作知识库。 5. 文件解析 对导入的文件进行解析,解析速度取决于本机 GPU 性能(显卡性能),越好的显卡解析越快。 6. 检索测试 解析完成后,进行检索测试。 7. 进入聊天界面 测试没问题后,可进入聊天界面,助理设置可自行进行。 此外,如果想要对知识库进行更灵活的掌控,可以使用 AnythingLLM 软件,步骤如下: 1. 安装 AnythingLLM ,安装地址:https://useanything.com/download 。 2. 安装完成后进入配置页面,主要分为三步: 选择大模型。 选择文本嵌入模型。 选择向量数据库。 3. 构建本地知识库 在 AnythingLLM 中创建独有的 Workspace 与其他项目数据隔离。 上传文档并在工作空间中进行文本嵌入。 选择对话模式,包括 Chat 模式(大模型根据训练数据和上传的文档数据综合给出答案)和 Query 模式(大模型仅依靠文档中的数据给出答案)。 4. 测试对话 完成上述配置后,即可与大模型进行对话。 在进行本地知识库搭建实操之前,还需要对 RAG 有大概的了解: RAG 是一种检索增强生成技术,应用过程包括文档加载、文本分割、存储(包括将文档块嵌入转换成向量形式并存储到向量数据库)、检索、输出(把问题以及检索出来的嵌入片一起提交给 LLM 生成答案)。文本加载器用于将用户提供的文本加载到内存中以便后续处理。
2025-03-07
本地部署ollama+deep seek后怎么有效搭机械领域建知识库或微调为机械领域
以下是本地部署 ollama + deep seek 后有效搭建机械领域知识库或微调为机械领域的步骤: 1. 下载 Ollama 程序:官方网址为 https://ollama.com/ 。默认下载到 C 盘,若想修改安装目录到 D 盘,后续会有相关说明。下载完成后,右下角会出现 Ollama 的图标,打开命令行输入相应命令回车。根据自身独立显卡性能选择模型,如英伟达 2060Super 可选择 Deepseekr1:14b 的模型。若下载速度慢,可按 Ctrl+C 强制退出重新下载。下载完毕后,再下载一个嵌入模型,Ollama 的 bge 模型官方网址:https://ollama.com/library/bgem3 ,输入相应命令,下载好后直接退出终端。 2. 配置模型:返回 RAGFlow 中,打开右上角设置,进入模型提供商进行配置。选择 Ollama,并配置相关信息,基础 URL 按要求设置,设置完成后点击确定。 3. 导入嵌入模型:导入一个嵌入模型用于文本向量化。 4. 设置系统模型:完成相关设置。 5. 创建知识库:返回知识库,进入数据集,可导入文件或设置文件夹当作知识库,自行设置。导入完毕后,对文件进行解析,解析速度取决于本机 GPU 性能,越好的显卡解析越快。解析完成后,进行检索测试,测试没问题即可进入聊天界面,助理设置可自行设置。
2025-03-07
如何在Kimi创建我的个人知识库
以下是在 Kimi 创建个人知识库的相关信息: 使用 GPT 打造个人知识库: 由于 GPT3.5 一次交互支持的 Token 有限,OpenAI 提供了 embedding API 解决方案。 将文本拆分成小文本块(chunk),通过 embeddings API 转换成 embeddings 向量并保存。 当用户提问时,将问题也转换成向量,与向量储存库中的向量比对,提取关联度高的文本块与问题组合成新的 prompt 发送给 GPT API。 理解 embeddings: embeddings 是浮点数字的向量,两个向量之间的距离衡量关联性,小距离表示高关联度。 向量是用一串数字表示的量,在计算机科学中常用列表表示。 常见的向量距离计算方式是欧几里得距离。 使用 Coze 创建个人知识库: 来到个人空间,找到知识库导航栏,点击创建知识库。 知识库是共享资源,多个 Bot 可以引用同一个知识库。 选择知识库的格式(目前支持文档、表格、图片)并填写信息。 可选择本地文档或问答对表格,还能进行自定义的文档切割。 数据处理完成后,一个问答对会被切割成一个文档片。 关于使用知识库,可参考教程:
2025-03-07
知识库如何建立如何使用
