Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

AI在师范生实践能力培养的路径

Answer

以下是关于 AI 在师范生实践能力培养的路径的相关内容:

对于师范生实践能力的培养,可参考以下路径:

  1. 基础学习

    • 了解 AI 基本概念:熟悉 AI 的术语、主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。
    • 掌握编程语言:如 Python、JavaScript 等,这些是 AI 和机器学习的基础。学习编程语法、数据结构、算法等基础知识。
  2. 学习资源与平台

    • 在线教育平台:通过 Coursera、edX、Udacity 等平台上的课程,按照自己的节奏学习。
    • 特定课程:特别推荐李宏毅老师的课程。
  3. 深入学习与选择方向

    • 依据兴趣选择特定模块,如自然语言处理、计算机视觉、推荐系统等。
    • 掌握提示词技巧,上手容易且实用。
  4. 实践与应用

    • 参与实践项目:参加学校或社区组织的相关竞赛、创意设计大赛等活动,尝试利用 AI 技术解决实际问题,培养动手能力。
    • 体验 AI 产品:与 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解其工作原理和交互方式。
  5. 关注前沿动态

    • 关注权威媒体和学者,了解 AI 技术的最新进展和发展方向。
  6. 结合教育领域

    • 学习 AI 在教育领域的应用案例,思考如何将 AI 技术应用于教学实践中。

总之,师范生可以从多个方面入手,全面系统地学习 AI 知识和技能,并将其与教育实践相结合,提升自身的实践能力。

Content generated by AI large model, please carefully verify (powered by aily)

References

问:中学生如何开始学习 AI,有哪些好用的工具或者平台?

我总结了以下中学生学习AI的建议:1.从编程语言入手学习可以从Python、JavaScript等编程语言开始学习,这些是AI和机器学习的基础。学习编程语法、数据结构、算法等基础知识,为后续的AI学习打下基础。2.尝试使用AI工具和平台可以使用ChatGPT、Midjourney等AI生成工具,体验AI的应用场景。探索一些面向中学生的AI教育平台,如百度的"文心智能体平台"、Coze智能体平台等。3.学习AI基础知识了解AI的基本概念、发展历程、主要技术如机器学习、深度学习等。学习AI在教育、医疗、金融等领域的应用案例。4.参与AI相关的实践项目可以参加学校或社区组织的AI编程竞赛、创意设计大赛等活动。尝试利用AI技术解决生活中的实际问题,培养动手能力。5.关注AI发展的前沿动态关注AI领域的权威媒体和学者,了解AI技术的最新进展。思考AI技术对未来社会的影响,培养对AI的思考和判断能力。总之,中学生可以从编程基础、工具体验、知识学习、实践项目等多个方面入手,全面系统地学习AI知识和技能,为未来的AI发展做好准备。内容由AI大模型生成,请仔细甄别

问:新手如何学习 AI?

了解AI基本概念:首先,建议阅读「[从这里启程](https://waytoagi.feishu.cn/wiki/PFXnwBTsEiGwGGk2QQFcdTWrnlb?table=blkjooAlLFNtvKJ2)」部分,熟悉AI的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。浏览入门文章,这些文章通常会介绍AI的历史、当前的应用和未来的发展趋势。开始AI学习之旅:在「[入门:AI学习路径](https://waytoagi.feishu.cn/wiki/ZYtkwJQSJiLa5rkMF5scEN4Onhd?table=tblWqPFOvA24Jv6X&view=veweFm2l9w)」中,你将找到一系列为初学者设计的课程。这些课程将引导你了解生成式AI等基础知识,特别推荐李宏毅老师的课程。通过在线教育平台(如Coursera、edX、Udacity)上的课程,你可以按照自己的节奏学习,并有机会获得证书。选择感兴趣的模块深入学习:AI领域广泛(比如图像、音乐、视频等),你可以根据自己的兴趣选择特定的模块进行深入学习。我建议你一定要掌握提示词的技巧,它上手容易且很有用。实践和尝试:理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出你的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎你实践后的分享。体验AI产品:与现有的AI产品进行互动是学习AI的另一种有效方式。尝试使用如ChatGPT、Kimi Chat、智谱、文心一言等AI聊天机器人,了解它们的工作原理和交互方式。通过与这些AI产品的对话,你可以获得对AI在实际应用中表现的第一手体验,并激发你对AI潜力的认识。

