直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

对企业来说直接用开源大模型和用国内大厂收费的大模型有哪些区别

回答

对于企业来说,直接使用开源大模型和使用国内大厂收费的大模型主要有以下区别:

数据方面:

  • 开源大模型的数据获取相对容易,但数据质量可能参差不齐。例如,OpenAI 训练大模型所用的中文数据虽源自中国互联网平台,但经过了深度处理,而国内中文互联网数据质量普遍被认为相对较低。
  • 国内大厂收费的大模型可能在数据处理和质量上更具优势,但获取高质量数据对于企业尤其是初创企业来说成本较高且存在风险。

商业化落地方面:

  • 客户在商业化落地时更关注实用性而非原创性,有时因成本低会倾向选择开源大模型的非原创技术。
  • 但使用开源大模型可能存在拼装和套壳后强调原创,从而影响迭代能力,导致内耗、刷榜和作假等问题。

其他方面:

  • 金沙江创投主管合伙人朱啸虎指出,使用大模型要有垂直行业数据,能实现数据闭环,并持续保持和客户的连接。对于大厂而言,要关心自身边界,而创业公司必须对客户和大厂有自身价值才能立足。
  • 目前国内大模型的商业化落地仍处于拿着锤子找钉子的阶段,预计到今年年底头部大模型能基本达到 3.5 水平,明年 11 月有望到 4,但真正能落地的商业化场景有限。
内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

中国大模型面临的真实问题:登顶路远,坠落一瞬

接下来,让我们把目光转向数据这个同样关键的要素。在人工智能的世界里,数据就像是原油,而高质量的数据则是精炼后的汽油。虽然OpenAI训练大模型所用的中文数据也源自中国的互联网平台,但他们在数据处理上的额外努力,就像是将粗糙的原石打磨成璀璨的钻石。这种数据质量的提升,远非简单的数据标注工作所能企及,而是需要一支专业团队进行深度的数据清洗和精细整理。然而,在中国的AI创业生态中,高质量的数据处理服务就像是稀缺资源。在国内,数据获取的门槛相对较低,这看似是一个优势。然而,虽然数据获取容易,但高质量数据的获取却是另一回事。国内的大模型主要以中文数据为基础,这看似是一个自然的选择。但业内普遍认为中文互联网数据的质量相对较低。这种情况让人想起了信息论中的"垃圾进,垃圾出"原理。如果输入的数据质量不高,那么即使有最先进的算法,输出的结果也难以令人满意。这个现象在IT从业者的日常工作中得到了印证。当需要搜索专业信息时,他们往往会首选Google、arXiv或Bing等国际平台,而不是国内的搜索引擎。那么,可能有人会想:“那我买点优质数据不就完了吗?”但对于许多公司,尤其是初创企业来说,这笔投入看似是一个风险过高的赌注。更不要考虑到找到一个好的数据供应商是万里挑一的概率了。这个风险,创业公司很难担的起。如果大规模投入后,模型效果不如预期,那么这笔投资就像是泥牛入海。因此,许多公司选择了一条看似更安全的路径:直接使用开源数据进行训练,然后匆忙召开发布会。更有意思的是,在国内的AI领域,这份"黄金"似乎变成了一个难解的谜题。正如一位大厂AI线的负责人所言,"在中国,你能拿到的数据,别人也能拿到。"

