Navigate to WaytoAGI Wiki →
Home/question.detail.breadcrumb.questionList/question.detail.breadcrumb.questionDetail

目前的AI插件产业实践有哪些,需要收费的又有哪些

Answer

目前的 AI 插件产业实践中,以开发 AI Share Card 插件为例:

  • 技术方案:将模板生成功能设计为固定的代码组件,让大模型专注于内容总结的功能。若用户需要其他模板,可通过增加更多模板选项或自定义模板代码功能实现。
  • 对 AI 大模型的要求:处理纯文本总结任务,仅需 13B 或更小参数的模型,加上精调的提示词就能产生很好结果。
  • AI API 服务的选型要求:
    • 较长的上下文窗口,因为内容总结类任务需要较大的上下文长度。
    • 响应速度要快、并发支持要高,以在多人使用插件时保持良好性能表现。
    • 免费或尽量低价,以减少模型 token 费用。例如选用的 GLM-4-flash(截至 2024-12,长达 128k 的上下文窗口,完全免费的调用价格,200 RPM 高并发支持)。

需要收费的 AI 插件因具体应用和服务提供商而异,常见的收费方式包括按使用量计费、订阅制等。但像上述提到的 GLM-4-flash 在特定时间内是免费的。

Content generated by AI large model, please carefully verify (powered by aily)

References

不懂代码,也能 3 小时打造并上架一款 AI 插件

纯靠词生卡Prompt完成卡片样式输出,固然是非常灵活的AI智能体方案。但倘若在最终落地产品中,还是每次都依赖大模型重新生成卡片的样式代码,反而会消耗大量的输出token,耗时且不经济。此外,在实际使用中,用户通常只固定使用一到两个常用模板,对自定义样式的需求并不频繁。所以在开发AI Share Card插件的过程中,我选择将模板生成功能设计为固定的代码组件,而让大模型专注于内容总结的功能。如果用户需要选择其他模板,则通过增加更多模板选项or自定义模板代码功能实现。如此一来,对AI大模型的要求就不会动辄需要像Claude 3.5 sonnet那样高不可攀的顶级模型。处理纯文本总结任务,仅需13B或更小参数的模型,加上精调的提示词,就能产生很好的结果。一旦明确模型的任务,AI API服务的选型要求就清晰了:1.较长的上下文窗口:内容总结类任务需要较大的上下文长度;2.响应速度要快、并发支持要高:以便在多人使用插件时,保持良好的性能表现;3.免费或尽量低价:减少模型token费用。经过简单调研后,AI Share Card选用的是GLM-4-flash(没恰饭。截至2024-12,长达128k的上下文窗口,完全免费的调用价格,200 RPM高并发支持,还要什么自行车🚲~)

Others are asking
coze 如何 100% 调用插件
在 Coze 中调用插件并非能 100% 保证成功,以下是一些相关信息: Coze 的工作流中,节点是基本单元,插件节点可用于扩展大语言模型本身的限制,实现特定功能,如抓取网页内容。 加入智能体后,会有调用次数的统计。 即使是官方插件也可能存在不稳定的情况,需要自行尝试找到适合当前场景的插件。 例如在微信图片助手的打造中,有以下操作: 任务 1 总结图片内容对应【识图小能手】等任务与相应插件存在对应关系,已在 Coze 插件商店上架,搜索关联即可。 配置插件时,需准备好 Glif 的 Token,在 Coze 中编辑参数选项填入 Token 并保存,同时关闭对大模型的可见按钮。 通过已有服务 api 创建插件时: 进入 Coze 个人空间选择插件,新建并命名,填入 ngrok 随机生成的 https 链接地址,配置输出参数,测试后发布。 手捏插件后可创建 bot 并接入插件,在 prompt 中要求调用插件。 需要注意的是,Coze 调用插件有一定随机性,对输入输出内容会有过滤,如果多次尝试不成功,可优化提示词使其更准确识别输入意图,且不要使用违规字词和图片内容。
2024-12-28
coze 如何 100% 调用工作流或插件