问:AI的技术历史和发展方向,目前最前沿的技术点有哪些

1.数学基础:线性代数、概率论、优化理论等2.机器学习基础:监督学习、无监督学习、强化学习等3.深度学习:神经网络、卷积网络、递归网络、注意力机制等4.自然语言处理:语言模型、文本分类、机器翻译等5.计算机视觉:图像分类、目标检测、语义分割等6.前沿领域:大模型、多模态AI、自监督学习、小样本学习等7.科研实践:论文阅读、模型实现、实验设计等[heading3]偏向应用方向[content]1.编程基础:Python、C++等2.机器学习基础:监督学习、无监督学习等3.深度学习框架:TensorFlow、PyTorch等4.应用领域:自然语言处理、计算机视觉、推荐系统等5.数据处理:数据采集、清洗、特征工程等6.模型部署:模型优化、模型服务等7.行业实践:项目实战、案例分析等无论是技术研究还是应用实践,数学和编程基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。内容由AI大模型生成,请仔细甄别。

Others are asking
AI与师范生实践能力培养
以下是关于 AI 与师范生实践能力培养的相关内容: 对于中学生学习 AI 的建议: 1. 从编程语言入手,如 Python、JavaScript 等,学习编程语法、数据结构、算法等基础知识。 2. 尝试使用 AI 工具和平台,如 ChatGPT、Midjourney 等,以及面向中学生的教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识,包括基本概念、发展历程、主要技术(如机器学习、深度学习等),以及在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目,如参加学校或社区组织的编程竞赛、创意设计大赛等,尝试用 AI 技术解决实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态,关注权威媒体和学者,思考其对未来社会的影响。 在智慧课程培育建设方面的案例: 1. 24 小时 AI 学伴:学生随时利用 AI 学伴巩固课堂知识,强化对复杂影像的理解。 2. 跨学科知识图谱:AI 整合解剖学、放射物理等资源,提升跨学科学习效果。 3. 个性化学习支持:AI 根据学生进度提供定制化练习和反馈,强化薄弱环节。 4. 病例库与临床决策模拟:AI 通过病例库和虚拟实践,提高学生临床决策能力。 5. 解放教师生产力:AI 减轻教师重复性工作,让其专注教学设计与创新。 此外,拜登签署的 AI 行政命令中提到,为确保 AI 促进公平和公民权利,采取了一系列行动,包括为房东、联邦福利项目和联邦承包商提供明确指导,防止 AI 算法加剧歧视;通过培训、技术援助和部门协调解决算法歧视问题;在刑事司法系统中制定使用 AI 的最佳实践以确保公平等。同时,为保护消费者、患者和学生,总统也指示了相关行动。
2025-01-14
ai免费生成视频
以下是一些免费生成 AI 视频的工具及相关信息: 1. Hidreamai(国内,有免费额度) 网址:https://hidreamai.com//AiVideo 支持文生视频、图生视频。 提示词使用中文、英文都可以。 文生视频支持正向提示词、反向提示词、运镜控制、运动强度控制,支持多尺寸,可以生成 5s 和 15s 的视频。 2. ETNA(国内) 网址:https://etna.7volcanoes.com/ 是一款由七火山科技开发的文生视频 AI 模型,可根据用户简短的文本描述生成相应的视频内容。生成的视频长度在 8 15 秒,画质可达 4K,最高 38402160,画面细腻逼真,帧率 60fps。支持中文,时空理解。 3. Dreamina(国内内测,有免费额度) 网址:https://jimeng.jianying.com/aitool/video/generate 支持文生视频、图生视频,视频生视频。 支持图生视频首尾帧功能。 提示词使用中文、英文都可以。 文生视频支持正向提示词、运镜控制、运动强度控制、帧数选择,支持多种尺寸。默认生成 3s 的视频。 4. 可灵(免费) 网址:https://klingai.kuaishou.com/ 支持文生视频、图生视频。 支持图生视频首尾帧功能。 提示词可使用中文。 文生视频支持正向提示词、反向提示词、运镜控制、时长选择(5s、10s),支持多种尺寸。默认生成 5s 的视频。 此外,还有 Runway 可生成 AI 视频: 网页:https://runwayml.com/ 注册零门槛:右上角 Sign Up 注册,输入邮箱与基础信息,完成邮箱验证即可完成注册。 选择 Try For Free 模式:所有新注册用户会有 125 个积分进行免费创作(约为 100s 的基础 AI)。 生成第一个视频步骤:①选择左侧工具栏“文字/图片生成视频”;③将图片拖入框内;④选择一个动画系数;⑤点击生成 4 秒视频;⑥下载视频。