金沙江创投合伙人朱啸虎发言纪要.pdf

朱啸虎:第一,要有垂直行业数据,大模型公司很难自己获取。第二,要能实现数据闭环,用以持续提升自己的垂直模型。第三,要能持续保持和客户的连接,因为大厂不可能自己去一个个磕客户。这三点特别重要。也就是说,在原有业务基础上加AI是最靠谱的,也比较容易;但先有AI模型或产品,在上面加东西是很难的。Q:国内创业者或者大厂,他们是怎么考虑这件事的?朱啸虎:我们一直在聊,大厂确实也在关心自己的边界在哪里。有些大厂还比较好,它不想抢太多创业公司的机会。但我觉得不管中国还是美国(的创业公司),靠别人的怜悯那是不现实的,你必须对客户、大厂都有自己的价值,才能真正找到自己的根据地。Q:你觉得现在国内大模型的商业化落地进展怎么样?大家处在一个什么样的阶段?朱啸虎:现在都在拿着锤子找钉子。说实话到今年年底,我觉得头部的几个大模型都基本能做到3.5水平,明年11月有希望到4。但OpenAI的GPT-4出来以后,它真正能够落地的商业化场景(在美国)也是很有限的,类比中国,应该也差不多。

中国大模型面临的真实问题:登顶路远,坠落一瞬

事实上,无论是直接使用开源大模型还是拼装大模型,只要符合相关规范,都是可以接受的。在商业化落地时,客户往往更关注实用性而非原创性,有时甚至会因为成本较低而更倾向于选择非原创技术。可问题在于,即使是拼装和套壳,许多公司仍不断强调自己是原创的。为了证明这一点,他们不断进行调整和修改,这反而影响了大模型的迭代能力,逐渐陷入内耗、刷榜和作假的境地。