要 100% 调用 Coze 的工作流或插件,您可以参考以下内容: 实现工作流方面: 上传输入图片。 理解图片信息,提取图片中的文本内容信息。 进行场景提示词优化/图像风格化处理。 返回文本/图像结果。 搭建流程时,主要步骤包括上传图片(将本地图片转换为在线 OSS 存储的 URL,以便在平台中进行调用),以及将图片理解大模型和图片 OCR 封装为工作流插件(若市场中有可直接使用)。 Coze 简介: 插件:Coze 提供丰富的插件选项,允许通过 API 连接集成各种平台和服务,扩展 Bot 功能,可轻松调用或创建定制插件。 工作流:是强大的工具,用于设计和实施复杂的功能逻辑,通过拖拽不同任务节点构建多步骤任务,提高 Bot 处理任务效率。 图像流:提供可视化操作界面,允许灵活添加处理节点,设计图像处理流程。 触发器:允许 Bot 在设定的特定时间或发生特定事件时自动执行任务,是自动化处理的关键组件。 知识库:使您能够添加和利用本地或在线的文本内容和数据表,支持 Bot 提供更准确和实用的回答。 变量:帮助 Bot 存储用户的个人信息,如语言偏好,使回复更加个性化和精准。 数据库:提供简单高效的方式管理和操作结构化数据,支持自然语言的数据插入和查询,还支持多用户模式,提供灵活读写权限控制。 长期记忆:使 Bot 能够形成对用户的个人记忆,基于这些记忆提供个性化回复,提升用户体验。 卡片:允许自定义 Bot 生成内容的格式,以卡片形式展示,增强交互体验。 大模型:通过人设与回复逻辑中的一系列设定,编排 Bot 的具体执行任务和执行逻辑。 此外,判断任务/Prompt 是否需要拆解为工作流时,通常先从当前性能最强的 LLM 着手,用单条 Prompt 或 Prompt Chain 测试任务执行质量和稳定性,再根据实际情况逐步拆解子任务。对于场景多样、结构复杂、对输出格式要求严格的内容,基本可预见需要拆解为工作流。鉴于 LLM 只能处理文本输入输出的特性,涉及生成多媒体内容或从网络自主获取额外信息等能力时,必然需要通过工作流来调用相应的插件。
2024-12-28
在WayToAGI的直播中分享插件大全的“罗文老师”有哪些分享的文章或者视频吗
以下是 5 月 10 日罗文分享《认识插件》的相关文章或视频内容: 罗文分享如何使用插件一键生成标题 罗文分享使用插件武装智能体的方法与挑战 罗文分享 AI 插件使用方法及相关名词解释 罗文讲解单函数版本、方法论及插件配置 如何使用插件提升工作效率 如何快速了解插件的用途及使用场景 如何理解和运用插件 罗文讲解 API 使用技巧及相关提示词的作用 如何稳定调用 API 获取想要的信息 罗文分享使用插件的八步法及挑战 关于如何使用 flow 插件创建机器人的步骤讲解 关于如何在飞书上进行 API 内容报名的步骤讲解 关于国内版本使用的相关问题解答与分享 170 人同时编辑多维表格,字节同学帮忙做压测 关于多维表格插件使用的讨论 关于 AI 工具使用的分享与讨论 介绍智能体插件的使用方法 关于如何设置文档权限及使用插件的操作教程 关于如何使用代码执行器及流程化模板的讨论 关于智能体插件使用的讨论及实操演示 关于多维表格插件使用说明挑战的工作流程介绍 关于插件 API 使用的讨论 罗文分享工作流的设计与应用 罗文分享工作流程及机器人使用心得
2024-12-24
在coze中如何接入飞书插件
在 Coze 中接入飞书插件的步骤如下: 1. 企业微信群聊机器人插件: 到语聚 ai 的第三方 api 集成平台上添加工具动作。 在平台上测试相关动作,获得返回的 API 请求的 python 代码。 按步骤集成到 Coze 的插件创建平台中。 2. 飞书多维表格插件: 使用 Coze 在 Coze IDE 中创建模式创建插件。 根据飞书开放者文档的要求在 Coze IDE 平台中用 handler 的方式编写 python 代码,配置项目依赖。 在 metadata 中配置输入和输出端信息。 最后测试发布成功。 此外,还有以下相关内容供您参考: 1. 通过已有服务 api 创建 Coze 插件: 进入 Coze,个人空间中,选择插件。新建一个插件,起个名字 api_1(名字可随意,描述叫 test)。 在插件的 URL 部分,填入刚才 ngrok 随机生成的 https 的链接地址。 按照指引配置输出参数,测试后发布插件。 手捏插件搞定之后,就可以创建 bot,将创建的插件接进来,在 prompt 里面让它调用插件。 2. 大聪明的保姆级教程: 先创建第一个 bot,然后不断精进。 如创建一个 Coze Bot 帮查阅 Hacker News 并中文返回,可引入联网插件 WebPilot 实现。