2025-01-14
ai视频制作
如果您想用 AI 把小说做成视频,一般可以按照以下流程进行: 1. 小说内容分析:使用 AI 工具(如 ChatGPT)分析小说内容,提取关键场景、角色和情节。 2. 生成角色与场景描述:根据小说内容,使用工具(如 Stable Diffusion 或 Midjourney)生成角色和场景的视觉描述。 3. 图像生成:使用 AI 图像生成工具根据描述创建角色和场景的图像。 4. 视频脚本制作:将提取的关键点和生成的图像组合成视频脚本。 5. 音频制作:利用 AI 配音工具(如 Adobe Firefly)将小说文本转换为语音,添加背景音乐和音效。 6. 视频编辑与合成:使用视频编辑软件(如 Clipfly 或 VEED.IO)将图像、音频和文字合成为视频。 7. 后期处理:对生成的视频进行剪辑、添加特效和转场,以提高视频质量。 8. 审阅与调整:观看生成的视频,根据需要进行调整,比如重新编辑某些场景或调整音频。 9. 输出与分享:完成所有编辑后,输出最终视频,并在所需平台上分享。 请注意,具体的操作步骤和所需工具可能会根据项目的具体需求和个人偏好有所不同。此外,AI 工具的可用性和功能也可能会随时间而变化,建议直接访问上述提供的工具网址获取最新信息和使用指南。 在 AI 春晚采访中,AI 视频制作的分工包括: 1. 制片人AJ:负责影片的制作管理,包括团队组建、日程安排、信息收集、资料整理、各处岗位工作缺失时及时补上等。 2. 图像创意??:负责用 AI 生成富有想象力的角色和场景等所有出现在视频中的画面,并为每个角色赋予人物小传。 3. 视频制作??:将做好的角色场景等图像素材进行 AI 图生文的工作,需要擅长运营工具的笔刷等控制工具,更好的契合剧本。 4. 编剧?:负责撰写剧本,包括故事情节、角色串联、人物台词等。 5. 配音和配乐?:这里涉及到背景音乐、音效、角色配音、声音克隆,用各种声音类 AI 工具捏出来。 6. 剪辑师?:负责把后期剪辑,包括镜头选择、节奏控制和音效配合。 在 8 分钟 AI 视频制作《冷湖案例》中,首先很高兴参与相关活动,在制作过程中有“完成比完美更重要”的感悟。以《俄博梁纪元》AI 视频为例,视频长达 8 分半,制作陆陆续续花了一个月时间。从片头开始,镜头想法是需要视线聚焦到中心的圆形细胞,并保持固定,方便后续画面的转场。由于单张 AI 图生视频的动效太简单,分了几个图层进行处理,还叠加了几个画面来丰富画面。
2025-01-14
如何把已经写好的内容放入ai做ppt,并且ai不会自动扩展。
要将已写好的内容放入 AI 做 PPT 且不让 AI 自动扩展,可以参考以下方法: 1. 使用 Kimi.ai 等工具将思维导图图片转成 PPT。 2. 对于 AI 辅助生成 PPT,其原理和作用包括: 减轻排版工作的压力。 生成打底的内容,减轻人写内容的工作。 文章生成 PPT 时,让 AI 帮忙摘要内容,生成大纲列表;主题生成 PPT 时,让 AI 根据主题扩充成大纲列表,乃至具体内容。 在特定场景下可直接使用,如学生快速为小组展示配 PPT。 3. 具体流程为:用户输入内容,AI 输出,然后通过排版网站处理。网站把 AI 输出的文本丢给 LLM,让其根据内容在已有的 UI 组件中选择更适合的组件,按时间线为每页 PPT 的文字选出整个 PPT 中每一页的 UI 组件。有的网站如 tome、gamma,配图也是由 GenAI 根据页面内容生成的。 4. 另外,还可以参考以下案例中的方法,如在办公场景中,用 ChatGPT 生成 Markdown 语法的内容,再借用 MindShow 工具把 Markdown 内容转换为精美的 PPT。
2025-01-14
如何用AI做PPT