其他人在问
推荐一个AI工具,帮助我每天自动执行以下步骤:从本地上传文件给大模型,该文件内含有新闻网页链接,大模型读取链接并汇总内容
以下为您推荐的 AI 工具可能有助于您实现每天自动执行从本地上传文件给大模型,并让大模型读取文件内新闻网页链接并汇总内容的需求: 1. AI 拍立得(Pailido): 特点:即拍即得,简化流程,操作直观高效。 体验方式:微信小程序搜索“Pailido”。 交互逻辑:用户选择拍摄场景类型并拍照,AI 自动识别和分析照片内容信息,依据预设场景规则迅速生成符合情境的反馈。 实现场景: 图片转成文本:用户上传图片后,大模型根据选择的场景生成相关文字描述或解说文本,可用于生成美食点评、朋友圈发布文案、闲鱼上架示例模版等。 图片转绘图片:用户上传图片后,大模型按照指定风格快速生成图像的转绘版本,适应不同风格和场景需求,如图片粘土风、图片积木风、图片像素风等。 2. 内容仿写 AI 工具: 秘塔写作猫:https://xiezuocat.com/ ,是 AI 写作伴侣,能推敲用语、斟酌文法、改写文风,实时同步翻译,支持全文改写、一键修改、实时纠错并给出修改建议,智能分析文章属性并打分。 笔灵 AI 写作:https://ibiling.cn/ ,是智能写作助手,支持多种文体写作,如心得体会、公文写作、演讲稿、小说、论文等,支持一键改写/续写/扩写,智能锤炼打磨文字。 腾讯 Effidit 写作:https://effidit.qq.com/ ,由腾讯 AI Lab 开发的智能创作助手,能提升写作者的写作效率和创作体验。 更多 AI 写作类工具可以查看:https://www.waytoagi.com/sites/category/2 。请注意,内容由 AI 大模型生成,请仔细甄别。
2024-12-21
如何利用AGI创建3D打印的模型
利用 AGI 创建 3D 打印模型的方法如下: 1. 将孩子的画转换为 3D 模型: 使用 AutoDL 部署 Wonder3D:https://qa3dhma45mc.feishu.cn/wiki/Pzwvwibcpiki2YkXepaco8Tinzg (较难) 使用 AutoDL 部署 TripoSR:https://qa3dhma45mc.feishu.cn/wiki/Ax1IwzWG6iDNMEkkaW3cAFzInWe (小白一学就会) 具体实物(如鸟/玩偶/汽车)的 3D 转换效果最佳,wonder3D 能智能去除背景(若效果不佳,需手动扣除背景) 对于一些非现实类玩偶类作品,wonder3D 识别效果不佳时,可先使用 StableDiffusion 将平面图转换为伪 3D 效果图再生成模型。以 usagi 为例,先通过 SD 生成 3D 的 usagi,再将 usagi 输入 wonder3D。 2. 生成特定模型,如创建一个乐高 logo 的 STL 文件: 设计乐高 logo:使用矢量图形编辑软件(如 Adobe Illustrator 或 Inkscape)创建或获取矢量格式的乐高 logo,确保符合标准。 导入 3D 建模软件:将矢量 logo 导入到 3D 建模软件(如 Blender、Fusion 360 或 Tinkercad)中。 创建 3D 模型:在 3D 建模软件中根据矢量图形创建 3D 模型,调整尺寸和厚度以适合打印。 导出 STL 文件:将完成的 3D 模型导出为 STL 文件格式。 以下是在 Blender 中使用 Python 脚本创建简单 3D 文本作为乐高 logo 并导出为 STL 文件的步骤: 打开 Blender,切换到“脚本编辑器”界面。 输入脚本,点击“运行脚本”按钮,Blender 将创建 3D 文本对象并导出为 STL 文件。 检查生成的 STL 文件,可根据需要调整脚本中的参数(如字体、位置、挤压深度等)以获得满意的乐高 logo 3D 模型。 此外,还有一些其他动态: 阿里妈妈发布了:https://huggingface.co/alimamacreative/FLUX.1TurboAlpha ,演示图片质量损失小,比 FLUX schell 本身好很多。 拓竹旗下 3D 打印社区 Make World 发布 AI:https://bambulab.com/zh/signin ,3D 生成模型找到落地和变现路径。 上海国投公司搞了一个:https://www.ithome.com/0/801/764.htm ,基金规模 100 亿元,首期 30 亿元,并与稀宇科技(MiniMax)、阶跃星辰签署战略合作协议。 智谱的:https://kimi.moonshot.cn/ 都推出基于深度思考 COT 的 AI 搜索。 字节跳动发布:https://mp.weixin.qq.com/s/GwhoQ2JCMQwtLN6rsrJQw ,支持随时唤起豆包交流和辅助。 :https://x.com/krea_ai/status/1844369566237184198 ,集成了海螺、Luma、Runway 和可灵四家最好的视频生成模型。 :https://klingai.kuaishou.com/ ,现在可以直接输入文本指定对应声音朗读,然后再对口型。