2024-12-23
提示词测试有哪些插件
以下是一些与提示词测试相关的插件: 景淮在制作成语小游戏时,使用了成语搜索的 Web 插件,但有时会出现不触发或内容不够准确的情况。 小七姐在实验中,利用了强大的 ChatGPT 插件和 GPT4、AI Agents³进行提示词优化。 【SD】中的 One Button Prompt 插件,可帮助自动写提示词。安装方式可在扩展面板中搜索直接安装,或放在指定路径文件夹下,安装完成后重启 webUI 即可在脚本下拉菜单中找到。使用时可设置大模型、采样方法、采样步骤、CFG 比例等参数,还能选择主题、艺术和图像类型,也可添加提示词增加控制。
2024-12-19
如何确保agent按要求调用插件
要确保 Agent 按要求调用插件,可以参考以下方法: 1. 构建稳定可用的 AI Agent 是一个需要不断调试和迭代的过程。通常从当前性能最强的 LLM(如 ChatGPT4 和 Claude 3.5 sonnet)着手,先用单条 Prompt 或 Prompt Chain 来测试任务的执行质量和稳定性。然后,根据实际执行情况、最终投产使用的 LLM,逐步拆解子任务,降低 LLM 执行单任务的难度,直到达成工程目标。 2. 一般而言,对于场景多样、结构复杂、对输出格式要求严格的内容,基本可以预见到需要将其拆解为工作流。此外,鉴于 LLM 只能处理文本输入输出的特性,如果涉及生成多媒体内容或从网络自主获取额外信息等能力,必然需要通过工作流来调用相应的插件。 3. 在插件中心确定需要的插件时,先用关键词进行尝试性搜索,根据插件名称、插件介绍页、描述、参数、示例,判断是否可能满足需求。有多个插件同时可选时,一般优选官方/高收藏/高成功率的插件,提升使用效果。如果实际试用效果不行,则换用其他插件,或自己编写上架插件。 例如,在搜索 TTS 文字转语音插件时,可以使用“语音”“文字转语音”“TTS”等相关关键词;在搜索思维导图插件时,可以使用“脑图”“树图”“导图”“mindmap”等关键词。
2024-12-17
中国大陆的好用的AI工具有哪些,尤其针对大学老师做科研使用
以下是一些在中国大陆适合大学老师做科研使用的 AI 工具: 1. 语言学习类: Speak(https://www.speak.com/):能够实时交流,并对发音或措辞给予反馈。 Quazel(https://www.quazel.com/) Lingostar(https://www.lingostar.ai/) 2. 学科指导类: Photomath(https://photomath.com/en):指导学生解决数学问题。 Mathly(https://mathly.webflow.io/) PeopleAI(https://chatbotkit.com/apps/peopleai?ref=theresanaiforthat):通过模拟与杰出人物的聊天来教授历史。 Historical Figures(https://twitter.com/scottbelsky/status/1611244139764649991) 3. 写作辅助类: Grammarly Orchard(https://orchard.ink/) Lex(https://lex.page/~) 4. PPT 制作类: Gamma:在线 PPT 制作网站,允许用户通过输入文本和想法提示快速生成幻灯片,支持嵌入多媒体格式。(https://gamma.app/) 美图 AI PPT:允许用户通过输入简单的文本描述来生成专业的 PPT 设计,包含丰富的模板库和设计元素。(https://www.xdesign.com/ppt/) Mindshow:提供一系列的智能设计功能,如自动布局、图像选择和文本优化等。(https://www.mindshow.fun/) 讯飞智文:利用科大讯飞在语音识别和自然语言处理领域的技术优势,提供智能文本生成、语音输入、文档格式化等功能。(https://zhiwen.xfyun.cn/) 5. 图像类: 可灵:由快手团队开发,用于生成高质量的图像和视频,但价格相对较高。 通义万相:在中文理解和处理方面表现出色,用户可以从多种艺术风格和图像风格中进行选择,操作界面简洁直观,用户友好度高,且目前免费,每天签到获取灵感值即可,但存在一些局限性,如某些类型的图像可能无法生成,在处理非中文语言或国际化内容方面可能不够出色。