以下是关于知识库建立和使用的详细信息: 创建知识库: 上传表格数据: API 方式: 1. 在表格格式页签下,选择 API,然后单击下一步。 2. 单击新增 API。 3. 输入网址 URL 并选择数据的更新频率,然后单击下一步。 4. 输入单元名称或使用自动添加的名称,然后单击下一步。 5. 配置数据表信息,包括确认表结构(可自定义修改列名或删除某一列名,指定语义匹配字段),查看表结构和数据,确认无误后单击下一步。 6. 完成上传后,单击确定。 自定义方式: 1. 在表格格式页面下,选择自定义,然后单击下一步。 2. 输入单元名称。 3. 在表结构区域添加字段,单击增加字段添加多个字段。 4. 设置列名,并选择指定列字段作为搜索匹配的语义字段。 5. 单击确定。 6. 单击创建分段,然后在弹出的页面输入字段值,然后单击保存。 上传文本内容: Notion 方式: 1. 在文本格式页签下,选择 Notion,然后单击下一步。 2. 单击授权。首次导入 Notion 数据和页面时,需要进行授权。在弹出的页面完成登录,并选择要导入的页面。 3. 选择要导入的数据,然后单击下一步。 4. 选择内容分段方式(自动分段与清洗或自定义)。自动分段与清洗时,系统会对上传的文件数据进行自动分段,并会按照系统默认的预处理规则处理数据;自定义时,可手动设置分段规则和预处理规则,包括分段标识符、分段最大长度、文本预处理规则(替换掉连续的空格、换行符和制表符,删除所有 URL 和电子邮箱地址)。 5. 单击下一步完成内容上传和分片。 自定义方式: 1. 在文本格式页签下,选择自定义,然后单击下一步。 2. 输入单元名称,然后单击确认。 3. 单击创建分段,然后在弹出的页面输入要上传的内容。每个分段最多可添加 2000 个字符。 4. 单击保存。 使用知识库:扣子的知识库功能提供了简单易用的方式来存储和管理外部数据,让 Bot 可以与指定的数据进行交互。将数据上传到知识库后,扣子会自动将文档分割成一个个内容片段进行存储,并通过向量搜索来检索最相关的内容来回答用户问题。知识库由大到小可分为:知识库(一整套领域知识,是 Bot 加载的最小单位)、单元(知识库的一部分,可上传的最小内容单位可以是一个.txt、.pdf、.csv 文件或一个网页)、分段(一个单元切分成多个分段,模型查询的最小单位。分段内容的完整度和准确性度会影响模型回答问题的准确性)。
2025-03-07
dify如何将一个pdf文件上传到知识库中,pdf文件中包含图文信息
要将一个包含图文信息的 PDF 文件上传到知识库中,您可以按照以下步骤操作: 1. 在文本格式页签下,选择本地文档,然后单击下一步。 2. 将要上传的 PDF 文件拖拽到上传区,或单击上传区域选择要上传的文件。 注意事项: 目前支持上传.txt、.pdf、.docx 格式的文件内容。 每个文件不得大于 20M。 一次最多可上传 10 个文件。 3. 当上传完成后单击下一步。 4. 选择内容分段方式: 自动分段与清洗:系统会对上传的文件数据进行自动分段,并会按照系统默认的预处理规则处理数据。 自定义:手动设置分段规则和预处理规则。 分段标识符:选择符合实际所需的标识符。 分段最大长度:设置每个片段内的字符数上限。 文本预处理规则: 替换掉连续的空格、换行符和制表符。 删除所有 URL 和电子邮箱地址。 5. 单击下一步完成内容上传和分片。
2025-03-07
我是小白用户,已经建立cherry studio本地知识库,我想更自动化的使用知识库,有什么具体操作方法
以下是关于更自动化使用 cherry studio 本地知识库的具体操作方法: 使用知识库: 将知识库直接与 Bot 进行关联用于响应用户回复,或者在工作流中添加知识库节点,成为工作流中的一环。 在 Bot 内使用知识库: 1. 登录。 2. 在左侧导航栏的工作区区域,选择进入指定团队。 3. 在 Bots 页面,选择指定 Bot 并进入 Bot 详情页。 4. 在 Bot 编排页面的知识库区域,单击加号图标,添加指定的知识库。 5. (可选)添加知识库后,可以在自动调用下拉界面内,调整知识库的配置项。 配置项说明: 最大召回数量:Bot 在调用知识库匹配用户输入内容时,返回的数据片段数量,数值越大返回的内容越多。 最小匹配度:Bot 在调用知识库匹配用户输入内容时,会将达到匹配度要求的数据片段进行召回。