以下是一些用 AI 做 PPT 的方法和相关工具: 1. 好用的 AI PPT 工具: Gamma:在线 PPT 制作网站,可通过输入文本和想法提示快速生成幻灯片,支持嵌入多媒体格式。网址:https://gamma.app/ 美图 AI PPT:由美图秀秀团队推出,通过输入简单文本描述生成专业设计。网址:https://www.xdesign.com/ppt/ Mindshow:AI 驱动的 PPT 辅助工具,提供智能设计功能。网址:https://www.mindshow.fun/ 讯飞智文:科大讯飞推出的 AI 辅助文档编辑工具,利用语音识别和自然语言处理技术。网址:https://zhiwen.xfyun.cn/ 2. 制作经验分享: 卓 sir 分享了自己使用 AI 完成 PPT 的经历,用到的 AI 工具包括 GPT4、WPS AI 和 chatPPT。 熊猫 Jay 因企业内部要求编写了相关培训材料,介绍了通过 AI 工具高效制作 PPT 的思路,并提到了市面上受欢迎的 5 款 AI PPT 工具,如 MindShow、爱设计、闪击、Process ON、WPS AI。
2025-01-14
0基础学Ai
对于 0 基础学习 AI,您可以参考以下步骤: 1. 了解 AI 基本概念: 建议阅读「」部分,熟悉 AI 的术语和基础概念。 了解人工智能是什么,其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,您将找到一系列为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),您可以根据自己的兴趣选择特定的模块进行深入学习。 一定要掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 此外,“AI 编程共学”活动中也有相关分享: |时间|分享材料|话题内容|分享人| ||||| |10 月 28 日 20:00 开始(回放链接:)|通往 AGI 之路增量小游戏 https://muykeee.github.io/waytoagiincremental/ 转生之我是野菩萨 https://muykeee.github.io/wildpusaincremental/|0 基础做小游戏分享:通往 AGI 之路增量小游戏 转生之我是野菩萨|麦橘| |10 月 29 日 20:00 开始(|0 编程基础入门 Cursor 极简使用指南|梦飞| |10 月 30 日 20:00 开始(回放链接)| AI 拍立得:小程序:Pailido|0 基础学做 AI 拍立得:Coze 工作流实现手把手教学 AI 拍立得开源代码开箱即用|银海| |10 月 31 日 20:00 开始(回放链接)||0 基础做小游戏分享:猪猪🐷撞南墙|南墙|
2025-01-14
AI是什么
AI 是一门令人兴奋的科学,它是某种模仿人类思维可以理解自然语言并输出自然语言的东西,其生态位是一种似人而非人的存在。 对于没有理工科背景的人来说,把 AI 当成一个黑箱即可,只需要知道它能理解自然语言并输出自然语言。 最初,计算机是按照明确定义的程序(即算法)来对数字进行运算。但对于像根据照片判断一个人的年龄这类任务,我们无法明确编程,因为不清楚大脑完成此任务的具体步骤,而这类任务正是 AI 所感兴趣的。 AI 技术无论如何发展,其生态位仍似人而非人。我们可以从人类文明传说和古老哲人的智慧中寻找与 AI 这类似人非人存在相处的原则,比如想让其实现愿望时,要通过语言文字尽可能压缩其自由度,清晰告知其任务、边界、目标、实现路径方法以及所需的正确知识。
2025-01-14
利用布鲁姆分类法,规划我的AI学习路径
以下是利用布鲁姆分类法为您规划的 AI 学习路径: 1. 记忆: 先从 AI 的历史、基本术语、重要人物、方法和原理等开始了解。 查看入门课程。 2. 分析: 大量阅读各类文章、视频以及行业报告,理解各知识之间的关系。 3. 应用: 深入了解 Prompt,选择适合自己的 AI 对话、绘画和语音产品,每天使用并用来解决实际问题或提升效率。 完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2025-01-13
我是0基础,请你帮我规划学习AI知识的路径。