2024-12-28
怎样搭建一个属于自己的AI智能体
搭建属于自己的 AI 智能体可以按照以下步骤进行: 1. 设计 AI 智能体架构:先构思整个 AI 智能体的架构。 2. 规定稍后读阅读清单的元数据: 新建一个飞书多维表格,根据稍后读的管理需要,定义元数据字段。 为了方便操作,也可以直接复制准备好的模板:【模板】稍后读管理 元数据字段包括: 内容:超链接格式,显示页面标题,可点击跳转具体的页面。 摘要:根据具体内容,总结内容主题、关键信息、阅读价值,并指出适合的读者群体。 作者:作者名称。 平台:所在的网站平台名称。 状态:阅读状态,收藏的默认态为“仅记录”。 发布日期:文章的发布日期。 收集时间:收藏入库的时间。 3. 逐步搭建 AI 智能体: 创建 Bot。 填写 Bot 介绍。 切换模型为“通义千问”:测试下来,通义对提示词理解、执行效果最好。 把配置好的工作流,添加到 Bot 中。 新增变量{{app_token}}。 添加外层 bot 提示词(可以按照需求和实际效果进行优化调整)。 经过上述配置,就可以在「预览与调试」窗口,与 AI 稍后读智能体对话,使用全部的功能。
2024-12-28
能直接把中文word转化成英文word的ai
目前暂时没有直接将中文 Word 文档转化为英文 Word 文档的通用 AI 工具。但有一些在线翻译平台和软件可以帮助您实现这个需求,例如谷歌翻译、百度翻译等。您可以将中文 Word 中的内容复制粘贴到这些翻译工具中进行翻译,然后再整理到新的 Word 文档中。
2024-12-28
用AI写科学论文用哪什么软件
在论文写作领域,以下是一些常用的 AI 工具和平台: 1. 文献管理和搜索: Zotero:结合 AI 技术,能自动提取文献信息,便于管理和整理参考文献。 Semantic Scholar:由 AI 驱动的学术搜索引擎,提供文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:通过 AI 技术进行文本校对、语法修正和写作风格建议,提升语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化论文内容。 3. 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,方便进行数据分析和可视化。 Knitro:用于数学建模和优化,助力复杂的数据分析和模型构建。 4. 论文结构和格式: LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,有丰富模板库和协作功能,简化编写过程。 5. 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:检测潜在抄袭问题。 AI 文章排版工具方面: 1. Grammarly:不仅是语法和拼写检查工具,还提供排版功能,改进文档风格和流畅性。 2. QuillBot:AI 驱动的写作和排版工具,改进文本清晰度和流畅性。 3. LaTeX:常用于学术论文排版,使用标记语言描述格式,有 AI 辅助的编辑器和插件简化排版。 4. PandaDoc:文档自动化平台,使用 AI 帮助创建、格式化和自动化文档生成,适用于商业和技术文档。 5. Wordtune:AI 写作助手,重新表述和改进文本,使其更清晰专业。 6. Overleaf:在线 LaTeX 编辑器,提供丰富模板和协作工具,适合学术写作和排版。 对于医学课题需要 AI 给出修改意见,您可以考虑以下工具: 1. Scite.ai:为研究人员等打造的创新平台,提供引用声明搜索等工具,简化学术工作。 2. Scholarcy:从文档提取结构化数据,生成文章概要,包含关键概念等板块内容。 3. ChatGPT:强大的自然语言处理模型,可提供修改意见和帮助。 选择工具时应根据具体需求,如文档类型、出版标准和个人偏好。对于学术论文,LaTeX 和 Overleaf 受欢迎;一般文章和商业文档,Grammarly 和 PandaDoc 等可能更适用。
2024-12-28
Ai可以在初中数学教学提供哪些帮助