如果数据片段未达到最小匹配度,则不会被召回。 调用方式:知识库的调用方式。 自动调用:每轮对话将自动从所有关联的知识库中匹配数据并召回。 按需调用:您需要在人设与回复逻辑中提示 Bot 调用 RecallKnowledge 方法,以约束 Bot 在指定时机从知识库内匹配数据。 6. (可选)在预览与调试区域调试 Bot 能力时,扩展运行完毕的内容可以查看知识库命中并召回的分片内容。 在工作流内使用 Knowledge 节点: 1. 登录。 2. 在左侧导航栏的工作区区域,选择进入指定团队。 3. 在页面顶部进入工作流页面,并打开指定的工作流。 4. 在左侧基础节点列表内,选择添加 Knowledge 节点。 创建知识库并上传文本内容: |上传方式|操作步骤| ||| |本地文档|1. 在文本格式页签下,选择本地文档,然后单击下一步。<br>2. 将要上传的文档拖拽到上传区,或单击上传区域选择要上传的文档。<br>目前支持上传.txt,.pdf,.docx 格式的文件内容。<br>每个文件不得大于 20M。<br>一次最多可上传 10 个文件<br>1. 当上传完成后单击下一步。<br>2. 选择内容分段方式:<br>2.1. 自动分段与清洗:系统会对上传的文件数据进行自动分段,并会按照系统默认的预处理规则处理数据。<br>2.2. 自定义:手动设置分段规则和预处理规则。<br>分段标识符:选择符合实际所需的标识符。<br>分段最大长度:设置每个片段内的字符数上限。<br>文本预处理规则:<br>替换掉连续的空格、换行符和制表符<br>删除所有 URL 和电子邮箱地址<br>1. 单击下一步完成内容上传和分片。| 创建知识库并上传表格数据: |上传方式|操作步骤| ||| |本地文档|选择将本地文件中的表格数据上传至知识库中。<br>1. 在表格格式页签下,选择本地文档,然后单击下一步。<br>2. 将要上传的文档拖拽到上传区,或单击上传区域选择要上传的文档,然后单击下一步。<br>目前支持上传.csv 和.xlsx 格式的文件内容,且表格内需要有列名和对应的数据。<br>每个文件不得大于 20M。<br>一次最多可上传 10 个文件。<br>1. 配置数据表信息后,单击下一步。<br>1.1. 指定数据范围:通过选择数据表、表头、数据起始行指定数据范围。<br>1.2. 确认表结构:系统已默认获取了表头的列名,您可以自定义修改列名,或删除某一列名。<br>1.3. 指定语义匹配字段:选择哪个字段作为搜索匹配的语义字段。在响应用户查询时,会将用户查询内容与该字段内容的内容进行比较,根据相似度进行匹配。<br>2. 查看表结构和数据,确认无误后单击下一步。<br>3. 完成上传后,单击确定。|
2025-03-06
AI智能体在企业应用案例
以下是一些 AI 智能体在企业中的应用案例: 决策智能体: 以 Anterior 为例,它是一家健康计划自动化公司,开发了用于自动化理赔提交审核的临床决策引擎。将付款方规则转换为有向无环图,智能体遍历决策树,利用 LLM 评估相关临床文件是否符合规则,在复杂任务中选择最佳方法并更新状态,直至最终确定。 Norm AI 正在为监管合规打造 AI 智能体,Parcha 正在为 KYC 建立智能体。 检索增强生成(RAG): 以 Sana 的企业搜索用例为例,应用程序加载和转换无结构文件,将其分块并作为向量嵌入存储在数据库中。当用户提问时,系统检索相关上下文块,折叠到“元提示”中与检索信息一起喂给 LLM,合成答复返回给用户。 Eve 法律研究的共同驾驭员会将研究查询分解为独立提示链,运行每个提示链生成中间输出,并综合编写最终备忘录。 生成式 AI 应用: 具有搜索、合成和生成三个核心用例,Menlo Ventures 投资组合公司如 Sana(企业搜索)、Eve(法律研究副驾驶)和 Typeface(内容生成 AI)是早期突破性的代表。 领先的应用程序构建商如 Anterior、Sema4 和 Cognition 正在建立解决方案,处理之前只能由大量人力解决的工作流程。借助多步逻辑、外部内存以及访问第三方工具和 API 等新型构建块,拓展 AI 能力边界,实现端到端流程自动化。
2025-02-16
AI企业应用