2024-12-20
如何通过提示词提高模型数据对比和筛选能力
以下是一些通过提示词提高模型数据对比和筛选能力的方法: 1. 选择自定义提示词或预定义话题,在网站上使用如 Llama3.1 8B Instruct 模型时,输入对话内容等待内容生成,若右边分析未刷新可在相关按钮间切换。由于归因聚类使用大模型,需稍作等待,最终结果可能因模型使用的温度等因素而不同。 2. 在写提示词时不能依赖直觉和偷懒,要实话实说,补充详细信息以避免模型在边缘情况上犯错,这样也能提高数据质量。 3. 在分类问题中,提示中的每个输入应分类到预定义类别之一。在提示末尾使用分隔符如“\n\n\n\n”,选择映射到单个 token 的类,推理时指定 max_tokens=1,确保提示加完成不超过 2048 个 token,每班至少有 100 个例子,可指定 logprobs=5 获得类日志概率,用于微调的数据集应在结构和任务类型上与模型使用的数据集相似。例如在确保网站广告文字正确的案例中,可微调分类器,使用合适的分隔符和模型。
2024-12-20
通过提示词可以提高模型的数学计算能力吗
通过提示词可以在一定程度上提高模型的数学计算能力。例如 PoT 技术,它是思维链技术的衍生,适用于数值推理任务,会引导模型生成一系列代码,再通过代码解释器工具进行运算,这种方式能显著提升模型在数学问题求解上的表现。PoT 作为 CoT 的衍生技术,遵循零样本和少样本的学习范式,零样本 PoT 与 CoT 方法相似,不需要大量样本即可进行有效推理,少样本 PoT 也通过较少样本优化模型表现。但需要注意的是,大模型在解决数学问题时可能存在不够可靠的情况。
2024-12-20
哪一个开源大语言模型对中文支持比较好?
以下是一些对中文支持较好的开源大语言模型: 1. OpenChineseLLaMA: 地址: 简介:基于 LLaMA7B 经过中文数据集增量预训练产生的中文大语言模型基座,对比原版 LLaMA,该模型在中文理解能力和生成能力方面均获得较大提升,在众多下游任务中均取得了突出的成绩。 2. BELLE: 地址: 简介:开源了基于 BLOOMZ 和 LLaMA 优化后的一系列模型,同时包括训练数据、相关模型、训练代码、应用场景等,也会持续评估不同训练数据、训练算法等对模型表现的影响。 3. Panda: 地址: 简介:开源了基于 LLaMA7B,13B,33B,65B 进行中文领域上的持续预训练的语言模型,使用了接近 15M 条数据进行二次预训练。 4. Llama2Chinese13bChat: 地址: 5. Gemma7bit: 地址: 此外,AndesGPT 在语言理解与抽取、角色扮演能力上排名国内前一,在代码、生成与创作、上下文对话能力上排名国内前三,各项能力较为均衡,聚焦在移动设备端的应用。Baichuan213BChat 是百川智能自主训练的开源大语言模型,是中文开源模型的主导力量。
2024-12-20
说明jetson orin nano可以使用什么模型?Grok-1模型可以吗?
目前没有关于 Jetson Orin Nano 是否可以使用 Grok1 模型的明确信息。但一般来说,Jetson Orin Nano 可以支持多种常见的深度学习模型,如基于 TensorFlow、PyTorch 框架开发的模型等。具体能够使用哪些模型,还需要考虑模型的计算需求、内存占用以及 Jetson Orin Nano 的硬件配置和性能限制等因素。
2024-12-20
开源的开源的 LLM 微调推理,agent开发平台