AI 在初中数学教学中可以提供以下帮助: 1. 学情分析与作业测评: 基于平台数据进行学情智能分析,了解学生的学习情况。 利用 AI 工具生成作业题目,并辅助优化题目质量与难度。 实现主观题 AI 辅助批改,以及人机协同批改的优化策略与实践。 2. 教学内容创新: 以巴以冲突等时事为例,借助 AI 围绕其出相关的数学题。 将泰坦尼克号的史料借助 AI 变成数学课的教案,让学生从生活中学习数学,并融合地理、人文、历史、安全等多学科知识。 3. 教学方法优化: 老师可以将复杂的教学任务拆分成科学合理的步骤,让 AI 基于每个步骤的结果进行预测和辅助,提升教学效果。 让智谱清言出 20 道选择题,配上参考答案和解析,从中挑选可用的题目。 4. 个性化学习: 利用自适应学习系统,如 Khan Academy,为学生提供个性化的数学学习路径和练习题,根据学生的能力和需求进行精准推荐。 借助虚拟教学助手,如 Socratic,为学生解答数学问题、提供教学视频和答疑服务。 此外,还可以参考一些相关的应用,如 Photomath 指导学生解决数学问题。
2024-12-28
AI抠图
以下是关于 AI 抠图的相关信息: 可以直接抠图,也可以安装 PS 里的进行操作。图片上传即可抠图,可用于做一些素材,如叶子飘落、战斗时石头等素材,辅助做一些氛围动画。 有一键抠图的方式,省时省力。操作指引为点击智能抠图卡片,上传需要抠出主体物的图片。 可以使用 Iphone 手机自带的抠图功能、美图秀秀或者在网上找一些网站,如 https://www.remove.bg/zh ,直接上传图片即可。 目前有很多可以自动抠图的软件,无需像以前用 PS 一点一点抠图。
2024-12-28
对企业来说直接用开源大模型和用国内大厂收费的大模型有哪些区别
对于企业来说,直接使用开源大模型和使用国内大厂收费的大模型主要有以下区别: 数据方面: 开源大模型的数据获取相对容易,但数据质量可能参差不齐。例如,OpenAI 训练大模型所用的中文数据虽源自中国互联网平台,但经过了深度处理,而国内中文互联网数据质量普遍被认为相对较低。 国内大厂收费的大模型可能在数据处理和质量上更具优势,但获取高质量数据对于企业尤其是初创企业来说成本较高且存在风险。 商业化落地方面: 客户在商业化落地时更关注实用性而非原创性,有时因成本低会倾向选择开源大模型的非原创技术。 但使用开源大模型可能存在拼装和套壳后强调原创,从而影响迭代能力,导致内耗、刷榜和作假等问题。 其他方面: 金沙江创投主管合伙人朱啸虎指出,使用大模型要有垂直行业数据,能实现数据闭环,并持续保持和客户的连接。对于大厂而言,要关心自身边界,而创业公司必须对客户和大厂有自身价值才能立足。 目前国内大模型的商业化落地仍处于拿着锤子找钉子的阶段,预计到今年年底头部大模型能基本达到 3.5 水平,明年 11 月有望到 4,但真正能落地的商业化场景有限。
2024-12-07
Stable Diffusion(SD)收费吗
Stable Diffusion 是开源免费的。其优势在于开源免费、可以本地化部署、创作自由度很高,但需要较好的电脑配置,尤其是显卡。 相比较于 DALLE 等大模型,Stable Diffusion 让用户使用消费级的显卡便能够迅速实现文生图。Stable Diffusion 完全免费开源,所有代码均在 GitHub 上公开,大家可以拷贝使用。 目前有关于 Stable Diffusion 的课程,例如《Stable Diffusion 零基础入门宝典》,共计 77 个课时,定价 298 元,上架 CCtalk。因制作字幕课程在逐步解锁中,目前对前 100 名报名的同学有优惠价 198 元。
2024-10-21
做视频AI剪辑,含矩阵,分发。国内有哪些免费软件或收费比较效低的
目前国内在视频 AI 剪辑方面,包含矩阵和分发功能,且免费或收费较低的软件相对较少。一些常见的视频剪辑软件如剪映、快影等,具有一定的智能剪辑功能,但可能在矩阵和分发方面的针对性不强。您可以关注一些新推出的软件或者相关软件的优惠活动,以获取更符合您需求且价格合适的选择。
2024-09-07
WaytoAGI 网站怎么收费