以下是关于 AI 企业应用的相关内容: 2024 年小型企业的人工智能应用新纪元:随着人工智能技术的迅猛发展,2023 年成为小型企业运用这一技术的关键一年。小型企业可通过多种 AI 应用程序提高效率、优化营销策略和改进客户服务,以下是七个重要的 AI 应用程序,正推动小型企业转型。 企业构建和购买生成式 AI 方式的 16 个变化:在应用方面,将会更多迁移到具体业务场景。目前企业正在自行构建而非购买应用程序,但当更多面向企业的 AI 应用上市时情况可能改变。一些企业领导者认为会有新工具出现,并愿意使用市面上最好的工具。GenAI 正成为一种“战略工具”,允许企业将某些功能内部化,而非依赖外部供应商。那些能在“LLM + UI”公式之外创新,重新思考企业基本工作流程或帮助企业更好利用专有数据的应用,将在市场上表现出色。 3.1 案例:AI 产品案例严选 AI+工作场景:包括企业运营(如日常办公文档材料撰写整理、营销对话机器人、市场分析、销售策略咨询、法律文书起草等)、教育(协助评估学生学习情况、定制化学习内容等)、游戏/媒体(定制化游戏、出海文案内容生成等)、零售/电商(舆情监测分析、品牌营销内容撰写等)、金融/保险(个人金融理财顾问、识别欺诈活动风险等)等七大行业的商业化应用。
2024-09-04
deepseek论文指令
以下是关于 DeepSeek 提示词的详细内容: 一、核心原理认知 1. AI 特性定位 多模态理解:支持文本/代码/数学公式混合输入。 动态上下文:对话式连续记忆(约 8K tokens 上下文窗口,换算成汉字是 4000 字左右)。 任务适应性:可切换创意生成/逻辑推理/数据分析模式。 2. 系统响应机制 采用意图识别+内容生成双通道。 自动检测 prompt 中的任务类型/输出格式/知识范围。 反馈敏感度:对位置权重(开头/结尾)、符号强调敏感。 二、基础指令框架 1. 四要素模板 2. 格式控制语法 强制结构:使用```包裹格式要求。 占位符标记:用{{}}标注需填充内容。 优先级符号:>表示关键要求,!表示禁止项。 三、进阶控制技巧 1. 思维链引导 分步标记法:请逐步思考:1.问题分析→2.方案设计→3.风险评估。 苏格拉底式追问:在得出最终结论前,请先列举三个可能存在的认知偏差。 2. 知识库调用 领域限定指令:基于 2023 版中国药典,说明头孢类药物的配伍禁忌。 文献引用模式:以 Nature 2022 年发表的论文为参考,解释 CRISPRCas9 最新突破。 3. 多模态输出 四、高级调试策略 1. 模糊指令优化 问题类型:宽泛需求、主观表述。 修正方案:添加维度约束、量化标准。 示例对比:原句“写小说”→修正“创作以 AI 觉醒为背景的悬疑短篇,采用多视角叙事结构”;原句“写得专业些”→修正“符合 IEEE 论文格式,包含 5 项以上行业数据引用”。 2. 迭代优化法 首轮生成:获取基础内容。 特征强化:请加强第三段的技术细节描述。 风格调整:改用学术会议报告语气,添加结论部分。 最终校验:检查时间逻辑一致性,列出可能的事实性错误。 五、行业应用案例 1. 技术开发场景 2. 商业分析场景 六、异常处理方案 1. 信息幻觉:追加请标注所有不确定陈述,并提供验证方法。 2. 格式偏离:使用严格遵循以下模板:第一行...第二行... 3. 深度不足:触发请继续扩展第三章节内容,添加案例佐证。 七、效能监测指标 1. 首次响应准确率:目标>75%。 2. 多轮对话效率:问题解决平均轮次<3。 3. 复杂任务分解:支持 5 级子任务嵌套。 八、高阶能力调用 1. 文风转换矩阵 指令结构:作家风格移植、文体杂交、学术口语化。 效果示例。 2. 领域穿透技术 行业黑话破解:“解释 Web3 领域的'胖协议瘦应用'理论”。 商业决策支持。 九、场景化实战策略 1. 创意内容生成 2. 技术方案论证 十、效能增强技巧 1. 对话记忆管理 上下文锚定:“记住当前讨论的芯片型号是麒麟 9010”。 信息回溯:“请复述之前确认的三个设计原则”。 焦点重置:“回到最初讨论的供应链问题”。 2. 输出质量控制 问题类型:过度抽象、信息过载、风格偏移。 修正指令。 十一、特殊场景解决方案 1. 长文本创作 分段接力法:“先完成故事大纲→逐章扩展→最后进行伏笔校验”“确保新章节与前文的三处细节呼应”。 2. 敏感内容处理 概念脱敏法:“用经济学原理类比说明网络审查机制”。 场景移植法:“假设在火星殖民地讨论该议题”。