以下是为 0 基础的您规划的学习 AI 知识的路径: 一、了解 AI 基本概念 建议阅读「」部分,熟悉 AI 的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。同时,浏览入门文章,这些文章通常会介绍 AI 的历史、当前的应用和未来的发展趋势。 二、开始 AI 学习之旅 在「」中,您将找到一系列为初学者设计的课程。特别推荐李宏毅老师的课程。您还可以通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 三、选择感兴趣的模块深入学习 AI 领域广泛(比如图像、音乐、视频等),您可以根据自己的兴趣选择特定的模块进行深入学习。建议您一定要掌握提示词的技巧,它上手容易且很有用。 四、实践和尝试 理论学习之后,实践是巩固知识的关键。尝试使用各种产品做出您的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 五、体验 AI 产品 与现有的 AI 产品进行互动是学习 AI 的另一种有效方式。尝试使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 六、长期学习与成长 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得自己的成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。 如果您的学习方向偏向技术研究: 1. 数学基础:线性代数、概率论、优化理论等。 2. 机器学习基础:监督学习、无监督学习、强化学习等。 3. 深度学习:神经网络、卷积网络、递归网络、注意力机制等。 4. 自然语言处理:语言模型、文本分类、机器翻译等。 5. 计算机视觉:图像分类、目标检测、语义分割等。 6. 前沿领域:大模型、多模态 AI、自监督学习、小样本学习等。 7. 科研实践:论文阅读、模型实现、实验设计等。 如果您的学习方向偏向应用: 1. 编程基础:Python、C++等。 2. 机器学习基础:监督学习、无监督学习等。 3. 深度学习框架:TensorFlow、PyTorch 等。 4. 应用领域:自然语言处理、计算机视觉、推荐系统等。 5. 数据处理:数据采集、清洗、特征工程等。 6. 模型部署:模型优化、模型服务等。 7. 行业实践:项目实战、案例分析等。 无论是技术研究还是应用实践,数学和编程基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。
2025-01-13
提示词工程的学习路径
以下是关于提示词工程的学习路径: 1. 基础概念学习 了解 Stable Diffusion 的工作原理和模型架构。 理解提示词如何影响生成结果。 掌握提示词的组成部分,如主题词、修饰词、反面词等。 2. 研究官方文档和教程 通读 Stable Diffusion 官方文档,了解提示词相关指南。 研究来自开发团队和专家的教程和技巧分享。 3. 学习常见术语和范例 熟悉 UI、艺术、摄影等相关领域的专业术语和概念。 研究优秀的图像标题和描述,作为提示词范例。 4. 掌握关键技巧 学习如何组合多个词条来精确描述想要的效果。 掌握使用“()”、“”等符号来控制生成权重的技巧。 了解如何处理抽象概念、情感等无形事物的描述。 5. 实践和反馈 使用不同的提示词尝试生成各种风格和主题的图像。 对比提示词和实际结果,分析原因,总结经验教训。 在社区内分享结果,请教高手,获取反馈和建议。 6. 创建提示词库 根据主题、风格等维度,建立自己的高质量提示词库。 将成功案例和总结记录在案,方便后续参考和复用。 7. 持续跟进前沿 关注 Stable Diffusion 的最新更新和社区分享。 及时掌握提示词的新技术、新范式、新趋势。 此外,提示词在现代大型语言模型中极其重要,学习提示词运用还需: 1. 理解提示词的作用 提示词向模型提供上下文和指示,其质量直接影响模型输出质量。 2. 学习提示词的构建技巧 明确任务目标,用简洁准确的语言描述。 给予足够的背景信息和示例,帮助模型理解语境。 使用清晰的指令,如“解释”、“总结”、“创作”等。 对特殊要求应给予明确指示,如输出格式、字数限制等。 3. 参考优秀案例 研究和学习已有的优秀提示词案例,了解行之有效的模式和技巧。 