以下是为您整理的关于开源的 LLM 微调推理、agent 开发平台的相关内容: LLM 作为 Agent 的“大脑”的特点: 1. 知识获取能力:通过预训练学习大量语言数据,掌握丰富语言信息和常识知识,能处理多种任务。 2. 指令理解:擅长解析人类语言指令,采用深度神经网络进行自然语言理解和生成,精准理解意图。 3. 泛化能力:在未见过的数据上表现良好,能利用先前知识处理新挑战,形成对语言结构的通用理解。 4. 推理和规划:能够进行逻辑推理和未来预测,分析条件制定最佳行动方案,在复杂环境中做出理性选择。 5. 交互能力:拥有强大对话能力,在多人多轮次对话中自然流畅交流,改善用户体验。 6. 自我改进:基于用户反馈和效果评估,通过调整参数、更新算法提升性能和准确性。 7. 可扩展性:可根据具体需求定制化适配,针对特定领域数据微调提高处理能力和专业化水平。 相关产品和平台: 1. ComfyUI:可在其中高效使用 LLM。 2. Vercel AI SDK 3.0:开源的工具,可将文本和图像提示转换为 React 用户界面,允许开发者创建丰富界面的聊天机器人。 3. OLMo7BInstruct:Allen AI 开源的微调模型,可通过资料了解从预训练模型到 RLHF 微调模型的所有信息并复刻微调过程。 4. Devv Agent:能提供更准确、详细的回答,底层基于 Multiagent 架构,根据需求采用不同 Agent 和语言模型。 实例探究: 1. ChemCrow:特定领域示例,通过 13 个专家设计的工具增强 LLM,完成有机合成、药物发现和材料设计等任务。 2. Boiko et al. 研究的 LLM 授权的科学发现 Agents:可处理复杂科学实验的自主设计、规划和执行,能使用多种工具。
2024-12-12
开源大模型训练推理,应用开发agent 平台
以下是一些关于开源大模型训练推理、应用开发 agent 平台的相关信息: Agent 构建平台: Coze:新一代一站式 AI Bot 开发平台,集成丰富插件工具,适用于构建各类问答 Bot。 Mircosoft 的 Copilot Studio:主要功能包括外挂数据、定义流程、调用 API 和操作,可将 Copilot 部署到多种渠道。 文心智能体:百度推出的基于文心大模型的智能体平台,支持开发者打造产品能力。 MindOS 的 Agent 平台:允许用户定义 Agent 的个性、动机、知识等,并访问第三方数据和服务或执行工作流。 斑头雁:2B 基于企业知识库构建专属 AI Agent 的平台,适用于客服、营销、销售等场景,提供多种成熟模板。 钉钉 AI 超级助理:依托钉钉优势,在处理高频工作场景如销售、客服、行程安排等方面表现出色。 Gemini 相关:大型语言模型的推理能力在构建通用 agents 方面有潜力,如 AlphaCode 团队构建的基于 Gemini 的 agent 在解决竞争性编程问题方面表现出色。同时,Gemini Nano 提升了效率,在设备上的任务中表现出色。 成为基于 Agent 的创造者的学习路径:未来的 AI 数字员工以大语言模型为大脑串联工具。Agent 工程如同传统软件工程学有迭代范式,包括梳理流程、任务工具化、建立规划、迭代优化。数字员工的“进化论”需要在 AI 能力基础上对固化流程和自主思考作出妥协和平衡。
2024-12-12
最新的开源的关于大语言模型的书有哪些?
以下是一些最新的开源的关于大语言模型的书籍和资源: 《LLM 开源中文大语言模型及数据集集合》: Awesome Totally Open Chatgpt: 地址: 简介:This repo record a list of totally open alternatives to ChatGPT. AwesomeLLM: 地址: 简介:This repo is a curated list of papers about large language models, especially relating to ChatGPT. It also contains frameworks for LLM training, tools to deploy LLM, courses and tutorials about LLM and all publicly available LLM checkpoints and APIs. DecryptPrompt: 地址: 简介:总结了 Prompt&LLM 论文,开源数据&模型,AIGC 应用。 Awesome Pretrained Chinese NLP Models: 地址: 简介:收集了目前网上公开的一些高质量中文预训练模型。 《AIGC Weekly 19》:包含了多篇相关文章,如腾讯的开源图像模型 Stable Diffusion 入门手册、马丁的关于 AIGC 的碎片化思考、多邻国创始人 Luis von Ahn 专访、Meta AI 发布的自监督学习 CookBook 等。 《进阶:a16z 推荐进阶经典》: 《GPT4 technical report》(2023 年):来自 OpenAI 的最新和最伟大的论文。 《LLaMA:Open and efficient foundation language models》(2023 年):来自 Meta 的模型。 《Alpaca:A strong,replicable instructionfollowing model》(2023 年):来自斯坦福大学的模型。