2025-03-09
deepseek清华大学公开课
以下是关于清华大学与 DeepSeek 相关的公开课信息: 2 月 7 日,清华大学新闻与传播学院新媒体研究中心出品了《》,详细阐述了 DeepSeek 的功能,包括智能对话、文本生成、代码生成、自然语言理解等,并探讨了如何使用 DeepSeek,包括推理模型与通用模型的区别、提示语设计策略以及如何从入门到精通。文章还介绍了提示语设计的核心技能、常见陷阱及应对方法,旨在帮助用户更好地掌握 AI 工具的使用,提升工作效率和创新能力。 2 月 18 日,清华大学沈少阳发布了《》
2025-03-09
deepseek公开课
以下是关于 deepseek 的相关信息: DeepSeek 开源了,在 LMSYS Chatbot Arena 排行榜上总排名 11 超过了所有开源模型。 阿里云 DeepSeek 智能体课程分两天,今天讲阿里云百炼,明天讲派平台,重点是智能体搭建、快速使用 DeepSeek 等,明天还会讲本地化部署中的蒸馏数据等线下未讲的内容。今天课程对电脑配置要求低,适合硬件资源投入少的人,且是手把手教程,难度不大。 社区是全国最大的开源 AI 知识库社区,用户量达 138 万多,首页访问次数超 200 万,强调共同学习、共创的价值观。 DeepSeek 模型功能包括自然语言处理、翻译与转换、文本生成与创作、知识和推理等,可用于多种场景,如文本摘要、格式转换等。其爆火原因包括能力强,在竞赛题等方面表现出色;国内能用,效果惊艳;开源免费,成本低;突破算力封锁,能在国内短缺 GPU 情况下训练出超一流模型。 2 月 23 日有 AI 切磋大会第十期 2 月 23 日 deepseek 专场,线下 16 个城市活动开始报名,活动报名链接为 https://waytoagi.feishu.cn/share/base/form/shrcnWlc12pvQQmx21mTZNEJ83d 。 2 月 22 日,英伟达 CEO 黄仁勋在 Beyond 大会上首次就近期引发全球 AI 圈热议的中国企业 DeepSeek 发表了看法。 欢迎向社区投稿关于 AI 技术探讨与分析、实践经验与案例分享、行业动态与趋势观察、开发心得与技术教程等内容,要求原创、严谨、有深度,配图说明更佳,观点明确,结构清晰,建议字数 1500 5000 字,提交后 2 3 工作日反馈,必要时沟通修改建议,优质内容将收录知识库。更多内容请前往 。
2025-03-09
deepseek学习资料
以下是关于 DeepSeek 的学习资料: 在 2025 年 2 月 6 日的“聊聊你怎么使用 DeepSeek”活动中,有以下智能纪要: DP 模型的功能:能进行自然语言理解与分析、编程、绘图,如 SVG、MA Max 图表、react 图表等。 使用优势:可以用更少的词让模型做更多事,思维发散,能给出创意思路和高级内容。 存在问题:思维链长不易控制,可能输出看不懂或胡编乱造的内容,增加纠错成本。 审核方法:可以用其他大模型来解读 DP 模型给出的内容。 使用建议:使用时要有自己的思维雏形,多看思考过程,避免被模型冲刷原有认知。 使用场景:包括阅读、育儿、写作、随意交流等方面。 案例展示:通过与孩子共读时制作可视化互动游戏,以及左脚踩右脚式的模型交互来展示 DP 模型的应用。 音系学研究:对音系学感兴趣,通过对比不同模型的回答来深入理解,如 bug 和 DIFF SIG,探讨语言概念在音系学下的心理印象等。 大模型取队名:与大模型进行多轮对话来取队名,通过不断约束和披露喜好,最终得到满意的队名及相关内容。 此外,1 月 27 日的宝玉日报中也有关于 DeepSeek 的内容: 拾象:DeepSeek r1 闭门学习讨论|Best Ideas Vol 3,讨论了 DeepSeek 在全球 AI 社区的意义,包括技术突破与资源分配策略。突出了 DeepSeek 长上下文能力、量化商业模式、以及其对 AI 生态系统的深远影响。重点分析了 DeepSeek 的创新路径及中国在 AI 追赶中的潜力与挑战。 转:关于 DeepSeek 的研究和思考
2025-03-09
进行DeepSeek本地化部署有哪些方法?