4. 实践、迭代、优化 多与语言模型互动,根据输出提高提示词质量。尝试各种变体,比较分析输出差异,持续优化提示词构建。 5. 活用提示工程工具 目前已有一些提示工程工具可供使用,如 Anthropic 的 Constitutional AI。 6. 跟上前沿研究 提示工程是当前最前沿的研究领域之一,持续关注最新的研究成果和方法论。 在相关工作方面: 自动提示词工程方面,研究界开发了各种策略,用技术如增量编辑、强化学习、算法搜索等来自动化这一过程,也有利用大型语言模型本身进行自动提示词工程的工作。用于复杂推理任务的大型语言模型提示方面,提升大型语言模型在此方面的性能有引导模型产生中间推理步骤的提示方法和自我反思方法。提示词工程是一项复杂的语言任务,人类提示词工程师通常会检查当前提示词产生的失败案例,进行推理和假设,并撰写新的提示词。
2025-01-12
Coze扣子这个智能体搭建平台是什么?能做什么?作为一个非IT专业的普通人,怎么学习用它来创建智能体?学习的路径和步骤
Coze 扣子是一款基于自然语言处理和人工智能技术的智能助手平台,具有以下特点和功能: 1. 提供丰富的插件生态,能帮助用户快速实现个性化的智能应用,无需编写复杂代码。 2. 经过一年多的用户打磨,插件生态和分发渠道对个人用户够用,上手难度不高,信息获取插件丰富。 3. 推出专业版服务,主要特性包括企业级 SLA 保障、高级特性支持(如批量处理、私有数据等)以及更优惠的计费项。 对于非 IT 专业的普通人,学习用它来创建智能体的路径和步骤如下: 1. 体验和了解 Coze 扣子平台的基本功能和操作,熟悉其界面和常用工具。 2. 学习相关的基础知识,例如自然语言处理的基本概念、智能体的工作原理等。 3. 参考平台提供的教程和示例,逐步尝试创建简单的智能体。 4. 加入相关的学习交流群,与其他用户交流经验,共同学习进步。 需要注意的是,目前提示词攻击在业内是公开的秘密,像扣子这样的智能体编排平台,其热门智能体的核心提示词可能会被轻易获取,存在一定的安全风险。
2025-01-12
AI学习路径
以下是为新手提供的 AI 学习路径: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,通过实践巩固知识,尝试使用各种产品做出作品。 知识库中有很多实践后的作品、文章分享,欢迎实践后分享。 5. 体验 AI 产品: 与现有的 AI 产品如 ChatGPT、Kimi Chat、智谱、文心一言等聊天机器人互动,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 另外,如果您偏向技术研究方向,学习路径包括: 1. 数学基础:线性代数、概率论、优化理论等。 2. 机器学习基础:监督学习、无监督学习、强化学习等。 3. 深度学习:神经网络、卷积网络、递归网络、注意力机制等。 4. 自然语言处理:语言模型、文本分类、机器翻译等。 5. 计算机视觉:图像分类、目标检测、语义分割等。 6. 前沿领域:大模型、多模态 AI、自监督学习、小样本学习等。 7. 科研实践:论文阅读、模型实现、实验设计等。 如果您偏向应用方向,学习路径包括: 1. 编程基础:Python、C++等。 2. 机器学习基础:监督学习、无监督学习等。 3. 深度学习框架:TensorFlow、PyTorch 等。 4. 应用领域:自然语言处理、计算机视觉、推荐系统等。 5. 数据处理:数据采集、清洗、特征工程等。 6. 模型部署:模型优化、模型服务等。 7. 行业实践:项目实战、案例分析等。 无论是技术研究还是应用实践,数学和编程基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2025-01-11
AI学习路径