WaytoAGI 网站的收费情况如下: 对于 AI 绘画创作者:7 8 月测试期间,每件商品售出按 3 美元/件计算收益(需扣除韩国的预扣税,预扣税以财务的计算口径为准),7 8 月产生的收益,9 月可以开始提现。9 月平台正式上线后,收益计算公式为:×分成比例 预扣税净额支付 = 当月总收益,采用阶梯分成机制,按商品售价的实际分成比例结算。注册艺术家可以在账号平台钱包里查看收益。 购买算力点:可访问 WaytoAGI 图像工具官方网站: 。此外,WaytoAGI 提供多个专业版计划,以满足不同用户的需求,具体的专属权益和定价可在网站上查看。
2024-08-11
ChatGPT 这个软件在哪里下载,是否收费
ChatGPT 是一种基于 GPT 架构的人工智能模型,由 OpenAI 开发。它是目前最先进的人工智能模型之一,能够理解和生成接近人类水平的文本。 目前 ChatGPT 官网有两个版本,一个是 GPT3.5,一个是 GPT4。GPT3.5 是免费版本,只要拥有 GPT 账号就能使用,但智能程度相对较低,且无法使用 DALL.E3 和 GPTs 商店等插件。GPT4 则需要升级到 PLUS 套餐,收费标准为 20 美金一个月,功能更强大,包括 AI 画图功能和高级数据分析等插件。此外,GPT4 还有团队版和企业版,功能更多,限制更少,但费用也更高。 在注册 ChatGPT 账号之前,需要先注册一个谷歌账号,因为国外很多软件支持谷歌账号一键登录。注册谷歌账号支持国内手机号码和国内邮箱验证,过程简单。 ChatGPT 的网址为。使用 ChatGPT 时,需要注意以下几点: 需要🪜。 需要 gmail 注册。 有被封禁的可能。 总的来说,ChatGPT 是一款强大的人工智能工具,但使用时需要注意相关限制和风险。
2024-07-04
call annie 怎么收费
Call Annie 是一个 AI 助手聊天服务,旨在为用户提供随时可用的虚拟助手。该平台由 Animato, Inc. 提供支持,是一个可靠高效的虚拟助手,为用户提供多种访问方式:电话、实时视频、iPhone 应用或者 Web 音频。 关于 Call Annie 怎么收费的问题,需要前往其官网了解具体信息。
2024-05-10
智能客服的实践案例有哪些?
以下是一些智能客服的实践案例: 在销售方面,有“销售:话术总结优缺点”,涉及产品特点、服务优势、目标客户需求和痛点等方面。 详情: 入库时间:2023/10/30 在销售方面,还有“销售:定制销售解决方案”,涵盖企业产品和服务内容、客户需求和参数等内容。 详情: 入库时间:2023/10/30 在客服方面,有“客服:定制客服话术”,包含产品知识、使用方法等 13 个关键词库。 详情: 入库时间:2023/10/30 腾讯运营在智能客服方面的应用: ChatGPT 承担客服功能,通过告知其具体客服身份,要求其解答用户问题并进行私域流量转化。 ChatGPT 能够理解社区用户的评论和问题,并生成合适的回复,管理社区互动,模拟运营人的语言风格,与用户进行更自然的互动。 ChatGPT 可以监测舆情和热点,从多个来源抓取互联网上的热门话题、新闻和社交媒体动态,并对抓取到的文本数据进行深度分析。 其他相关案例:
2024-12-17
提示词实践
以下是一些关于提示词(Prompts)的最佳实践示例: 1. Unicode 字符映射转换器: 作者:李继刚 分类:代码 说明:将用户输入的字符串逐一映射到 Unicode 区间 U+1D400 到 U+1D420。 注意事项:请准确地将用户输入的字符串的字符映射到指定的 Unicode 区间;不提供任何解释或说明;只输出转换后的结果。 链接地址: 2. 流程图/图表设计: 作者:nimbus 分类:商业 说明:根据用户的流程描述,自动生成 Mermaid 图表代码 注意事项:生成的代码要符合 Mermaid 语法,准确表达用户需求;生成代码遵循 Mermaid 语法;流程语义表达准确;代码整洁格式规范。 链接地址: 3. 黑话转化器: 作者:echo 分类:文本 说明:使用 ChatGPT 模拟阿里黑话转换 任务步骤: 欢迎玩家输出对话。 玩家说完对话后,ChatGPT 进行阿里黑话转换,在对话中,尽量使用阿里高级词汇。 使用示例: 输入:找个小众产品抄,预期输出:找准了自己差异化赛道。 输入:做广告,预期输出:通过对势能积累的简单复用实现了价值转化。 输入:被主流给抛弃,预期输出:通过特有抓手找到擅长的垂直领域。 输入:发小卡片,预期输出:通过点线结合的对焦性打法,找到了红海行业的精细化引爆点。 链接地址:
2024-12-04
有哪些使用语言模型的最佳实践案例?