进行 DeepSeek 本地化部署的方法如下: 如果拥有云服务器,可以进行本地部署,了解满血版本地部署的实际情况。 在 freely.aliyun.com 可领取 500 元免费额度,但有使用限制,不能部署满血版和较大的增流模型。 了解 DLC、DSW 和 EAS 等模型部署平台服务的差别。
2025-03-08
DEEPSEEK 相关资料
以下是关于 DeepSeek 的相关资料: 集合·DeepSeek 提示词方法论:https://waytoagi.feishu.cn/wiki/ISVZwe05Tio9hEkFSF5cIjZ7nVf?from=from_copylink DeepSeek 从入门到精通.pdf:https://waytoagi.feishu.cn/wiki/EfWpw8arIiEoOKkjSalcMVZZnme?from=from_copylink DeepSeek 13 大官方提示词通俗解读,让新手也能用出高手的效果:https://waytoagi.feishu.cn/wiki/YIGKwXlgUi8RKlkkklxclpDYnbg?from=from_copylink 【今晚 8 点】聊聊你怎么使用 DeepSeek!2025 年 2 月 6 日:https://waytoagi.feishu.cn/wiki/MKfgwiN2FigRp1knbxJcdj4lnAf?from=from_copylink Deepseek"4+1"黄金提问法——情境化:https://waytoagi.feishu.cn/wiki/JZu4wrdsSi9gNSktaPCcgDNNnvf?from=from_copylink Deepseek"4+1"黄金提问法——迭代优化:https://waytoagi.feishu.cn/wiki/R56OwQb4KiP9klk5CPbcR49yn9f?from=from_copylink 如果您的 DeepSeek 一直显示服务器繁忙,可尝试以下替代网站: 秘塔搜索:https://metaso.cn 360 纳米 Al 搜索:https://www.n.cn/ 硅基流动:https://siliconflow.cn/zhcn/ 字节跳动火山擎:https://console.partner.volcengine.com/auth/login?redirectURI=%2Fpartner%2F5. 百度云千帆:https://login.bce.baidu.com/ 英伟达:https://build.nvidia.com/deepseekai/deepseekr1 Groq:https://groq.com/ Chutes:https://chutes.ai/app 阿里云百炼:https://api.together.ai/playground/chat/deepseekai/DeepSeekR1 Github:https://github.com/marketplace/models/azuremldeepseek/DeepSeekR1/playground POE:https://poe.com/DeepSeekR1 Cursor:https://cursor.sh/ Monica:https://monica.im/invitation?c=ACZ7WJJ9 Lambda:https://lambdalabscom/6 