2024-12-03
强化学习+开源代码
以下是关于强化学习的开源代码入门指南: 1. 基础知识准备: 若概率论和线性代数基础薄弱,可利用周末约一天时间学习相关课程,若不关注公式可忽略。 若机器学习基础为零,先看吴恩达课程,再以李宏毅课程作补充,若仅为入门强化学习,看李宏毅课程前几节讲完神经网络部分即可,此课程约需 25 小时。 2. 动手实践: 跟随《动手学深度学习 https://hrl.boyuai.com/》学习并写代码,入门看前五章,约 10 小时。 观看 B 站王树森的深度学习课程前几节学习强化学习基础知识点,约 5 小时。 3. 项目实践: 参考《动手学强化学习》(已开源 https://hrl.boyuai.com/),看到 DQN 部分,约十几小时。 模型构建:DQN 的网络模型采用一层 128 个神经元的全连接并以 ReLU 作为激活函数,选用简单的两层网络结构。 缓存区:需要一个缓存区来存放从环境中采样的数据。 训练函数:批量从缓存区获取数据,使用 DQN 算法进行训练。 主循环函数:在每个 episode 中,选择一个动作(使用 εgreedy 策略),执行该动作,并将结果存储在 replay buffer 中。训练完使用保存好的 model.pth 参数即可实际使用。 4. Qlearning 算法: 比如在状态 s1 上,根据 Q 值表选择行动,如发现向下行动 Q 值最大则向下走。获取 Q(s1,下)乘上衰减值 gamma(如 0.9)并加上到达下一个状态的奖励 R,作为“Q 现实”,之前根据 Q 表得到的是“Q 估计”。通过公式更新 Q(s1,下)的值,公式为:。 算法流程:初始化 Q,for 序列 e = 1 > E do: 用 ε Greedy 策略根据 Q 选择当前状态 s 下的动作 a,得到环境反馈的 r,s‘,得到初始状态 s,for 时间步 t = 1> T do: ,End for,End for。启动程序训练 100 次后可较好进行游戏。
2024-11-21
强化学习+开源代码
以下是关于强化学习的开源代码入门指南: 1. 基础知识准备: 若概率论和线性代数基础薄弱,可在周末约一天时间学习相关课程,若不关注公式可忽略。 若机器学习基础薄弱,先看吴恩达课程,再以李宏毅课程作补充,若仅为入门强化学习,看李宏毅课程前几节讲完神经网络部分即可,此视频课程约需 25 小时。 2. 动手实践: 跟随《动手学深度学习 https://hrl.boyuai.com/》动手学习概念并写代码,入门看前五章,约 10 小时。 观看 B 站王树森的深度学习课程前几节学习强化学习基础知识点,约 5 小时。 3. 项目实践: 参考《动手学强化学习》(已开源 https://hrl.boyuai.com/),看到 DQN 部分,约十几小时。 模型构建:DQN 的网络模型采用一层 128 个神经元的全连接并以 ReLU 作为激活函数,选用简单的两层网络结构。 数据缓存:需要一个缓存区来存放从环境中采样的数据。 训练函数:批量从缓存区获取数据,使用 DQN 算法进行训练。 主循环函数:在每个 episode 中,选择一个动作(使用 εgreedy 策略),执行该动作,并将结果存储在 replay buffer 中。训练完使用保存好的 model.pth 参数即可实际使用。 4. Qlearning 算法流程: 初始化 Q。 for 序列 e = 1 > E do: 用 ε Greedy 策略根据 Q 选择当前状态 s 下的动作 a,得到环境反馈的 r,s‘,得到初始状态 s。 for 时间步 t = 1> T do: End for。 End for。 例如,在当前智能体处于 s1 状态时,会在表中找最大 Q 值对应的行动。获取 Q(s1,下)乘上衰减值 gamma(如 0.9)并加上到达下一个状态时的奖励 R,作为现实中 Q(s1,下)的值(即“Q 现实”),之前根据 Q 表得到的 Q(s1,下)是“Q 估计”。有了“Q 现实”和“Q 估计”,可按公式更新 Q(s1,下)的值。公式中,α是学习率,γ是对未来 reward 的衰减值。启动程序训练 100 次后可较好地进行游戏。