以下是一些使用语言模型的最佳实践案例: 1. 转换类应用: 大型语言模型擅长将输入转换为不同格式,如语言翻译、拼写和语法矫正、格式转换等。例如,可以输入一段不符合语法规范的文本让其修改,或输入 HTML 输出 JSON。 可以执行翻译任务,模型在多种语言的大量文本上训练,能够掌握数百种语言。 2. 基础提示词: 提示词包含传递到模型的指令、问题等信息,也可包含上下文、输入或示例等详细信息,以更好地指导模型获得更好结果。 对于 OpenAI 的聊天模型,可使用 system、user 和 assistant 三种角色构建 prompt,通常示例仅使用 user 消息作为 prompt。 提示工程探讨如何设计最佳提示词,如通过改进提示词完善句子输出。 3. 提示工程: 将复杂任务分解为更简单的子任务,如使用意图分类识别用户查询中的指令,对长对话进行总结或过滤,将长文档分段总结。 给予模型“思考”时间,如让模型在给出最终答案前先进行“思考链”推理,指导其先给出解决方案,使用“内心独白”或系列查询隐藏推理过程,询问是否遗漏信息以确保完整性。
2024-11-25
咱们有dify的好的实践教程或示例吗
以下是关于 Dify 的一些实践教程和相关信息: 接入企业微信: 创建聊天助手应用:在 Dify 平台创建基础编排聊天助手应用,获取 API 密钥和 API 服务器地址。 下载 Dify on WeChat 项目:下载并安装依赖。 填写配置文件:在项目根目录创建 config.json 文件,填写 API 密钥和服务器地址。 把基础编排聊天助手接入微信:快速启动测试,扫码登录,进行对话测试,可以选择源码部署或 Docker 部署。 把工作流编排聊天助手接入微信:创建知识库,导入知识库文件,创建工作流编排聊天助手应用,设置知识检索节点和 LLM 节点,发布更新并访问 API。 把 Agent 应用接入微信:创建 Agent 应用,设置对话模型和添加工具,生成 API 密钥,填写配置文件,启动程序并进行测试。更多内容请访问原文:https://docs.dify.ai/v/zhhans/learnmore/usecases/difyonwechat 构建知识库的具体步骤: 准备数据:收集需要纳入知识库的文本数据,包括文档、表格等格式。对数据进行清洗、分段等预处理,确保数据质量。 创建数据集:在 Dify 中创建一个新的数据集,并将准备好的文档上传至该数据集。为数据集编写良好的描述,描述清楚数据集包含的内容和特点。 配置索引方式:Dify 提供了三种索引方式供选择:高质量模式、经济模式和 Q&A 分段模式。根据实际需求选择合适的索引方式,如需要更高准确度可选高质量模式。 集成至应用:将创建好的数据集集成到 Dify 的对话型应用中,作为应用的上下文知识库使用。在应用设置中,可以配置数据集的使用方式,如是否允许跨数据集搜索等。 持续优化:收集用户反馈,对知识库内容和索引方式进行持续优化和迭代。定期更新知识库,增加新的内容以保持知识库的时效性。 Dify 介绍:Dify 是一个开源的大模型应用开发平台,它通过结合后端即服务和 LLMOps 的理念,为用户提供了一个直观的界面来快速构建和部署生产级别的生成式 AI 应用。该平台具备强大的工作流构建工具,支持广泛的模型集成,提供了一个功能丰富的提示词 IDE,以及一个全面的 RAG Pipeline,用于文档处理和检索。此外,Dify 还允许用户定义 Agent 智能体,并通过 LLMOps 功能对应用程序的性能进行持续监控和优化。Dify 提供云服务和本地部署选项,满足不同用户的需求,并且通过其开源特性,确保了对数据的完全控制和快速的产品迭代。Dify 的设计理念注重简单性、克制和快速迭代,旨在帮助用户将 AI 应用的创意快速转化为现实,无论是创业团队构建 MVP、企业集成 LLM 以增强现有应用的能力,还是技术爱好者探索 LLM 的潜力,Dify 都提供了相应的支持和工具。Dify 官方手册:https://docs.dify.ai/v/zhhans 。一般地,如果是个人研究,推荐单独使用 Dify,如果是企业级落地项目推荐使用多种框架结合,效果更好。