Cerebras:https://cerebras.ai Perplexity:https://www.perplexity.ai 阿里云百炼:https://api.together.ai/playground/chat/deepseekai/DeepSeekR1 【今晚 8 点】聊聊你怎么使用 DeepSeek!2025 年 2 月 6 日的智能纪要: DP 模型的使用分享: 功能:能进行自然语言理解与分析、编程、绘图,如 SVG、MA Max 图表、react 图表等。 使用优势:可以用更少的词让模型做更多事,思维发散,能给出创意思路和高级内容。 存在问题:思维链长不易控制,可能输出看不懂或胡编乱造的内容,增加纠错成本。 审核方法:可以用其他大模型来解读 DP 模型给出的内容。 使用建议:使用时要有自己的思维雏形,多看思考过程,避免被模型冲刷原有认知。 使用场景:包括阅读、育儿、写作、随意交流等方面。 案例展示:通过与孩子共读时制作可视化互动游戏,以及左脚踩右脚式的模型交互来展示 DP 模型的应用。 音系学和与大模型互动的分享: 音系学研究:对音系学感兴趣,通过对比不同模型的回答来深入理解,如 bug 和 DIFF SIG,探讨语言概念在音系学下的心理印象等。 大模型取队名:与大模型进行多轮对话来取队名,通过不断约束和披露喜好,最终得到满意的队名及相关内容。 Deepseek 的介绍与活动预告: Deepseek 文档分享:在 3 群和 4 群分享了 Deepseek 的相关文档,也可在 v to a gi 的飞书知识库中搜索获取。 Deepseek 使用介绍:介绍了 Deepseek 的模型、收录内容、提示词使用技巧和好玩的案例等。 未来活动预告:明天后天在摩纳社区提供免费算力资源带大家学习炼丹,周一晚上学习多维表格中接入 Deepseek。
2025-03-08
我是一名港口行业国有企业职工培训专员,想结合当前AI技术应用,出一份既涵盖管理人员序列、职能人员序列,又包括技能操作序列职工的,可直接执行的年度培训计划文案,字数不超过1000字。
以下是为您提供的一份结合当前 AI 技术应用的港口行业国有企业职工年度培训计划文案,希望对您有所帮助: 一、培训目标 提升管理人员、职能人员和技能操作序列职工在 AI 技术应用方面的知识和技能,增强企业整体竞争力。 二、培训对象 管理人员序列、职能人员序列、技能操作序列职工。 三、培训内容 1. 管理人员序列 AI 技术在企业管理中的应用趋势与案例分析。 基于 AI 的决策支持系统的使用与解读。 2. 职能人员序列 AI 办公软件的应用技巧,如自动化流程处理。 利用 AI 进行数据分析与报告生成。 3. 技能操作序列职工 港口智能化设备中 AI 技术的原理与操作维护。 基于 AI 的安全监控系统的操作与应急处理。 四、培训方式 1. 线上课程:利用网络平台提供相关课程,方便职工自主学习。 2. 线下讲座:邀请专家进行现场讲解和互动交流。 3. 实践操作:在实际工作场景中进行模拟训练和实际操作。 五、培训时间安排 1. 每月安排一次线上课程。 2. 每季度组织一次线下讲座。 3. 不定期进行实践操作培训,根据实际工作需求灵活安排。 六、培训效果评估 通过考试、实际操作考核、项目成果评估等方式,检验职工的学习成果,并将其与绩效考核挂钩,激励职工积极参与培训。
2025-02-28
我是一个什么都不懂的小白,但是我想通过ai弄出一个应用,我该怎么做?