以下是为新手提供的 AI 学习路径: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,通过实践巩固知识,尝试使用各种产品做出作品。 知识库中有很多实践后的作品、文章分享,欢迎实践后分享。 5. 体验 AI 产品: 与现有的 AI 产品如 ChatGPT、Kimi Chat、智谱、文心一言等聊天机器人互动,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 另外,如果您偏向技术研究方向,学习路径包括: 1. 数学基础:线性代数、概率论、优化理论等。 2. 机器学习基础:监督学习、无监督学习、强化学习等。 3. 深度学习:神经网络、卷积网络、递归网络、注意力机制等。 4. 自然语言处理:语言模型、文本分类、机器翻译等。 5. 计算机视觉:图像分类、目标检测、语义分割等。 6. 前沿领域:大模型、多模态 AI、自监督学习、小样本学习等。 7. 科研实践:论文阅读、模型实现、实验设计等。 如果您偏向应用方向,学习路径包括: 1. 编程基础:Python、C++等。 2. 机器学习基础:监督学习、无监督学习等。 3. 深度学习框架:TensorFlow、PyTorch 等。 4. 应用领域:自然语言处理、计算机视觉、推荐系统等。 5. 数据处理:数据采集、清洗、特征工程等。 6. 模型部署:模型优化、模型服务等。 7. 行业实践:项目实战、案例分析等。 无论是技术研究还是应用实践,数学和编程基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2025-01-09
目前的AI插件产业实践有哪些,需要收费的又有哪些
目前的 AI 插件产业实践中,以开发 AI Share Card 插件为例: 技术方案:将模板生成功能设计为固定的代码组件,让大模型专注于内容总结的功能。若用户需要其他模板,可通过增加更多模板选项或自定义模板代码功能实现。 对 AI 大模型的要求:处理纯文本总结任务,仅需 13B 或更小参数的模型,加上精调的提示词就能产生很好结果。 AI API 服务的选型要求: 较长的上下文窗口,因为内容总结类任务需要较大的上下文长度。 响应速度要快、并发支持要高,以在多人使用插件时保持良好性能表现。 免费或尽量低价,以减少模型 token 费用。例如选用的 GLM4flash(截至 202412,长达 128k 的上下文窗口,完全免费的调用价格,200 RPM 高并发支持)。 需要收费的 AI 插件因具体应用和服务提供商而异,常见的收费方式包括按使用量计费、订阅制等。但像上述提到的 GLM4flash 在特定时间内是免费的。
2024-12-28
智能客服的实践案例有哪些?
以下是一些智能客服的实践案例: 在销售方面,有“销售:话术总结优缺点”,涉及产品特点、服务优势、目标客户需求和痛点等方面。 详情: 入库时间:2023/10/30 在销售方面,还有“销售:定制销售解决方案”,涵盖企业产品和服务内容、客户需求和参数等内容。 详情: 入库时间:2023/10/30 在客服方面,有“客服:定制客服话术”,包含产品知识、使用方法等 13 个关键词库。 详情: 入库时间:2023/10/30 腾讯运营在智能客服方面的应用: ChatGPT 承担客服功能,通过告知其具体客服身份,要求其解答用户问题并进行私域流量转化。 ChatGPT 能够理解社区用户的评论和问题,并生成合适的回复,管理社区互动,模拟运营人的语言风格,与用户进行更自然的互动。 ChatGPT 可以监测舆情和热点,从多个来源抓取互联网上的热门话题、新闻和社交媒体动态,并对抓取到的文本数据进行深度分析。 其他相关案例:
2024-12-17
提示词实践
以下是一些关于提示词(Prompts)的最佳实践示例: 1. Unicode 字符映射转换器: 作者:李继刚 分类:代码 说明:将用户输入的字符串逐一映射到 Unicode 区间 U+1D400 到 U+1D420。 注意事项:请准确地将用户输入的字符串的字符映射到指定的 Unicode 区间;不提供任何解释或说明;只输出转换后的结果。 链接地址: 2. 流程图/图表设计: 作者:nimbus 分类:商业 说明:根据用户的流程描述,自动生成 Mermaid 图表代码 注意事项:生成的代码要符合 Mermaid 语法,准确表达用户需求;生成代码遵循 Mermaid 语法;流程语义表达准确;代码整洁格式规范。 链接地址: 3. 黑话转化器: 作者:echo 分类:文本 说明:使用 ChatGPT 模拟阿里黑话转换 任务步骤: 欢迎玩家输出对话。 玩家说完对话后,ChatGPT 进行阿里黑话转换,在对话中,尽量使用阿里高级词汇。 使用示例: 输入:找个小众产品抄,预期输出:找准了自己差异化赛道。 输入:做广告,预期输出:通过对势能积累的简单复用实现了价值转化。 输入:被主流给抛弃,预期输出:通过特有抓手找到擅长的垂直领域。 输入:发小卡片,预期输出:通过点线结合的对焦性打法,找到了红海行业的精细化引爆点。 链接地址:
2024-12-04
有哪些使用语言模型的最佳实践案例?
以下是一些使用语言模型的最佳实践案例: 1. 转换类应用: 大型语言模型擅长将输入转换为不同格式,如语言翻译、拼写和语法矫正、格式转换等。例如,可以输入一段不符合语法规范的文本让其修改,或输入 HTML 输出 JSON。 可以执行翻译任务,模型在多种语言的大量文本上训练,能够掌握数百种语言。 2. 基础提示词: 提示词包含传递到模型的指令、问题等信息,也可包含上下文、输入或示例等详细信息,以更好地指导模型获得更好结果。 对于 OpenAI 的聊天模型,可使用 system、user 和 assistant 三种角色构建 prompt,通常示例仅使用 user 消息作为 prompt。 提示工程探讨如何设计最佳提示词,如通过改进提示词完善句子输出。 3. 提示工程: 将复杂任务分解为更简单的子任务,如使用意图分类识别用户查询中的指令,对长对话进行总结或过滤,将长文档分段总结。 给予模型“思考”时间,如让模型在给出最终答案前先进行“思考链”推理,指导其先给出解决方案,使用“内心独白”或系列查询隐藏推理过程,询问是否遗漏信息以确保完整性。
2024-11-25
咱们有dify的好的实践教程或示例吗
以下是关于 Dify 的一些实践教程和相关信息: 接入企业微信: 创建聊天助手应用:在 Dify 平台创建基础编排聊天助手应用,获取 API 密钥和 API 服务器地址。 下载 Dify on WeChat 项目:下载并安装依赖。 填写配置文件:在项目根目录创建 config.json 文件,填写 API 密钥和服务器地址。 把基础编排聊天助手接入微信:快速启动测试,扫码登录,进行对话测试,可以选择源码部署或 Docker 部署。 把工作流编排聊天助手接入微信:创建知识库,导入知识库文件,创建工作流编排聊天助手应用,设置知识检索节点和 LLM 节点,发布更新并访问 API。 把 Agent 应用接入微信:创建 Agent 应用,设置对话模型和添加工具,生成 API 密钥,填写配置文件,启动程序并进行测试。更多内容请访问原文:https://docs.dify.ai/v/zhhans/learnmore/usecases/difyonwechat 构建知识库的具体步骤: 准备数据:收集需要纳入知识库的文本数据,包括文档、表格等格式。对数据进行清洗、分段等预处理,确保数据质量。 创建数据集:在 Dify 中创建一个新的数据集,并将准备好的文档上传至该数据集。为数据集编写良好的描述,描述清楚数据集包含的内容和特点。 配置索引方式:Dify 提供了三种索引方式供选择:高质量模式、经济模式和 Q&A 分段模式。根据实际需求选择合适的索引方式,如需要更高准确度可选高质量模式。 集成至应用:将创建好的数据集集成到 Dify 的对话型应用中,作为应用的上下文知识库使用。在应用设置中,可以配置数据集的使用方式,如是否允许跨数据集搜索等。 持续优化:收集用户反馈,对知识库内容和索引方式进行持续优化和迭代。定期更新知识库,增加新的内容以保持知识库的时效性。 Dify 介绍:Dify 是一个开源的大模型应用开发平台,它通过结合后端即服务和 LLMOps 的理念,为用户提供了一个直观的界面来快速构建和部署生产级别的生成式 AI 应用。该平台具备强大的工作流构建工具,支持广泛的模型集成,提供了一个功能丰富的提示词 IDE,以及一个全面的 RAG Pipeline,用于文档处理和检索。此外,Dify 还允许用户定义 Agent 智能体,并通过 LLMOps 功能对应用程序的性能进行持续监控和优化。Dify 提供云服务和本地部署选项,满足不同用户的需求,并且通过其开源特性,确保了对数据的完全控制和快速的产品迭代。Dify 的设计理念注重简单性、克制和快速迭代,旨在帮助用户将 AI 应用的创意快速转化为现实,无论是创业团队构建 MVP、企业集成 LLM 以增强现有应用的能力,还是技术爱好者探索 LLM 的潜力,Dify 都提供了相应的支持和工具。Dify 官方手册:https://docs.dify.ai/v/zhhans 。一般地,如果是个人研究,推荐单独使用 Dify,如果是企业级落地项目推荐使用多种框架结合,效果更好。
2024-11-22