2024-11-21
主流大厂目前的agi 进展
目前主流大厂在 AGI 方面的进展情况如下: 2023 年之前,国内 AI 行业自认为与美国差距不大,但 ChatGPT 和 GPT4 的出现打破了这种认知,OpenAI 直接拉开了 2 年的技术差距。 2023 年上半年,国内大厂纷纷囤卡招人,研究类 GPT 架构,或成立创业公司,试图创造国产 AGI。但下半年发现不容易后,纷纷转向“垂直应用”“商业化”,不再提 AGI。 国内最领先的模型水平大概在准 ChatGPT3.5 的水平,和 GPT4 还有不小差距。 百度和阿里在大厂中比较高调,百度的“文心 4.0”是当前国内能力较好的模型之一,即将发布的阿里的“通义千问”也备受关注。 大厂们在人才、GPU、数据和资金储备方面具备冲击 AGI 的条件,但实际效果尚无明确亮点,且受内部短期考核压力影响,多数力量用于卷新产品和向上汇报工作,同时还背负其他业务和政治考量。
2024-11-12
Stable Diffusion(SD)收费吗
Stable Diffusion 是开源免费的。其优势在于开源免费、可以本地化部署、创作自由度很高,但需要较好的电脑配置,尤其是显卡。 相比较于 DALLE 等大模型,Stable Diffusion 让用户使用消费级的显卡便能够迅速实现文生图。Stable Diffusion 完全免费开源,所有代码均在 GitHub 上公开,大家可以拷贝使用。 目前有关于 Stable Diffusion 的课程,例如《Stable Diffusion 零基础入门宝典》,共计 77 个课时,定价 298 元,上架 CCtalk。因制作字幕课程在逐步解锁中,目前对前 100 名报名的同学有优惠价 198 元。
2024-10-21
做视频AI剪辑,含矩阵,分发。国内有哪些免费软件或收费比较效低的
目前国内在视频 AI 剪辑方面,包含矩阵和分发功能,且免费或收费较低的软件相对较少。一些常见的视频剪辑软件如剪映、快影等,具有一定的智能剪辑功能,但可能在矩阵和分发方面的针对性不强。您可以关注一些新推出的软件或者相关软件的优惠活动,以获取更符合您需求且价格合适的选择。
2024-09-07
WaytoAGI 网站怎么收费
WaytoAGI 网站的收费情况如下: 对于 AI 绘画创作者:7 8 月测试期间,每件商品售出按 3 美元/件计算收益(需扣除韩国的预扣税,预扣税以财务的计算口径为准),7 8 月产生的收益,9 月可以开始提现。9 月平台正式上线后,收益计算公式为:×分成比例 预扣税净额支付 = 当月总收益,采用阶梯分成机制,按商品售价的实际分成比例结算。注册艺术家可以在账号平台钱包里查看收益。 购买算力点:可访问 WaytoAGI 图像工具官方网站: 。此外,WaytoAGI 提供多个专业版计划,以满足不同用户的需求,具体的专属权益和定价可在网站上查看。
2024-08-11
ChatGPT 这个软件在哪里下载,是否收费
ChatGPT 是一种基于 GPT 架构的人工智能模型,由 OpenAI 开发。它是目前最先进的人工智能模型之一,能够理解和生成接近人类水平的文本。 目前 ChatGPT 官网有两个版本,一个是 GPT3.5,一个是 GPT4。GPT3.5 是免费版本,只要拥有 GPT 账号就能使用,但智能程度相对较低,且无法使用 DALL.E3 和 GPTs 商店等插件。GPT4 则需要升级到 PLUS 套餐,收费标准为 20 美金一个月,功能更强大,包括 AI 画图功能和高级数据分析等插件。此外,GPT4 还有团队版和企业版,功能更多,限制更少,但费用也更高。 在注册 ChatGPT 账号之前,需要先注册一个谷歌账号,因为国外很多软件支持谷歌账号一键登录。注册谷歌账号支持国内手机号码和国内邮箱验证,过程简单。 ChatGPT 的网址为。使用 ChatGPT 时,需要注意以下几点: 需要🪜。 需要 gmail 注册。 有被封禁的可能。 总的来说,ChatGPT 是一款强大的人工智能工具,但使用时需要注意相关限制和风险。
2024-07-04
call annie 怎么收费
Call Annie 是一个 AI 助手聊天服务,旨在为用户提供随时可用的虚拟助手。该平台由 Animato, Inc. 提供支持,是一个可靠高效的虚拟助手,为用户提供多种访问方式:电话、实时视频、iPhone 应用或者 Web 音频。 关于 Call Annie 怎么收费的问题,需要前往其官网了解具体信息。
2024-05-10