对于纯小白想要通过 AI 开发应用,您可以参考以下步骤: 1. 从基础小任务开始: 让 AI 按照最佳实践为您写一个 say hello 的示例程序,并解释每个文件的作用及程序运行的逻辑,以此学会必备的调试技能。 比如在学习写 chrome 插件时,可以要求 AI 选择适合小白上手的技术栈生成简单的示范项目,并包含尽可能全面的典型文件和功能,同时讲解每个文件的作用和程序运行的逻辑。 如果使用 o1mini,还可以在提示词最后添加“请生成 create.sh 脚本,运行脚本就能直接创建插件所需要的所有文件。请教我如何运行脚本。”(windows 机器则是 create.cmd),从而一次性生成多个目录和文件。 2. 明确项目需求: 通过和 AI 的对话,逐步明确项目需求。 可以让 AI 像高级别的懂技术的产品经理那样向您提问,帮助梳理产品功能,尤其注意涉及技术方案选择的关键点。 来回对话后,让 AI 帮助梳理出产品需求文档,在后续开发时每次新起聊天将文档发给 AI 并告知正在做的功能点。 需要注意的是,虽然 AI 能提供帮助,但对于复杂的应用开发,仍需要您在过程中逐渐学习一些编程知识。目前像字节 Coze 这样的工具本质上是「AIfirst aPaaS」,它把实现应用所需的不同类型代码用不同可视化工具实现,生成的是「配置」,且开发和运行阶段都有大模型的支持。
2025-02-24
我想出一款自动采摘农业机器人的图 能实现吗
目前,AI 在农业领域已经有了一定的应用,例如提高农业生产效率的 AI 机器人。但要设计一款自动采摘农业机器人的图是可以实现的。AI 技术能够为机器人的设计提供很多帮助,比如通过计算机视觉模型来识别农作物的成熟度和位置,通过深度学习算法来规划机器人的采摘路径等。不过,要成功实现这样的设计,还需要考虑许多因素,如机器人的机械结构、动力系统、传感器精度、环境适应性等。同时,还需要相关的技术团队具备跨学科的知识和丰富的经验。
2025-02-23
养老场景实时健康监测与风险预警在技术上怎么实现,用AI大模型实现,请给出一个可行的方案
以下是一个利用 AI 大模型实现养老场景实时健康监测与风险预警的可行方案: 首先,需要明确相关的概念和技术名词。AI 即人工智能,机器学习是电脑找规律学习,包括监督学习、无监督学习和强化学习。监督学习是基于有标签的训练数据,学习输入和输出之间的映射关系,包括分类和回归。无监督学习是在无标签数据中自主发现规律,例如聚类。强化学习是从反馈中学习以最大化奖励或最小化损失,类似训小狗。深度学习参照人脑,具有神经网络和神经元,因层数多被称为深度,神经网络可用于多种学习方式。生成式 AI 能生成文本、图片、音频、视频等内容形式,LLM 是大语言模型,生成图像的扩散模型不属于大语言模型,像谷歌的 BERT 模型可用于语义理解,如上下文理解、情感分析、文本分类。 在技术里程碑方面,2017 年 6 月谷歌团队发表的《Attention is All You Need》论文首次提出了 Transformer 模型,其完全基于自注意力机制处理序列数据,不依赖循环神经网络或卷积神经网络。 对于养老场景的实时健康监测与风险预警,可利用传感器收集老人的生理数据,如心率、血压、血糖等。这些数据通过物联网传输到服务器,利用深度学习算法对数据进行分析和处理。例如,使用基于 Transformer 模型的大模型,对历史健康数据和当前实时数据进行学习和分析,建立老人的健康模型。通过与正常健康指标的对比,及时发现异常情况,并结合无监督学习中的聚类算法,对不同健康状况的老人进行分类,以便提供个性化的预警和建议。同时,利用强化学习不断优化模型的预警准确性和及时性。 总之,通过整合传感器数据采集、物联网传输、深度学习算法分析和模型优化等环节,借助 AI 大模型实现养老场景的实时健康监测与风险预警。
2025-02-20
目前通过AI工具的结合是否可以根据已调研完成的病例数据输出一份医学报告
目前,通过 AI 工具的结合,在一定程度上可以根据已调研完成的病例数据输出医学报告。例如 GPT4V 在医学图像理解方面显示出了有效性,能够为各种医学图像生成完整的放射学报告。在一些案例中,如腹部 X 射线图像和右膝的 MRI 图像,GPT4V 能正确识别研究并提供准确诊断。但也存在一些错误,比如在手部/腕部 X 射线图像中错过远侧桡骨骨折,在胸部 CT 中错误识别结节位置和产生测量误差。尽管生成的报告能保持高质量格式,可作为模板减轻医学专业人士起草报告的工作负担,但由医学专业人士评估生成的报告以确保其正确性和准确性仍是至关重要的。
2025-02-20
我是少儿编程老师,现在我需要知道编程每个语言之间的区别,并绘制出一张思维导图给我详细介绍
很抱歉,目前没有关于编程各语言区别的详细内容来为您绘制思维导图。但一般来说,不同的编程语言在语法、应用场景、性能特点等方面存在差异。例如,Python 语法简洁,常用于数据科学和人工智能;Java 应用广泛,在企业级开发中表现出色;C++ 性能高效,常用于系统编程和游戏开发等。您可以通过在线编程学习网站、相关书籍以及技术论坛获取更详细准确的信息来绘制思维导图。
2025-02-19