2024-11-22
智能客服应如何实践
以下是关于智能客服实践的相关内容: 零成本、零代码搭建一个智能微信客服的实操步骤: 1. 访问微信客服 https://kf.weixin.qq.com/,点击开通。 2. 勾选同意,点击下一步。 3. 按步骤填写,勾选同意,注册企业微信。 4. 注册成功后,会出现“企业未认证,累计仅可接待 100 位客户,认证后可提升接待上限”的提醒,个人测试无需认证,不影响使用。 5. 完成上述步骤后,已成功 50%,接下来是复制粘贴操作: 点击配置>到微信客服的企业信息,复制企业 ID >到 coze 页面进行粘贴填写企业 ID,并点击下一步。 到微信客服的开发配置,找到回调配置,复制 Token、EncodingAESKey(如果为空,点击“随机获取”),到 coze 页面进行粘贴,点击下一步。 到微信客服的开发配置,配置回调地址 URL、复制 Secret 到 coze 的页面粘贴。 第一次设置回调地址时,目前需要企业认证才可以接入微信客服。若企业未认证,配置回调 URL 时会报错:回调域名校验失败。之前未认证就发布过微信客服的不受影响。第一次设置成功后,后续修改在特定页面进行。 到微信客服的客服账号,创建一个客服账号,复制客服账号名称,到 coze 的页面粘贴,点击保存。保存后,在 coze 发布页面的发布平台的微信客服这里,显示“已配置”,剩下的就是勾选,点击发布。 ChatGPT 在智能客服中的应用: 1. 承担客服功能:告诉 ChatGPT 具体客服身份,要求其解答用户问题的同时,进行私域流量转化。 2. 管理社区互动:模拟运营人的语言风格,与用户进行更自然的互动,提高用户参与度和满意度。同时支持对社区中的评论和问题进行自动分类,帮助运营团队更有效地解决问题和满足用户需求。 3. 监测舆情和热点:从多个来源抓取互联网上的热门话题、新闻和社交媒体动态,并对抓取到的文本数据进行深度分析,识别热门话题和趋势,帮助内容运营团队及时了解市场变化。实时监测品牌、产品或服务的网络声量,识别潜在的负面舆情,并提醒运营团队采取措施。但因 ChatGPT 并不支持实时搜索,以上内容需要借助第三方插件完成。
2024-11-05
有没有关于RAG的实践
以下是关于 RAG 的一些实践: OpenAI 的实践:从 45%的准确率开始,尝试多种方法,如假设性文档嵌入(HyDE)和精调嵌入等,效果不理想。通过尝试不同大小块的信息和嵌入不同的内容部分,准确率提升到 65%。通过 Reranking 和对不同类别问题特别处理,进一步提升到 85%。最终,通过提示工程、查询扩展等方法结合,达到 98%的准确率。团队强调了模型精调和 RAG 结合使用的强大潜力,尤其是在未使用复杂技术的情况下,仅通过简单的模型精调和提示工程就接近行业领先水平。 本地部署大模型以及搭建个人知识库:利用大模型的能力搭建知识库是 RAG 技术的应用。RAG 应用可抽象为 5 个过程,包括文档加载、文本分割、存储(包括嵌入和向量数据存储)、检索、输出(把问题及检索出的嵌入片提交给 LLM 生成答案)。 本地部署资讯问答机器人:基于用户问题从向量数据库中检索相关段落并过滤,让模型参考上下文信息回答,实现 RAG。通过 gradio 创建网页 UI 并进行评测,对不同模型如 Qwen7b、Gemma、Mistral、Mixtral 和 GPT4 进行测试,得出 GPT4 表现最好等结论。同时总结指出上下文数据质量和大模型性能决定 RAG 系统性能上限,RAG 能提升答案质量和相关性,但不能完全消除大模型幻觉、信息滞后问题。
2024-11-03